
Interplanetary Trajectory Planning
with Monte Carlo Tree Search

Daniel Hennes and Dario Izzo
European Space Agency

Advanced Concepts Team
Noordwijk, The Netherlands

daniel.hennes@esa.int, dario.izzo@esa.int

Abstract
Planning an interplanetary trajectory is a very com-
plex task, traditionally accomplished by domain ex-
perts using computer-aided design tools. Recent
advances in trajectory optimization allow automa-
tion of part of the trajectory design but have yet to
provide an efficient way to select promising plane-
tary encounter sequences. In this work, we present
a heuristic-free approach to automated trajectory
planning (including the encounter sequence plan-
ning) based on Monte Carlo Tree Search (MCTS).
We discuss a number of modifications to traditional
MCTS unique to the domain of interplanetary tra-
jectory planning and provide results on the Rosetta
and Cassini-Huygens interplanetary mission design
problems. The resulting heuristic-free method is
found to be orders of magnitude more efficient with
respect to a standard tree search with heuristic-
based pruning which is the current state-of-the art
in this domain.

1 Introduction
Interplanetary trajectory optimization holds its most chal-
lenging aspect in its combinatorial part, that is the selection
of the planetary encounters.

Tree searches with heuristic-based pruning, implementing
problem knowledge, are the state-of-the-art in the aerospace
industry for tackling these problems. A notable example is
the software STOUR in use at NASA, Jet Propulsion Lab-
oratory [Longuski and Williams, 1991] which targets the
automated design of trajectories with multiple fly-bys and
has been used in several important mission design works
[Heaton et al., 2002; Petropoulos et al., 2000]. Some at-
tempts have been made in the last decade to advance the
state-of-the-art by proving the use of advanced combinato-
rial search paradigms such as Ant Colony Optimization [Ce-
riotti and Vasile, 2010], genetic algorithms [Deb et al., 2007;
Gad and Abdelkhalik, 2011; Izzo et al., 2014], tree search
strategies [Izzo et al., 2014; Petropoulos et al., 2014], or bi-
level optimization setups [Englander, 2013]. While some-
what successful, these advanced methods all make use of
problem knowledge to define heuristics and their application
to different data sets or domains requires substantial tuning

of many internal parameters and often result in an inefficient
set-up.

A relatively recent method to tackle extremely complex
combinatorial problems is that of the Monte Carlo Tree
Search (MCTS) paradigm. Born in the context of two-person
zero-sum games with perfect information; in MCTS a node is
evaluated by averaging the final outcome of several random
simulations. Four steps, namely: selection, expansion, simu-
lation, and back-propagation, are performed iteratively up to
when a stopping criteria is reached. Many papers have stud-
ied MCTS and applied its modifications and variants to dif-
ferent domains with great success; for an excellent overview
see [Browne et al., 2012].

In this paper we propose a heuristic-free approach based
on MCTS to tackle the complex problem of interplanetary
trajectory planning, and in particular the planetary encounter
selection problem. We start by giving a brief background
on the interplanetary trajectory design problem and MCTS.
Next, we look at trajectory design as a planning task, defin-
ing the possible actions and their relation to the final trajec-
tory. We then describe a number of modifications to tradi-
tional MCTS, unique to the domain of interplanetary trajec-
tory planning. We discuss our experimental set-up, in par-
ticular parameter search and runtime analysis. The resulting
heuristic-free method is found to be orders of magnitude more
efficient with respect to standard tree search with heuristic-
based pruning which is the current state-of-the art in this
domain [Longuski and Williams, 1991; Heaton et al., 2002;
Petropoulos et al., 2000].

2 Background
2.1 Interplanetary trajectories
We begin with a brief outline of the fundamentals of trajec-
tory design. Even today’s most powerful launch systems are
not able to send a spacecraft on a direct trajectory to target
bodies in the outer solar system. Therefore, most interplan-
etary missions require a well designed trajectory that guides
the spacecraft through a number of gravity assist maneuvers,
also called fly-bys. Each fly-by provides the spacecraft with a
gravitational kick by “stealing” a small amount of the planet’s
orbital energy. A sequence of carefully planned and executed
fly-bys allows the spacecraft to save propellant (or time) and
enables trajectories otherwise impossible.
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In this paper we model an interplanetary spacecraft tra-
jectory using a multiple gravity assist impulsive propulsion
model (known as the MGA model [Izzo et al., 2007]), which
is a very good preliminary approximation for a spacecraft
equipped with chemical propulsion featuring a high thrust ca-
pability. In the MGA model, the spacecraft is assumed to be
able to perform powered fly-bys; at each gravity assist ma-
neuver an impulse, modeled as a discontinuity ∆V in the
spacecraft velocity, can be used to correct the fly-by geom-
etry or decelerate the spacecraft to rendezvous with a target
body. Impulses at any other point of the trajectory, i.e. deep
space maneuvers, are not considered in this work. Using this
model, a trajectory T is defined by a pair (P, T̃ ) where P is
an ordered set of cardinality N containing the planetary en-
counter sequence (e.g. P = {Earth,Venus, Jupiter}), and T̃
is an ordered set of cardinality N containing the epochs of
the planetary encounters (e.g. T̃ = {t0, t1, t2}). It is conve-
nient for the definition of time grids to use, instead of T̃ , the
ordered set T containing, rather then the epochs, the various
time of flights (e.g. T = {t0, t1−t0, t2−t1} = {t0, T1, T2}).

Given a trajectory T = (P, T ), we may evaluate the cumu-
lative change of velocity (total ∆V ) required to fly it. This
quantity is of fundamental importance in interplanetary tra-
jectory design, as each required velocity change relates di-
rectly to the propellant mass via the Tsiolkovsky equation,
∆V = Ispg0 ln (mi/mf ), where mf is the spacecraft mass
at the end of the maneuver and mi its mass at the beginning.
Trivially, mf = mi − mp where mp is the propellant mass
spent.

We start by computing the positions ri and velocities vi of
the planets at the encounter epochs ∀i ∈ [0..N − 1]. For
this computation we use the analytical planet ephemerides
defined by NASA / Jet Propulsion Laboratory1. Given two
position vectors of two sequential encounters ri−1 and ri,
and the time of flight Ti, we can then determine the space-
craft’s absolute velocities v+

i−1 and v−
i at the encounters (i.e.

∀i ∈ [1..N−1]) by solving Lambert’s problem [Izzo, 2014]2.
We may then compute, at each planet, the spacecraft relative
velocities before and after the encounter ṽi

− = v−i − vi,
ṽi

+ = v+
i − vi. Two Lambert legs, e.g. Earth-Venus and

Venus-Jupiter, can then be “patched” together by calculating
the required ∆V to patch ṽ−,+ at Venus. The required ∆V
maneuver, computed accounting for the hyperbolic fly-by tra-
jectory, depends on the the magnitude of the relative arrival
and departure velocities at Venus but also on the angle β be-
tween the relative velocities [Izzo et al., 2007].

In addition to the various ∆Vi computed at the encounters,
the contributions at launch and arrival must be considered.
The relative departure velocity at launch is either fully or par-
tially supplied by the launch system. We thus discount the
launcher’s maximum velocity vLS from the departure rela-

1The approximated ephemerides were used as defined in http:
//ssd.jpl.nasa.gov/?planet pos [accessed November 2014]

2In this work we only consider 0-revolution Lambert solutions.
The extension of our methods to multiple revolution is straight for-
ward.

tive velocity at Earth ṽ−0 :

∆VLaunch = max
(
0, |ṽ−0 | − vLS

)
.

At the final encounter, a maneuver is performed to capture
the spacecraft in the gravitational field of the target body. We
compute this as ∆Vrndvz = |ṽ+

N−1|, a contribution, called
rendezvous maneuver, necessary to match the velocity of the
target body. A generic MGA trajectory T = (P, T ) is then
associated to a required ∆Vtot defined by:

∆Vtot = ∆VLaunch +
∑

i=1..N−2
∆Vi + ∆Vrndvz .

Finding the correct planetary sequence P and time schedule
T that allow for the minimization of this ∆Vtot is the problem
we tackle and solve in the remainder of this paper.

2.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a technique widely ap-
plicable in domains that require sequential decision mak-
ing, including game-tree search and planning problems. The
MCTS paradigm combines informed tree search with the gen-
erality of Monte Carlo simulations. Although, MCTS ex-
ist in many variants, all are based on the concept of incre-
mentally building an internal tree to inform its search policy.
MCTS algorithms are any-time algorithms that repeat the fol-
lowing four basic steps until the computational budget is de-
pleted [Chaslot et al., 2008]:

1. Selection: Starting from the root a selection policy is
deployed to descend through the tree while balancing
exploration and exploitation.

2. Expansion: Once the tree reaches a leaf node, the state
is advanced by performing a random available action and
the resulting state is added as a new node to the tree.

3. Simulation: A Monte Carlo simulation is run with ran-
dom action selection. Heuristic knowledge can be used
to give higher weight to promising actions.

4. Back-propagation: Once a final state is reached, the
value is back-propagated upwards trough the search tree
and each node selected in step 1 is updated accordingly.

Let us now discuss a popular choice of MCTS for planning
problems, Upper Confidence bounds for Trees (UCT) [Koc-
sis and Szepesvári, 2006], in further detail. UCT is based
on the Upper Confidence Bound (UCB) [Auer et al., 2002]
selection strategies for multi-armed bandit problems. The
multi-armed bandit problem is a classical toy problem ad-
dressing the exploration-exploitation dilemma. In particu-
lar, Auer et. al [Auer et al., 2002] propose a policy UCB1
that has a bounded regret for arbitrary reward distributions
with support in [0, 1] after any number of plays (i.e. in
finite-time). The same paper also discusses various other
selection policies, most notably ε-greedy and UCB1-Tuned.
The authors make the following observations: an optimally
tuned ε-greedy policy performs almost always best; UCB1-
Tuned performs comparably to a well-tuned ε-greedy policy
but without a proven regret bound. The UCB1-Tuned policy
takes into account the measured variance of rewards and is
thus less sensitive to the reward distribution than UCB1.
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UCT follows the MCTS approch outlined above and de-
ploys the following selection policy:

arg min
i

X̄i + Cp

√
lnn

ni
, (1)

where X̄i is the estimated reward for child i (or action i), n
is number of times the current node has been selected, and ni
is the number of times the child i has been updated. The
parameter Cp has been introduced to balance exploration-
exploitation behavior. If Cp = 1√

2
, then Equation (1) is

equivalent to the UCB1 policy as introduced in [Auer et al.,
2002]. The ε-greedy policy is computationally less demand-
ing and thus of interest in complex planning problems with
many tree updates. Equation (2) shows a slightly modified
version of ε-greedy as introduced in [Sabharwal et al., 2012]:

arg min
i

X̄i +
εn

ni
. (2)

Both selection policies (1) and (2) require tuning of an
exploration–exploitation parameter, Cp and ε respectively.
The UCB1-Tuned policy uses the measured variance of re-
wards:

arg min
i

X̄i +

√
lnn

ni
min{1

4
, Vi}, (3)

where Vi is the variance for child i:

Vi = (
1

2

ni∑
j=1

X2
i,j)− X̄2

i +

√
2 lnn

ni
= σi

2 +

√
2 lnn

ni
. (4)

All three variants have been applied as selection policies in
MCTS variants.

3 MCTS for Trajectory Planning
In order to apply UCT to interplanetary trajectory design, we
must transcribe the problem of finding an interplanetary tra-
jectory T = (P, T ) as a planning task. The initial state (i.e.
root of the tree) is pre-launch at Earth and the first action
is selecting the departure date t0 ∈ [t0, t0] where t0 and t0
define the boundaries of the launch window. The consec-
utive moves alternate between selecting the next planetary
encounter Pi ∈ {Venus,Earth,Mars, ...}, and time of flight
Ti ∈ [T i, T i] where the limits T i and T i are chosen looking
at the orbital periods τi−1, τi of Pi−1 and Pi and setting the
wide bounds T i = 0.1∗(τi+τi−1), T i = 2∗(τi+τi−1). The
action sequence: {t0 = 5110, P1 = Venus, T1 = 150, P2 =
Jupiter, T2 = 2000} thus defines a trajectory departing from
Earth3 at time 5110 MJD2000 (Modified Julian Day 2000)
with two Lambert legs: from Earth to Venus in 150 days and
from Venus to Jupiter in 2000 days. Contrary to the usual ap-
proach for trajectory design, this problem description allows
us to simultaneously tackle the selection of the planetary en-
counter sequence and the timing of flyby. As most of the
search space is spanned by very costly actions (resulting in
infeasible trajectories requiring unrealistic propellant quanti-
ties) we also consider a threshold on the ∆V of 10 [km/s], so
that if at any node the cumulative ∆V exceeds this threshold
the state is considered terminal.

3P0 = Earth is implied.

3.1 Ephemeris grid
The UCB selection policy used in UCT is based on finite
multi-armed bandits problems; as such the action space must
be a set of discrete choices. However, the initial action t0
and the TOF-actions Ti are continuous in nature. A straight-
forward solution is to use a regular tiling of the time domain,
e.g. grid points every 5 days. Although, regular-tiling is often
used as a discretization technique of the state, action and time
domain in robotics, it is highly inefficient for Keplerian mo-
tions. Planets in the inner solar system have orbital periods of
just 88 days (Mercury) to 687 days (Mars), while outer plan-
ets take 12 years (Jupiter) to 29 years (Saturn) to complete an
orbit. We thus define a 1D grid for each body based on its
orbital period τi and a grid resolution parameter l [deg]:

G =

{
t0 + j

lτi
360◦

, j ∈ N
}
. (5)

The action set A(t0) is a subset of GEarth in agreement with
the launch window; each TOF action set A(Ti) is a subset of
GPi such that t0 +

∑i−1
j=1 Tj + Ti falls on GPi in agreement

with the bounds on the time of flight. This ensures that all
ephemeris calculations, i.e. the calculation of the location r
and velocity v, of a body are aligned with its grid. The com-
plexity of the planning problem increases exponentially with
decreasing grid resolution parameter l as shown in Figure 1.

3.2 Selection policy
The UCB1 and UCB-Tuned policies require a reward dis-
tribution with support in the interval [0, 1]. The evaluation
of a trajectory is the sum of all required ∆V maneuvers in-
cluding final rendezvous and thus in the half-closed interval
∆Vtot ∈ [0,∞). We thus map ∆V tot to the reward for simu-
lation j as Xj ∈ [0, ] as follows:

Xj = max

(
0,

∆Vmax −∆Vtot,j
∆Vmax

)
. (6)

Furthermore, we redefine the node value estimator X̄ in
Equations (1), (2), and (3) as follows:

X̄i =
ni

max
j=1

Xj , (7)

where Xj is the reward of simulation j. For a given action
sequence, each of the Lambert problems has a unique solu-
tion. As such, the patching velocities and the launch and ren-
dezvous ∆V calculations are deterministic in nature. We can
thus use the max-estimator instead of the average over Xj

as each Xj gives a guaranteed lower bound on true value of
node j. In previous work, the “max-style” estimator is either
used in combination with the average estimator for MCTS in
stochastic single-player games [Schadd et al., 2008] or as the
sole node estimator in deterministic domains [Sabharwal et
al., 2012].

3.3 Expansion
In MCTS, the node expansion occurs at a leaf node after de-
scending through the internal tree. A previously untried ac-
tion is chosen at random and the corresponding node is added
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Figure 1: Problem complexity as a function of grid size.

Table 1: Global minima for l = 11.25◦.

Problem fixed t0 full
Cassini-Huygens 6.760 km/s 6.571 km/s

Rosetta 6.498 km/s 5.887 km/s

to the tree, at which point the Monte Carlo simulation starts.
As stated above, the evaluation of a simulation step provides
a guaranteed bound. As such there is no need to re-evaluate
the same trajectory again either in part or in whole. We thus
expand the internal tree by all nodes encountered during the
Monte Carlo simulation.

3.4 Contraction

In addition to the four steps of MCTS (i.e, selection, ex-
pansion, simulation, and backpropagaion), we introduce a
fifth step: contraction. When MCTS is applied to game-tree
search, the computational budget is usually relatively limited
and thus it is with low probability that the internal tree reaches
the depth of the full search tree (i.e., a leave of the internal
tree is a final state). This is especially the case in the early
phase of the game; later in the game, when the internal tree
reaches final states, end-game databases have been proven to
be more efficient [Browne et al., 2012]. Trajectory planning
problems span a very broad tree, with a branching factor as
high as 500 and limited depth, i.e. a trajectory rarely includes
more than 5-10 fly-bys and thus a search depth of 11-21. In
addition, we are not concerned with executing the expected
best move at the root node, as the case in traditional MCTS,
but rather in the full trajectory. The modified expansion step
and a rather broad but shallow tree, allow our algorithm to
grow an internal tree that indeed reaches final nodes. Any
subtree of the internal tree that fully covers the corresponding
problem search space (i.e., each child is played at least once
and all leaves are final states) can be ignored by further search
iterations and is thus removed from the internal tree.

Figure 2: Example of a possible Rosetta mission trajectory.

3.5 Flat Monte Carlo
In addition to the UCT with the various selection policies we
establish a baseline by including experiments with Flat Monte
Carlo search. Flat Monte Carlo does not gradually build a tree
but rather performs simulations starting from the root until
the computational budget is depleted, at which point the best
encountered solution is returned [Browne et al., 2012].

4 Experimental Evaluation
4.1 Problem set
We evaluate our approach on two well-known missions:
Cassini-Huygens and Rosetta. Cassini-Huygens is a joint
NASA/ESA mission launched in 1997 sent to Saturn. The
spacecraft Cassini arrived at its destination in 2004; it has
since successfully deployed the Huygens lander to Saturn’s
moon Titan and studied many of Saturn’s satellites.

Rosetta is an ESA-operated mission launched in 2004.
Rosetta arrived at its destination, comet 67P/Churyumov-
Gerasimenko, in August 2014. It is the first mission in history
to rendezvous with a comet, escort it as it orbits the Sun, and
successfully deploy a lander probe, named Philae, for a triple
landing on the comet’s surface.

We transcribe the two missions as planning problems fol-
lowing the approach outlined in Section 3. For both missions
we define two variants, the fixed t0 variant and the full vari-
ant. The fixed-t0 variant, fixes the first action of the planning
problem to a launch date close to the actual mission launch;
t0 = 1551.31 MJD2000 for Rosetta and t0 = −787.53
MJD2000 for Cassini-Huygens. The full variant includes the
first action within a 200 day and 365 day launch window for
Cassini-Huygens and Rosetta respectively. An example of
a Rosetta trajectory as described by our trajectory planning
model is shown in Figure 2.

The complexity in terms of Lambert legs is shown in Fig-
ure 1. The graph shows the number of Lambert legs re-

772



0.001 0.01 0.1 1 10
ǫ

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0
∆
v

[k
m

/s
]

(a) ε-greedy, N=50,000

0.001 0.01 0.1 1 10 100
ǫ

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

∆
v

[k
m

/s
]

(b) ε-greedy, N=100,000

0.001 0.01 0.1 1 10
Cp

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

∆
v

[k
m

/s
]

(c) UCB1, N=50,000
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(d) UCB1, N=100,000

Figure 3: Parameter search for the fixed-t0 Cassini-Huygens problem with l = 11.25◦ grid resolution.

quired to exhaustively search the problem space by depth-
first search. Table 1 lists the minimum ∆V solutions for both
problems found by exhaustive search with the finest grid res-
olution l = 11.25◦.

4.2 Parameter search
The UCB-1 (see Equation (1)) and ε-greedy (see Equation 2)
selection policies require one parameter choice each. Per-
formance is expected to greatly depend on careful tuning of
these parameters and we can not rely on “classical” choices
as no prior work has been done in the intersection of MCTS
and interplanetary trajectory planning. Therefore, we deploy
a parameter search, inspired by the methodology described
in [Kuipers et al., 2013]. We sample 4000 parameter in-
stances uniformly on a logarithmic scale. For each param-
eter instance, one run of UCT with the selected policy is per-
formed until the computational budget of N Lambert legs is
depleted. In addition to the approach in [Kuipers et al., 2013],
we fit a log-normal distribution to the parameter samples that
result in runs that reached the minimum ∆V solution. The
mean of the fitted distribution is used as a parameter choice

to conduct the performance evaluation.

4.3 Performance evaluation
To investigate the performance of the different selection
policies, we determine the expected runtime of the search.
The expected runtime E(RT) is computed with respect to
the number of Lambert legs. In particular, the formula-
tion in [Auger and Hansen, 2005] has been followed, where
E(RT) is defined as:

E(RT) =
1− ps
ps

N + E(RTs) ,

where E(RTs) is the expected number of Lambert legs for
a successful trial, ps is the probability of convergence to the
target value, and N is the budget for a trail. The target value
is defined as ∆Vt = min ∆V + ε, where min ∆V is the min-
imum ∆V solution and ε = 50 m/s a convergence threshold.

5 Results
Figure 3 shows the result of the parameter search in the
Cassini-Huygens fixed-t0 problem for 4000 sample points.
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Table 2: Mean values for fitted log-normal distributions; pa-
rameters in bold are used for further simulations.

Cassini-Huygens fixed t0 full
Lambert Legs 50K 100K 100K 1M
ε-greedy (ε) 0.0110 0.0125 — 0.0139
UCB1 (Cp) — 0.5730 — —

Rosetta fixed t0 full
Lambert Legs 50K 100K 100K 1M
ε-greedy (ε) 0.0146 0.0203 0.0406 —
UCB1 (Cp) 0.4427 0.6078 1.8454 —

Table 3: Expected runtime for problems with fixed launch
date t0; budget per run N=50,000.

Cassini-Huygens ps RTs E(RT)

ε-greedy 0.07550 33,446 645,697
UCB1 0.00980 19,305 5,097,510

UCB1-Tuned 0.0 — ∞
Flat Monte Carlo 0.0 — ∞

Rosetta ps RTs E(RT)

ε-greedy 0.39100 31,330 109,207
UCB1 0.00850 33,652 5,866,005

UCB1-Tuned 0.00075 21,503 66,638,169
Flat Monte Carlo 0.0 — ∞

The runs that reached minimum ∆V values are highlighted
in red. The mean values of the log-normal distribution are re-
ported in Table 2. We see a number of “solution-bands”, most
dominantly around 9 km/s; too little or too much exploitation
traps the search in local minima. The experiment presented
in Figure 3 (c) resulted in less than 10 successful runs, thus
an estimate for Cp was not attempted. Table 2 lists parame-
ter choices for the Cassini-Huygens and Rosetta missions as
identified by the parameter search and distribution fitting. For
the full Cassini-Huygens problem, a parameter estimate for ε
could only be established for runs with N=1,000,000.

Table 3 and Table 4 show the expected runtime for both
problems with Lambert leg budget N=50,000 for fixed-t0
and Lambert leg budget N=100,000 for the full problems.
The ε-greedy selection policy performs overall best, UCB1 is
one order of magnitude worse in the fixed-t0 case and fails
to reach the minimum solution in the full problem. UCB1-
Tuned performs worse than UCB1. Only well-tuned ε-greedy
selection found the minimum solution given the limited com-
putational budget.

6 Discussion
We have presented an approach to transcribe the preliminary-
phase of an interplanetary trajectory design as a planning
problem to which we applied the MCTS paradigm. Contrary

Table 4: Expected runtime for full problems; budget per run
N=100,000.

Problem ps RTs E(RT)

Cassini-Huygens 0.00025 64,607 399,964,607
Rosetta 0.23588 68,602 392,543

to what is commonly done in most approaches to trajectory
design, the sequence of planetary encounters (i.e. the com-
binatorial part of the problem) was not fixed a priori. The
final result for a generic mission is a number of trajectory op-
tions, each comprised of an encounter sequence P and a time
line T .

With respect to a depth-first search (also using a pruning
threshold of 10 km/s), MCTS makes use of orders of mag-
nitude less Lambert leg computations to find the global opti-
mal solution. The real strength of the approach, though, lies
in its ability to find very good solutions with a very limited
computational budget. Best–first search, such as A∗ or beam
search, would only be as successful as the employed future–
cost heuristic which is not readily available in planetary tra-
jectory planning; whereas our algorithm is heuristic–free.

As such, our MCTS-based approach seems to be a very
promising candidate to substitute current algorithms aimed
at helping mission designers to identify good planetary en-
counter options for preliminary mission design. As shown in
the case of the Cassini-Huygens mission, our approach was
able to find the best sequence of encounters and a time line
that is very close to the one flown by the real mission. As ex-
pected, in case of the Rosetta mission the suggested trajectory
options were incomplete. The fly-by sequence actually used
in the Rosetta mission was not found; although other good
options were located by MCTS. This is due to the fact that
employed MGA trajectory model, while computationally ad-
vantageous, is not capable to describe ∆V -EGA (∆V - Earth
Gravity Assist) maneuvers [Sims et al., 1997]. These maneu-
vers are critical to the use of the fly-by sequence E–E–M–E–
E–67P which was adopted for the Rosetta mission. This is
also the reason why fixing the launch date produces a more
difficult search problem than the open launch window. In the
open launch window, a multitude of solutions with different
flyby sequences can be found that score within the min ∆Vt
threshold.

Our results are consistent with past findings [Auer et al.,
2002; Browne et al., 2012] with respect to the effectiveness of
a well-tuned ε-greedy policy. Furthermore, our results show
that UCB1-Tuned does not outperform UCB1. We employ
the “max-style” node value estimator for all selection po-
lices. UCB1-Tuned uses a measured variance to scale the up-
per bound which seems to be ineffective in combination with
this max-estimator. We aim to address this issue in future
work by using the variance of child node values as opposed
to measured variance of the back-propagated values. In addi-
tion, the use of more sophisticated trajectory models and the
inclusion of a second objective to score trajectories (i.e. total
time of flight) are interesting future extensions of this work.
We expect that the application of the MCTS paradigm would
produce reliable and fast results also in these cases.
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