
Efficient Search with an Ensemble of Heuristics

Mike Phillips
Carnegie Mellon

University

Venkatraman Narayanan
Carnegie Mellon

University

Sandip Aine
Indraprastha Institute of
Information Technology

Delhi

Maxim Likhachev
Carnegie Mellon

University

Abstract

Recently, a number of papers have shown that for
many domains, using multiple heuristics in inde-
pendent searches performs better than combining
them into a single heuristic. Furthermore, using a
large number of “weak” heuristics could potentially
eliminate the need for the careful design of a few.
The standard approach to distribute computation in
these multi-heuristic searches is to rotate through
the heuristics in a round-robin fashion. However,
this strategy can be inefficient especially in the
case when only a few of the heuristics are lead-
ing to progress. In this paper, we present two prin-
cipled methods to adaptively distribute computa-
tion time among the different searches of the Multi-
Heuristic A* algorithm. The first method, Meta-A*,
constructs and searches a meta-graph, which repre-
sents the problem of finding the best heuristic as the
problem of minimizing the total number of expan-
sions. The second treats the scheduling of searches
with different heuristics as a multi-armed bandit
problem. It applies Dynamic Thompson Sampling
(DTS) to keep track of what searches are making
progress the most and continuously re-computes
the schedule of searches based on this information.
We provide a theoretical analysis and compare our
new strategies with the round-robin method on a
12-DOF full-body motion planning problem and on
sliding tile puzzle problems. In these experiments,
we used up to 20 heuristics and observed a several
times speedup without loss in solution quality.

1 Introduction
The efficiency of heuristic search methods, like A*, depends
on an informative heuristic function. However, it is often dif-
ficult to design a single heuristic that captures all the com-
plexities of a planning domain. It is generally easier to create
a set of heuristics that each capture a part of the problem. A
challenge arises when combining these into a single heuris-
tic though. A typical approach is to use a weighted summa-
tion or take the maximum. However, there are many cases
where the individual heuristic components oppose each other

and combining them in these ways is no longer construc-
tive and efficiency is lost. Recently, it has been shown that
keeping the heuristics separate, each with their own search
queue can perform significantly better [Aine et al., 2014;
Röger and Helmert, 2010; Isto, 1996]. Search progress can
even be shared between queues (by sharing generated states)
and the resulting synergy can cause these methods to solve
much more difficult problems.

While these methods have been shown to solve signifi-
cantly more complex problems, computational effort is dis-
tributed by rotating through the different heuristics in a
round-robin fashion, causing a linear slowdown in the num-
ber of heuristics used, especially when only a small fraction
of the heuristics are currently useful during the search. On
the other hand, scaling these methods to a much larger num-
ber of heuristics would enable the use of an ensemble of weak
heuristics, reducing time spent on engineering.

In this work, we present two methods for choosing which
heuristic to follow at each state expansion. By giving more
expansions to the more promising heuristics (determined in
an online fashion) we can scale multi-heuristic methods up to
use many more heuristics than before without suffering from
a linear slowdown. We show that this allows for solving more
difficult problems in shorter times.

The first method, Meta-A* constructs a meta-graph that
represents the problem of finding the best heuristic to follow
as the problem of minimizing the total number of expansions
(as opposed to the underlying searches which are minimizing
a user-chosen cost function). We then run A* on this meta-
graph and the nodes in it chosen for expansion correspond to
an expansion in underlying heuristic’s search.

The second method treats the different heuristics as a
multi-armed bandit problem where searches are given re-
ward when an expansion makes progress (lowers the best seen
heuristic value so far) and no reward otherwise. We then use
Dynamic Thompson Sampling, DTS, [Gupta et al., 2011] in
order to tradeoff exploration among the different heuristics
and exploitation of the heuristics which are currently work-
ing best.

On the theoretical side, we show the round-robin strategy
is analogous to running Dijkstra’s algorithm on the meta-
graph developed in our Meta-A* method and therefore, under
certain conditions, Meta-A* will never perform worse than
round-robin in terms of the number of expansions made.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

784

In this paper we will show how to apply the two methods to
Multi-Heuristic A* (MHA*). This is a recent multi-heuristic
search algorithm that can use a set of heuristics which are
arbitrarily inadmissible and inconsistent, and is able to pro-
vide bounds on the suboptimality of found solutions as long
as one heuristic in the set is known to be consistent [Aine et
al., 2014].

We provide experimental evaluations on robot motion plan-
ning and sliding tile domains. Our robotics domain is a 12
degree of freedom full-body motion planning problem for the
PR2 robot. The planner can navigate the base of the robot
as well as the arm in order to have the robot navigate to and
reach into cluttered areas. The problem is considered to be ex-
tremely challenging in the motion planning community. We
show an average speedup of 4.5 times over the round-robin
method (while using 20 heuristics) with no loss in path qual-
ity. Additionally, we provide experiments on sliding tile puz-
zles which are a benchmark domain within the search com-
munity. In our experiments, we provide results on puzzles
up to 10 × 10 in size. We attribute these results to allowing
MHA* to manage a large number of heuristics through the
use of Meta-A* and DTS.

2 Background: MHA*
Notation : In the following, S denotes the finite set of states
of the domain. c(s, s′) denotes the cost of the edge between
s and s′, if there is no such edge, then c(s, s′) = ∞.
SUCC(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set of
all successors of s. c∗(s, s′) denotes the cost of the optimal
path from state s to s′. g(s) denotes the current best path cost
from sstart to s and h(s) denotes the heuristic for s, which is
an estimate of the best path cost from s to sgoal. A heuristic
is called admissible if it always underestimates the best path
cost to sgoal and consistent if it satisfies, h(sgoal) = 0 and
h(s) ≤ h(s′) + c(s, s′), ∀s, s′ such that s′ ∈ SUCC(s) and
s 6= sgoal. OPEN denotes a priority queue, and is typically
implemented as a min-heap.

Searching for optimal solutions in large state-spaces of-
ten leads to a dramatic increase in the time and memory
required. WA* [Pohl, 1970] is a variant of A* that is of-
ten used to solve such large problems. It uses a priority
function f ′(s) = g(s) + w ∗ h(s) (w > 1) to provide a
greedy flavor to the search, which often results in faster ter-
mination [Bonet and Geffner, 2001; Zhou and Hansen, 2002;
Likhachev et al., 2004]. WA* guarantees that the suboptimal-
ity of the solution is bounded by w times the optimal cost
[Pearl, 1984] if h(s) (∀s ∈ S) is admissible, and does not
require re-expansions to guarantee the bound if h(s) is con-
sistent [Likhachev et al., 2004].

While WA* speeds up search for many applications, it re-
lies heavily on the accuracy of the heuristic function. If the
heuristic is subject to local minima however, then WA*’s per-
formance can degrade severely [Hernández and Baier, 2012;
Wilt and Ruml, 2012] owing to its greedy nature. Multi-
Heuristic A* (MHA*) [Aine et al., 2014] is a recently de-
veloped search algorithm that builds on the observation that
while designing a single heuristic that is admissible, consis-
tent and has shallow local minima is challenging for complex

Algorithm 1 MHA*
1: procedure MHA*()
2: INITIALIZESEARCHES()
3: INITIALIZEMETAMETHOD()
4: while g(sgoal) > wa ∗ OPEN0.MINKEY() do
5: i← CHOOSEQUEUE()
6: k0 ← OPEN0.MINKEY()
7: ki ← OPENi.MINKEY()
8: if ki ≤ wa ∗ k0 then
9: s← OPENi.TOP() // ith WA* search

10: EXPANDSTATE(i, s)
11: else
12: s← OPEN0.TOP() // Anchor search
13: EXPANDSTATE(0, s)

14: UPDATEMETAMETHOD(i)

domains, it is often possible to design a number of weak (and
possibly inadmissible) heuristics. MHA* uses multiple such
(possibly) inadmissible heuristics to guide the search around
local minima, by exploiting the synergy provided by the weak
heuristics, each of which may be useful in different parts of
the search space.

Formally, MHA* (shown at a high level in Alg. 1) takes
in one consistent heuristic (h0), a set of arbitrary inadmis-
sible heuristics (h1..hn) and two weight factors wa and wh
(both ≥ 1). It then runs multiple WA* searches (with weight
wh) with the inadmissible heuristics (h1..hn) in a round-robin
fashion (using separate priority queues for each search), while
using the consistent heuristic h0 in a separate WA* search,
called the anchor search to control the round-robin strategy.
Specifically, MHA* allows for expanding only those states
s in WA* searches with inadmissible heuristics whose prior-
ity is within wa of the smallest priority in the open list of
the anchor search (line 8). This way, MHA* can guarantee
completeness and bounded suboptimality (wa ∗ wh) on the
solution found. There are two variants of MHA* [Aine et
al., 2014], namely, Independent Multi-Heuristic A* (IMHA*)
which uses independent g and h values for each search (a
state expansion in search i only updates the ith OPEN list)
and Shared Multi-Heuristic A* (SMHA*) which uses inde-
pendent h values but shares the g value among all the searches
(each state expansion updates all OPEN lists). By sharing g
values, SMHA* can use a combination of partial paths found
by different searches to overcome local minima, thereby mak-
ing it more powerful than IMHA*.

3 Meta-Algorithms
This section describes our contributions for efficiently han-
dling searches with multiple heuristics. While they are de-
scribed in the context of MHA* (the lines in gray, in Alg. 1),
they are equally applicable for any search method that uses
multiple heuristics.

3.1 Round-Robin
As formulated originally, MHA* uses the round-robin strat-
egy (Alg. 2) of cycling through heuristics. On each iteration
the queue with the next index is selected to perform an ex-
pansion and the algorithm loops back to the first after the last

785

Algorithm 2 Round-Robin (Original MHA*)
1: procedure INITIALIZEMETAMETHOD()
2: queue← 0

3: procedure UPDATEMETAMETHOD(i) // No updates
4: procedure CHOOSEQUEUE()
5: queue← (queue+ 1 mod n)
6: return queue+ 1

Algorithm 3 Meta-A*
1: procedure INITIALIZEMETAMETHOD()
2: for i ∈ {1, 2, . . . , n} do
3: Gm[i]← 0
4: Hm[i]← hi(sstart)/(∆hi)max

5: Fm[i]← Hm[i]

6: procedure UPDATEMETAMETHOD(i)
7: Gm[i]← Gm[i] + 1
8: Hm[i]← (mins∈OPENi hi(s))/(∆hi)max

9: Fm[i]← Gm[i] + wm ∗Hm[i]

10: procedure CHOOSEQUEUE()
11: return arg mini Fm[i]

queue takes its turn.

3.2 Meta-A*
The downfall of the round-robin approach is that it will con-
tinue to give equal computation time to all searches indepen-
dently of how much progress each one is making. The first
strategy, Meta-A*, treats the problem of selecting the next
queue to expand as the problem of identifying the search that
requires the fewest expansions to terminate. This method will
keep track of how many expansions each search has made and
an estimate of how many more each search has to go. It then
combines these in an A* like fashion to decide which search
to expand from on each iteration.

Since the approach is based on A*, it is easiest to under-
stand in the context of a graph search. We define a meta-graph
Gm which will represent how long it will take each search to
terminate in isolation (we will assume the IMHA* case for
now, so searches do not share progress). The meta-graph con-
tains n independent chains (one for each search queue), as
shown in Fig. 1. The length of a chain i, denoted by ei, repre-
sents the number of expansions search i would take to termi-
nate at the goal, and therefore, is initially unknown. Specifi-
cally, the jth node in chain i (Oji) represents the jth expan-
sion of search queue i (it also represents the entire OPEN
list from search i after its jth expansion).

Meta-A* runs an A* search on this meta-graph. The set
of start states is {O0

1, O
0
2, . . . , O

0
n} meaning that each of the

n searches have made 0 expansions so far. The set of goal
states in the meta-graph is {Oe11 , O

e2
2 , . . . , O

en
n }, meaning

that Meta-A* is going to try to reach a state where one of
the n searches has terminated.

All edges in the meta-graph (Oji , O
j+1
i) have cost 1 which

corresponds to search i making a single expansion. Also note
that all vertices in the meta-graph have exactly 1 outgoing
edge (except for the terminal vertex in each chain), again
representing that from Oji , search i can expand another state

Algorithm 4 DTS
1: procedure INITIALIZEMETAMETHOD()
2: for i ∈ {1, 2, . . . , n} do
3: hbest[i]← hi(sstart); α[i]← 1; β[i]← 1

4: procedure UPDATEMETAMETHOD(i)
5: h′best ← mins∈OPENi hi(s)
6: if h′best < hbest[i] then
7: hbest[i]← h′best
8: α[i]← α[i] + 1 // Get reward 1
9: else

10: β[i]← β[i] + 1 // Get reward 0
11: if α[i] + β[i] > C then
12: α[i]← C

C+1
α[i]; β[i]← C

C+1
β[i]

13: procedure CHOOSEQUEUE()
14: for i ∈ {1, 2, . . . , n} do
15: r[i] ∼ Beta(α[i], β[i])

16: return arg maxi r[i]

from its OPEN list (except from the terminal state Oeii be-
cause no more states can be expanded from search i after
it has terminated). Note that because of the structure of the
meta-graph, when running Meta-A* (A* on the meta-graph)
the “metaOPEN list” will always have constant size of n. In
other words, there is always one state from each underlying
search.

In order to run Meta-A* we must define the usual A* quan-
tities g-value, h-value (heuristic), and f-value (priority). To
avoid confusion with these values being used in the underly-
ing searches, we will instead use Gm, Hm, Fm (g, h, and f
used by Meta-A* in the meta-graph). Gm(Oji) is cost from
a start state (in this case O0

i) to the state Oji . This is exactly
j since we know all edges have cost 1. As pointed out ear-
lier, the “meta OPEN list” will contain exactly 1 state from
search i. Specifically, it will be the most recently generated
one, the one with the highest j seen so far. Therefore, we can
simplify by just using Gm[i] to mean the number of expan-
sions made by search i so far. Similarly Hm[i] is a heuristic
estimate for how many more expansions search i will have
to make before terminating. Additionally, if the estimate is
admissible (does not overestimate) we will be able to show
that Meta-A* finds an optimal solution within the meta-graph
(we will explain what that means shortly). Estimating the re-
maining expansions is difficult. Therefore, we estimate it con-
servatively by guessing the heuristic of the underlying search
will drop maximally with each expansion until reaching 0 (at
which point we conservatively guess the goal is found as soon
as the heuristic reaches 0). This brings up two assumptions of
Meta-A*. The first is that we assume that the heuristics of the
underlying searches are 0 at the goal state. The other is that
for each heuristic hi there is a known bound on the maximum
decrement (∆hi)max, in the heuristic along any single edge
the search will encounter. Specifically,

(∆hi)max = max
s∈G,s′∈succ(s)

(hi(s)− hi(s′)) (1)

States with infinite hi values are ignored in this definition,
since they will never be expanded in the ith search. We also
assume that the heuristic is not trivial, i.e, hi is not identi-

786

O0
1 O1

1 Oe1
1

O0
2 O1

2 Oe2
2

O0
n O1

n Oen
n

. . .

. . .

.ROOT

Figure 1: The Meta-Graph Gm.

cally zero everywhere. This ensures (∆hi)max is not zero.
Note that if hi is consistent, (∆hi)max can be replaced by
the largest edge cost in the graph, a typically known quantity.

We can use (∆hi)max as a rescaling factor to change an es-
timate hi(s) (an estimate for the remaining cost to the goal)
into the remaining number of edges from s to the goal (by
dividing by (∆hi)max). Therefore, conservatively estimating
the remaining expansions for search i (Hm[i]) will involve
choosing the minimum heuristic value in the ith search’s
OPEN list and dividing it by (∆hi)max as shown on line 8
of Algorithm 3.

On each iteration, Meta-A* will choose a search to per-
form an expansion. It chooses the search i with minimum
priority defined as Fm[i] = Gm[i] + wm ∗ Hm[i]. For now,
assume wm = 1. In this case Gm[i] (expansions made) is
added to Hm[i] (conservative estimate of remaining expan-
sions) which gives priority Fm[i] (a conservative estimate of
expansions needed by the ith search from its start to termi-
nation). In fact, for wm = 1 (and when running IMHA*),
throughout the execution of Meta-A*, Fm[i] is always less or
equal to the initially unknown but static ei. Our theoretical
analysis will show how this leads to Meta-A* never perform-
ing more expansions than Round Robin (under the conditions
mentioned). Note that round-robin is a special case of Meta-
A* where Hm[i] = 0∀i. On each expansion, round-robin
chooses the search with the fewest expansions so far (mini-
mal Gm[i]). Therefore, round-robin also searches the meta-
graph, but by using a heuristic, Meta-A* performs better (like
the relationship between Dijkstra’s algorithm and A*).

Finally, much like how weighted A* inflates the heuristic
term by a scalar larger than 1 in Meta-A* we have a scalarwm
which can be set larger than 1 in order to be more heuristic
(Hm) driven. This tends to make Meta-A* much faster.

In Alg. 3 we can see that UPDATEMETAMETHOD (which
is called after an expansion from search i) increments theGm
for that search, updates the meta heuristic Hm[i], and then
recomputes the priority Fm for search i. When CHOOSE-
QUEUE is called, we use the search with smallest priority.

Theoretical Analysis
For theoretical analysis, we assume that Meta-A* is used in
conjunction with IMHA* (maintains an independent queue
for each heuristic). For IMHA*, we additionally assume that
the anchor inflation wa is large enough that the anchor search
never runs (no expansions from OPEN0). All analysis ap-
plies for wm = 1, and can be generalized for other values
of wm, as done for WA*. We assume that hi(sgoal) = 0,∀i ∈
{1, 2, . . . , n}, although they could be arbitrarily inadmissible
elsewhere.

Lemma 1 (Admissible Meta-Heuristic). The heuristic Hm

as computed in Alg. 3 is an admissible heuristic on the meta-

graph Gm, irrespective of whether hi is admissible or not.

Proof. We have,

Hm(Oki) =
mins∈Ok

i
hi(s)

(∆hi)max
(2)

We will show that Hm(Oki) does not overestimate
H∗m(Oki), the true cost-to-go for Oki , to prove that Hm is
admissible on Gm. Let Π(s1, s2) denote the set of all paths
between two states s1 and s2. Define

s′ = arg min
s∈Ok

i

hi(s) (3)

s′′ = arg min
s∈Ok

i

min
π∈Π(s,sgoal)

NUMEDGES(π)

π∗ = arg min
π∈Π(s′′,sgoal)

NUMEDGES(π)

e′′ = NUMEDGES(π∗)

In the above, s′ is the state based on which we compute Hm

and s′′ is the state in OPENi which is the least number of
edges away from the goal sgoal. Clearly, e′′ does not overes-
timate the number of expansions needed for search i to termi-
nate, continuing from Oki . That is,

e′′ ≤ H∗m(Oki) (4)

Assume for the sake of contradiction that Hm(Oki) > e′′. Let
π∗ = (s0, s1, s2, . . . , se′′), where s0 = s′′ and se′′ = sgoal.
Since hi(sgoal) = 0,

hi(s
′′) = hi(s

′′)− hi(sgoal)

hi(s
′′) =

e′′−1∑
j=0

hi(sj)− hi(sj+1)

hi(s
′′) ≤ e′′ ∗ (∆hi)max (from Eq. (1))

hi(s
′′)/(∆hi)max ≤ e′′

hi(s
′′)/(∆hi)max < Hm(Ok

i) (assumption)

hi(s
′′)/(∆hi)max < hi(s

′)/(∆hi)max (from Eq. (2))

hi(s
′′) < hi(s

′)

This contradicts our definition of s′ (Eq. (3)). Hence, the as-
sumption Hm(Oki) > e′′ is incorrect and we have

Hm(Oki) ≤ e′′

Hm(Oki) ≤ H∗m(Oki) (using Eq. (4))

Therefore, the heuristic Hm does not overestimate the actual
cost-to-go on Gm. �

Theorem 1 (Bounded Expansions). The total number of
state expansions resulting from this strategy is bounded from
above by n · e∗, where e∗ = mini ei.

Proof. Consider an A∗ search running on a tree where the
optimal solution cost is g∗. Let E be the number of expan-
sions made by A* search before the goal is expanded. Define
S = {s|g(s) ≤ g∗}. Then, for A* search with an admissible
heuristic on this tree, E ≤ |S| (re-expansions are not possi-
ble because the graph is a tree). We know from Lemma 1 that

787

Meta-A* uses an admissible heuristic, and that Gm is a tree.
Further, for Gm, g∗ = e∗ and |S| = n · e∗. Thus, the expan-
sions made by Meta-A* is bounded from above by n ·e∗. �

Note, the upper bound on expansions is exactly the same as
the best-case for the round-robin strategy. Thus, the proposed
strategy is no worse than round-robin. However, the best case
for Meta-A* is e∗, better than round-robin by a factor n.

Theorem 2 (Best Heuristic in Hindsight). When the algo-
rithm terminates, the last search that updates g(sgoal) is the
best heuristic in hindsight (hi∗ , where ei∗ = e∗). In other
words, running search i∗ alone would have been optimal in
hindsight.

Proof. The first part follows fromA∗’s. Since the optimal so-
lution cost for the meta-graph is e∗, goal state Oe

∗

i∗ will be ex-
panded ahead of all other possible goal states. Therefore, the
goal state in the original graph sgoal is first expanded from
OPENi∗ , enabling us to determine i∗. �

Theorem 3 (Optimal Efficiency). Any other algorithm or
strategy for selecting Pi that uses the same heuristic as Meta-
A* (Hm) must expand at least as many states in total as ex-
panded by Meta-A*, to guarantee that it has found the best
heuristic in hindsight.

Proof. This directly follows from the optimal efficiency
property of running A∗ on Gm. �

3.3 Dynamic Thompson Sampling
In the second method, we treat the problem of selecting the
search queue to expand as the problem of selecting the arm to
pull in a multi-arm bandit (MAB) problem. Whether an ex-
pansion “makes progress” determines if the bandit gives re-
ward or not. Specifically, the i-th queue, qi will keep track of
the best heuristic value seen so far, hbest[i] (the “closest” that
queue has been to the goal according to hi). If an expansion
generates a successor with a heuristic value less than hbest[i],
reward of 1 is given and otherwise reward of 0.

Our instance of the MAB problem is called Dynamic Ban-
dits since the internal parameters (i.e. the likelihood of giv-
ing reward) changes over time. We chose to apply Dynamic
Thompson Sampling (DTS), a recent approach which reacts
quickly to changing bandits [Gupta et al., 2011]. The original
Thompson Sampling (TS) which DTS is based on, is one of
the earlier algorithms for solving MAB [Thompson, 1933].
TS maintains a beta distribution (with shape parameters α[i]
and β[i]) for each bandit over the likelihood of the internal
Bernoulli parameter. For this case of static Bernoulli bandits,
recent work has shown strong theoretical bounds on expected
worst case performance [Agrawal and Goyal, 2012].

The application of DTS to our problem is shown in Al-
gorithm 4. TS and DTS are almost the same, in fact, DTS
only adds lines 11-12. In INITIALIZEMETAMETHODS, we
initialize the α and β parameters for each queue’s beta dis-
tribution to 1 (a uniform distribution). If a priori knowledge
about heuristic performance was known, these priors could
be modified appropriately. In CHOOSEQUEUE TS chooses a

Figure 2: The kitchen domain for our experiments. Note the ran-
domly placed tables on the right with randomized clutter on top. In
the middle is a narrow door that separates the two rooms. The dif-
ferent colored robots show node expansions from our 20 OPEN lists
prioritized by different heuristics.

bandit to play by drawing a sample from each beta distribu-
tion (r[i] drawn from Beta(α[i], β[i])) and selecting the ban-
dit with the highest sample. In UPDATEMETAMETHOD, the
reward is determined and the beta distributions are updated.
On lines 5-6 we see if the expansion from queue i resulted
in an improvement in the queue’s hbest[i]. If so, we update it
and queue i gets reward 1 which corresponds to increment-
ing α[i] (lines 7-8), otherwise queue i gets no reward which
corresponds to incrementing β[i] (line 10). If the algorithm
stopped here, this would be Thompson Sampling. However,
what makes DTS are lines 11-12. The parameter C ≥ α + β
controls how much history we care about. If α+β exceeds C
(it will exceed by exactly 1) we normalize so that they sum to
C again.

DTS quickly learns which heuristics are leading to search
progress and spends more time expanding from them. When
the performance of one of the heuristics being exploited drops
(i.e., it hits a local minima and stops making progress) its
beta distribution quickly skews toward β (due to C limiting
history) and DTS tries other heuristics. When all heuristics do
poorly, all distributions look similar and DTS is essentially
choosing queues uniformly at random.

4 Experimental Results
4.1 Motion Planning
DTS and Meta-A* are first evaluated in a 12 degree of free-
dom (DoF) full-body robot motion planning domain for the
PR2 (a dual-arm mobile robot). The objective is for the plan-
ner to generate a collision free motion for the robot to ap-
proach and pick up objects on cluttered tables in a kitchen
environment. Specifically, the planner controls the base posi-
tion and orientation (x, y, θ), height of prismatic spine which
raises and lowers the torso, 6DoF pose of the gripper in the
robot’s frame, and two arm “free angles” (direction of elbow).

Each state in the graph we plan on corresponds to a com-
plete robot configuration. From any state the robot has a set of
motion primitives it can apply, which are short kinematically
feasible motions [Likhachev and Ferguson, 2008]. Collision
free motion primitives connect pairs of states, thereby repre-
senting edges in our graph. While there is a single start state,
the goal state is underspecified as any state that results in the
gripper reaching the object meets the goal conditions.

788

R
R
P
la
n
n
in
g
T
im
e
(s
)

DTS Planning Time (s)

y=x
y=2x
y=3x
y=4x

250200150100500
0

50

100

150

200

250

300

350

255200150100500
0

50

100

150

200

250

300

350

R
R
P
la
n
n
in
g
T
im
e
(s
)

Meta-A* Planning Time (s)

y=x
y=2x
y=3x
y=4x

Figure 3: In the left (right) plot, each data point shows a DTS (Meta-
A*) planning time against a round-robin planning time on the same
trial. The four reference lines show where points fall for 1, 2, 3, and
4 times speedups.

The domain (Fig. 2) is challenging due to high dimension-
ality, cluttered tables, and narrow passages which must be
crossed (the robot’s base just fits through the doorway and
only with arm tucked). A multi-heuristic search is ideal for
dealing with many, often conflicting heuristics (e.g. wanting
to extend the arm when reaching for a goal, while wanting
to tuck when going through a door) In most cases, several
heuristics are needed at different points during planning to
find a solution quickly. The proposed methods get speedups
by switching between these heuristics.

We designed 20 heuristics (19 + 1 anchor) to help the robot
solve the problems efficiently. 16 of the heuristics guide the
base’s xy position while requiring different fixed base head-
ings and a tucked arm. These heuristics help navigation in
tight spaces, but can’t reach for the goal. 3 heuristics then
guide the arm to the goal with or without guiding the base to
a specific pose within arm’s reach of the goal. Note, almost
all of these heuristics are highly inadmissible.

100 trials were generated with the following randomiza-
tions: positions of two kitchen tables and with random clutter
every 10 trials, goal poses for the gripper to reach over tables,
and the robot’s start configurations.

We ran SMHA* with DTS (C = 10), Meta-A* (wm = 10),
and round-robin on all 100 trials. All three used wh = 25 and
wa = 4. We also ran RRT-Connect, which is a popular (and
considered among the fastest) sampling-based algorithm for
motion planning [Kuffner and LaValle, 2000]. All methods
were given 5 minutes to plan after which it is called a failure.
A simple shortcutter was run on all paths after planning. This
is crucial for RRT-Connect which otherwise does not mini-
mize cost. For search methods like MHA* this is also useful
to remove discretization artifacts from paths. 87 of the 100
trials were solved by at least 1 method.

Fig. 3 shows scatter plots of planning times. Each point
shows the planning time of one of our methods (left plot is
DTS and right plot is Meta-A*) against the planning time for
round robin on the same query. A point above the y=x line
means there is a speedup over round-robin. A point on the
y=2x line means it is twice as fast, and so on. For DTS, most
points concentrate around the 4 times speedup; for Meta-
A*, 3 and 4 times. Both methods have an average speedup
around 4.5. Since realtime (millisecond) planning is needed
in robotics, speedups on simple problems are as important
as on complex problems. All methods solve about 65 of 100

Figure 4: Comparison with RRT-Connect for full-body motion plan-
ning on the PR2 robot. Shown are the avg. planning times and avg.
distances moved by the robot’s base and arm.

trials (round-robin solves slightly fewer), and solution costs
vary less than 10% across methods. Therefore, substantial
speedup is seen with small changes in solution quality.

Since DTS is a randomized method we ran all trials five
times to compute variance. Success rate had a standard devia-
tion of 1.41 trials. The average standard deviation of planning
times across all trials was 10.7s. However, when we removed
the trials that contained outliers (7 such trials), the average
standard deviation was only 0.88s.

In Fig. 4, we can see how Meta-A* and DTS compare to
RRT-Connect. Most notably, both of the new methods have a
significantly higher success rate. RRT-Connect is faster than
both methods on average (over the trials solved by both meth-
ods) but by less than a factor of 1.5. In terms of path quality,
the robot’s base travels roughly the same distance for all three
methods. However, RRT-Connect generates arm motions that
are over 3 times longer than DTS and Meta-A*. Overall,
search methods have a higher success rate, somewhat slower,
but have better solution quality.

4.2 Sliding Tile Puzzles
Subsequently, DTS and Meta-A* are applied to IMHA* and
SMHA* with varying heuristic sets on large sliding tile puz-
zles (8×8, 9×9 and 10×10). Manhattan distance plus linear
conflicts is used as consistent heuristic, h0, and additional (in-
admissible) heuristics are as follows. For a given puzzle size,
we generate a database of 1000 different solved configura-
tions by performing a random walk of k (a random number
between 2 and 10 times the puzzles size) steps from sgoal. For
each configuration, the path to goal and its cost, k, is stored.
To generate n inadmissible heuristics, we cluster the database
into n parts using the heuristic difference between two con-
figurations as the distance metric. To solve a given instance
with configuration sc, one target configuration, tci, is chosen
per cluster such that the heuristic distance between sc and tci
is minimum. Once tci is chosen, inadmissible heuristic hi for
any state s is computed by hi(s) = w1∗h0(s, tci)+cost(tci),
where w1 is the inflation factor used by MHA*.

We used 100 randomly generated instances of puzzles for
each size as our benchmark suite. Table 1 shows the num-
ber of problems solved by MHA*s with different meta-level
strategies for 4 heuristic set sizes: 5, 9, 13 and 17. For this
domain, we ran DTS with C = 1000 and Meta-A* with
wm = 100. We also ran WA* (without re-expansions) on the
same set of problems with h0 as the heuristic and w = 10.
WA* could only solve a small fraction of the problem in-

789

Round-Robin DTS Meta-A*
Algo. Size 5 9 13 17 5 9 13 17 5 9 13 17

8× 8 97 99 100 100 98 100 100 100 97 100 100 100
IMHA* 9× 9 72 82 89 95 79 94 98 99 74 84 98 99

10× 10 32 33 41 32 35 44 50 53 34 37 50 53
8× 8 99 99 100 100 100 100 100 100 100 100 100 100

SMHA* 9× 9 79 89 94 90 84 98 100 100 83 94 99 100
10× 10 47 60 34 33 60 72 70 73 49 66 68 69

Table 1: Number of instances solved by MHA*s with round-robin,
DTS and Meta-A*. Time Limit = 180s, bound = 10.

stances (66 for 8× 8, 31 for 9× 9 and 10 for 10× 10).
In contrast, MHA* (with wa = 2, wh = 5, bound = wa ×

wh = 10) performs better, showing the benefit of multiple
heuristics. Relative to the round-robin results, MHA* solves
more problems as the number of heuristics increases. Some-
times, performance degrades due to overhead (e.g. 10 × 10
puzzles with round-robin). SMHA* solves 47 instances with
5 heuristics (and 60 with 9), but overhead begins to dominate
at 13 heuristics and only 34 instances are solved. Similarly,
IMHA* (10×10 puzzles) solves 41 instances with 13 heuris-
tics but only 32 instances with 17 heuristics. It may be noted
that although in general SMHA* (with round-robin) outper-
forms IMHA* (with round-robin), we observe that for 13
heuristics (Table 1) the trend is reversed. This is mainly due
to the fact that whenever a search visits a state in SMHA* for
the first time, all the heuristics need to be computed, whereas
IMHA* only computes one heuristic at a time. At times this
extra computation can overshadow the benefits of sharing,
thus causing degradation.

For each heuristic set size, DTS and Meta-A* solve more
problems than round-robin, clearly highlighting the value of
meta-level scheduling over round-robin. Also, in most cases,
the number of problems solved increases monotonically with
an increase in heuristic set size, indicating that DTS and
Meta-A* can effectively control the overhead of using more
heuristics. In terms of runtime, DTS and Meta-A* had simi-
lar speedups over round-robin with an average 1.8 times for
SMHA* and 1.5 for IMHA*. In terms of solution costs, all
the strategies perform comparably. Overall, the solution costs
do not deviate by more than 5% and the average solution cost
is practically the same for all methods (average solution costs
obtained in our experiments are the following, 1367 for 8×8,
1828 for 9× 9, and 2127 for 10× 10 puzzles.

5 Related Work
The idea of a meta-level reasoner to improve planning is not
new. Planning portfolios have been used when faced with a
battery of planning problems. One particularly relevant ex-
ample uses a bandit framework to choose which planner to
run on each trial [Valenzano et al., 2012]. The primary differ-
ence is that we are doing this within a single search.

With respect to applying bandit methods within a single
search, the popular UCT algorithm has been used to select
the next move in large MDPs or game trees [Kocsis and
Szepesvri, 2006]. We differ in that we want to find entire so-
lutions with bounds on solution cost, instead of a first move.

Exceptions to these standard applications use UCT to solve
CSPs and boolean satisfiability problems [Loth et al., 2013;

Previti et al., 2011]. These problems have different proper-
ties than ours (search trees in their problems have known,
relatively shallow depth). We also differ in using bandits to
choose heuristics instead of a node to explore next.

One different way of viewing planning as a bandit prob-
lem is that expanding the min priority state is exploiting the
best known bandit [Valenzano et al., 2014]. The authors then
incorporate exploration by using an ε-greedy strategy which
chooses a random state for expansion with probability ε.

In [Mellor and Shapiro, 2013], bandit parameters switch
between 2 states (good and bad reward state). However, the
method depends on a model of how likely a bandit is to stay
or switch. In our domain it corresponds to the size of local
minima, which vary wildly between problems.

EES [Thayer and Ruml, 2011] and QA(ε) [Chakrabarti et
al., 1989] attempt to achieve faster planning times by using
an inadmissible estimate of the number of expansions, in ad-
dition to a consistent heuristic for bounds on solution quality.
While Meta-A* uses a similar idea, it is different in that it ap-
plies for an ensemble of heuristics, and attempts to minimize
the total expansions made by all the searches.

6 Acknowledgements
This work was supported by NSF grant IIS-1409549 and
ONR DR-IRIS MURI grant N00014-09-1-1052.

7 Conclusions
In this work we have presented two methods to help multi-
heuristic searches scale to large ensembles of heuristics. Both
the Meta-A* and DTS methods show several times speedups
over the naive round-robin rotation over heuristics. They do
so with negligible change in solution quality and are both easy
to implement. We also provide a strong theoretical analysis of
Meta-A* for the IMHA* case.

While we used our methods in the context of MHA*,
we believe they can be applied with equal success to other
multi-heuristic searches [Röger and Helmert, 2010]. It is fu-
ture work to confirm this experimentally. Our future work
for Meta-A* is to see if any guarantees can be extended to
SMHA*. For DTS we will look into proving expected worst
case performance bounds.

Another future direction is parallelization of the two meth-
ods presented. Interesting questions arise when considering
how often parallel search queues should share information in
order to minimize synchronization overhead.

References
[Agrawal and Goyal, 2012] Shipra Agrawal and Navin

Goyal. Further optimal regret bounds for thompson
sampling. CoRR, abs/1209.3353, 2012.

[Aine et al., 2014] Sandip Aine, Siddharth Swaminathan,
Venkatraman Narayanan, Victor Hwang, and Maxim
Likhachev. Multi-heuristic A*. In Proceedings of
Robotics: Science and Systems, Berkeley, USA, July 2014.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

790

[Chakrabarti et al., 1989] P. P. Chakrabarti, Sujoy Ghose,
A. Pandey, and S. C. De Sarkar. Increasing search ef-
ficiency using multiple heuristics. Inf. Process. Lett.,
30(1):33–36, 1989.

[Gupta et al., 2011] N. Gupta, O.-C. Granmo, and
A Agrawala. Thompson sampling for dynamic multi-
armed bandits. In Machine Learning and Applications and
Workshops (ICMLA), 2011 10th International Conference
on, volume 1, pages 484–489, Dec 2011.

[Hernández and Baier, 2012] C. Hernández and J. A. Baier.
Avoiding and escaping depressions in real-time heuristic
search. J. Artif. Intell. Res. (JAIR), 43:523–570, 2012.

[Isto, 1996] Pekka Isto. Path planning by multiheuristic
search via subgoals. In Proceedings of the 27th Inter-
national Symposium on Industrial Robots, CEU, pages
71272–6, 1996.

[Kocsis and Szepesvri, 2006] Levente Kocsis and Csaba
Szepesvri. Bandit based monte-carlo planning. In
In: ECML-06. Number 4212 in LNCS, pages 282–293.
Springer, 2006.

[Kuffner and LaValle, 2000] James J. Kuffner and Steven M.
LaValle. RRT-Connect: An efficient approach to single-
query path planning. In ICRA, pages 995–1001. IEEE,
2000.

[Likhachev and Ferguson, 2008] M. Likhachev and D. Fer-
guson. Planning long dynamically-feasible maneuvers for
autonomous vehicles. In Proceedings of Robotics: Science
and Systems (RSS), Cambridge, USA, June 2008.

[Likhachev et al., 2004] M. Likhachev, G. J. Gordon, and
S. Thrun. ARA*: Anytime A* with provable bounds on
sub-optimality. In Advances in Neural Information Pro-
cessing Systems 16. MIT Press, Cambridge, MA, 2004.

[Loth et al., 2013] Manuel Loth, Michèle Sebag, Youssef
Hamadi, and Marc Schoenauer. Bandit-based Search for
Constraint Programming. In Christian Schulte, editor, In-
ternational Conference on Principles and Practice of Con-
straint Programming, volume 8124 of LNCS, pages 464–
480, Uppsala, Suède, September 2013. Springer Verlag.

[Mellor and Shapiro, 2013] Joseph Mellor and Jonathan
Shapiro. Thompson sampling in switching environments
with bayesian online change point detection. CoRR,
abs/1302.3721, 2013.

[Pearl, 1984] J. Pearl. Heuristics: intelligent search strate-
gies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[Pohl, 1970] I. Pohl. First results on the effect of error in
heuristic search. Machine Intelligence, 5:219–236, 1970.

[Previti et al., 2011] Alessandro Previti, Raghuram Ramanu-
jan, Marco Schaerf, and Bart Selman. Monte-carlo style
uct search for boolean satisfiability. In Proceedings of
the 12th International Conference on Artificial Intelli-
gence Around Man and Beyond, AI*IA’11, pages 177–
188, Berlin, Heidelberg, 2011. Springer-Verlag.

[Röger and Helmert, 2010] Gabriele Röger and Malte
Helmert. The more, the merrier: Combining heuristic

estimators for satisficing planning. In Ronen I. Brafman,
Hector Geffner, Jörg Hoffmann, and Henry A. Kautz,
editors, ICAPS, pages 246–249. AAAI, 2010.

[Thayer and Ruml, 2011] Jordan Tyler Thayer and Wheeler
Ruml. Bounded suboptimal search: A direct approach us-
ing inadmissible estimates. In IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial In-
telligence, pages 674–679, 2011.

[Thompson, 1933] William R. Thompson. On the likelihood
that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):pp. 285–
294, 1933.

[Valenzano et al., 2012] R. Valenzano, H. Nakhost,
M. Müller, J. Schaeffer, and N. Sturtevant. Arvand-
herd: Parallel planning with a portfolio. European
Conference on Artificial Intelligence (ECAI 2012), 2012.

[Valenzano et al., 2014] Richard Valenzano, Nathan Sturte-
vant, Jonathan Schaeffer, and Fan Xie. A comparison of
Knowledge-Based GBFS enhancements and knowledge-
free exploration (short paper). In International Conference
on Automated Planning and Scheduling (ICAPS), 2014.

[Wilt and Ruml, 2012] C. M. Wilt and W. Ruml. When does
weighted A* fail? In SOCS. AAAI Press, 2012.

[Zhou and Hansen, 2002] R. Zhou and E. A. Hansen. Multi-
ple Sequence Alignment Using Anytime A*. In Proceed-
ings of 18th National Conference on Artificial Intelligence
AAAI’2002, pages 975–976, 2002.

791

