
Automatic Generation of Raven’s Progressive Matrices

Ke Wang Zhendong Su
Department of Computer Science

University of California, Davis
{kbwang,su}@ucdavis.edu

Abstract

Raven’s Progressive Matrices (RPMs) are a popu-
lar family of general intelligence tests, and provide
a non-verbal measure of a test subject’s reasoning
abilities. Traditionally RPMs have been manually
designed. To make them readily available for both
practice and examination, we tackle the problem of
automatically synthesizing RPMs. Our goal is to
efficiently generate a large number of RPMs that
are authentic (i.e. similar to manually written prob-
lems), interesting (i.e. diverse in terms of difficulty),
and well-formed (i.e. unambiguous). The main tech-
nical challenges are: How to formalize RPMs to
accommodate their seemingly enormous diversity,
and how to define and enforce their validity? To
this end, we (1) introduce an abstract representation
of RPMs using first-order logic, and (2) restrict in-
stantiations to only valid RPMs. We have realized
our approach and evaluated its efficiency and effec-
tiveness. We show that our system can generate
hundreds of valid problems per second with varying
levels of difficulty. More importantly, we show, via
a user study with 24 participants, that the generated
problems are statistically indistinguishable from ac-
tual problems. This work is an exciting instance of
how logic and reasoning may aid general learning.

1 Introduction
Raven’s Progressive Matrices (RPMs) are a standardized intel-
ligence test. Each RPM on such a test is an analogy problem
presented as a matrix (thus its name). Figure 1 shows an ex-
ample RPM problem. Each cell in the matrix is filled with a
geometric figure, except the last cell, which is left blank. The
goal is to select the correct answer from a given set of choices
— eight in the example RPM — to fill in the missing cell, so
that the nine figures follow some rules. The reader is invited
to pause and attempt to solve the given RPM.

There are currently three published versions of RPMs: (1)
the original Standard Progressive Matrices (SPM), (2) the
Advanced Progressive Matrices (APM), which is more diffi-
cult than SPM and designed for adults, and (3) the Colored
Progressive Matrices (CPM), which is simpler than SPM and
designed for low IQ individuals. Our work focuses on APM

problem generation. Intelligence research [Snow et al., 1984]
shows that the RPM test provides one of the best single psy-
chometric measures of general intelligence. Since the RPM
test is also non-verbal, it is widely used across many cultures
and disciplines (e.g. clinical, educational, and occupational).

Figure 1: Example RPM problem.

Given their popularity, our goal is to automatically construct
RPMs that resemble the actual problems. We believe that this
automation is very beneficial as RPM problems have been
manually designed and are quite limited in number. Thus, our
work can provide abundant high-quality, fresh problems both
for practice and examination.

We face two main technical challenges: (1) How to model
the seemingly irregular and diverse variations in RPM prob-
lems? and (2) How to define and only generate valid RPMs?
To overcome the first challenge, we formulate RPMs with
first-order logic formulae. In particular, we propose a general-
ization of the concrete rules distilled by Carpenter et al. [Car-
penter et al., 1990] for describing RPMs. Our generalization
is able to model any problem on the APM tests. As for the
second challenge, we split a RPM into two parts: the question
set (i.e. the matrix) and the answer set (i.e. the choices), and
define respectively the validity of each set. Next, we illustrate
how to enforce the generation of valid question and answer
sets to form valid RPMs.

We have implemented our approach and extensively eval-
uated it. Our evaluation focuses on two aspects: (1) perfor-
mance of the generation procedure, and (2) authenticity of
the generated RPMs (measured in terms of their conformity
to manually written RPMs). Results show that our system is
efficient — taking one second to generate hundreds of RPMs,

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

903

(a) Unary (b) Binary (c) Ternary

Figure 2: The three categories of relations.

and more importantly the generated problems are similar to
manually written problems via user studies.

We make the following contributions:

• We present an abstract representation of RPMs using
first-order logic;

• We formulate the notion of well-formedness of RPMs
and ensure the generation of only valid RPMs; and

• We realize our approach and demonstrate its clear effec-
tiveness via measurements and user studies.

The rest of the paper is structured as follows. Section 2
presents the overview of our RPM synthesis methodology.
Next, we detail our RPM synthesis algorithm (Section 3).
Section 4 presents details of our evaluation. Finally, we survey
related work (Section 5) and conclude (Section 6).

2 Problem Formulation
We tackle the problem of generating RPMs from two aspects:
how to represent RPMs and how to define valid RPMs.

2.1 RPM Representation
RPMs are diverse, and to effectively represent them, it is im-
portant to understand their essence. The basic building blocks
of a RPM are the figural elements, which possess certain prop-
erties, such as position and orientation. The key characteristic
of any RPM is the variation patterns expressed by its figural
elements. Carpenter et al. [Carpenter et al., 1990] are the
first to propose five types of informal rules that govern such
variations via a manual inspection of APM problems.

Formalizing and generalizing Carpenter et al.’s rules, we
introduce an abstract representation of RPM variation patterns
using first-order logic. In particular, we model each figural
element as an object (denoted by o) and use a finite set of
attributes to represent its properties. Each attribute α of o
assumes a value, denoted by τ(o, α), from a fixed domain.
The predicate ρ(o, i, j) expresses that object o lies on the ith
row and jth column in the matrix. A generic variation pattern
may be expressed by the following formula:

∃α ∀i ∈ {1, 2, 3} ∃o1, o2, o3 (ρ(o1, i, 1) ∧ ρ(o2, i, 2) ∧ ρ(o3, i, 3) ∧
P (τ(o1, α), τ(o2, α), τ(o3, α)))

(1)

where P denotes a predicate.
Intuitively, Formula 1 stipulates that a common attribute of

the objects within the cells on each row of the matrix should
satisfy the predicate P . Similarly, we can specify such a
relationship for objects grouped along each column in the
matrix. Depending on how objects are allowed to interact

within the same row, we model the predicate P using the
following formula:

∀α, o1, o2, o3 (P (τ(o1, α), τ(o2, α), τ(o3, α)) ⇔
UnaryRelation(τ(o1, α), τ(o2, α), τ(o3, α)) ∨
BinaryRelation(τ(o1, α), τ(o2, α), τ(o3, α)) ∨
TernaryRelation(τ(o1, α), τ(o2, α), τ(o3, α)))

(2)

• UnaryRelation: As Figure 2a depicts, along each row, the
element in the first cell determines the second (via unary
function f), which in turn determines the third (via unary
function g).
• BinaryRelation: As Figure 2b shows, in the binary model,

elements in two cells of each row determine the element
in the remaining cell (via binary function f). For illustra-
tion, we choose the first two cells in a row to determine
the last cell.
• TernaryRelation: In the ternary model, elements on the

same row satisfy a relation f(x, y, z) = C, where C
denotes some constant value.

For now, we leave f , g, and C unspecified, but will discuss
their choices in Section 3.1.

Besides characterizing RPM variation patterns, Formulas 1
and 2 also establish the basis for creating RPM matrices. Be-
cause a matrix can be viewed as an aggregation of variation
patterns, generating a matrix reduces to finding a model of
Formulas 1 and 2. Specifically, we need to (1) assign val-
ues to α, τ(o1, α), τ(o2, α), and τ(o3, α) in Formula 1, and
(2) implement UnaryRelation, BinaryRelation, or TernaryRelation
in Formula 2.

As for generating the answer set, since the correct choice
is already determined by matrix generation, we only need to
specify the remaining seven incorrect choices. To this end, we
use the following formula, where the predicate υ(o, i) specifies
that o appears in the ith choice in the answer set:

∀i @o (υ(o, i) ∧ ∃o1, o2 ρ(o1, 3, 1) ∧ ρ(o2, 3, 2) ∧
∃α P (τ(o1, α), τ(o2, α), τ(o, α)))

(3)

Formula 3 ensures that no object exists within any of the
incorrect choices that satisfies the predicate P in Formula 1
together with the two given objects on the third row of the
matrix. Generating incorrect choices reduces to manipulating
elements in the answer cell to create candidates satisfying
Formula 3.

2.2 RPM Validity
Now, we tackle the challenge of defining the validity of RPMs.
Intuitively, a valid RPM should be unambiguous, i.e. there
should be a unique answer. We model this intuition with three
properties: one concerns the matrix, and other two concern
the answer set.

Considering only its matrix (without its answer set), generat-
ing a RPM can be viewed as a constraint satisfaction problem:
completing the missing cell to satisfy the common constraints
from the two complete rows. We first define a RPM con-
straint (which is essentially an instance of the predicate P in
Section 2.1).
Definition 1 (RPM Constraint). Let R1 and R2 denote re-
spectively the sets of constraints satisfied by the first and

904

second rows. We define a RPM constraint φ ∈ R1 ∩R2 as the
following formula:

∃o1, o2 ρ(o1, 3, 1)∧ρ(o2, 3, 2)∧∃α, o3, i φ(τ(o1, α), τ(o2, α), υ(o3, i)).

CR denotes a problem R’s RPM constraints.

With the notion of a RPM constraint, we can specify the
first condition prerequisite for a RPM to be well-formed. The
condition simply ensures that a RPM must have at least one
satisfiable RPM constraint.

Definition 2 (Prerequisite). CR must be nonempty.

Considering the answer set of a RPM, we specify two addi-
tional conditions: correctness and necessity.

Definition 3 (Correctness). CR is satisfied by a unique
choice in the answer set.

Definition 4 (Necessity). Any proper subset C of CR (i.e.
C (CR) is satisfied by multiple choices in the answer set.

The correctness condition enforces that if a user identifies all
the RPM constraints of a problem, the answer set should have
a unique choice. On the other hand, the necessity condition
ensures that if the user fails to identify any RPM constraint,
the user will face multiple possible choices. Thus, every RPM
constraint is necessary.

Definition 5 (Well-Formedness). A RPM is well-formed iff
it meets the prerequisite, correctness and necessity conditions.

2.3 Example
We illustrate our formulation using the example RPM in Fig-
ure 1. In terms of problem representation, the example RPM
displays two ternary relations, the union on the shape of the
vertical (respectively horizontal) elements across each row
yields the constant set {arrow,wave, curve} (respectively
{line, arrow,wave}).

The example RPM is well-formed because (1) it has two
RPM constraints (prerequisite), (2) it has a unique answer (an-
swer “E”) considering both RPM constraints, and (3) missing
one of the RPM constraints will face multiple choices in the
answer set.

3 The RPM Synthesis Procedure
This section presents our RPM synthesis algorithm, which we
split into two steps: (1) the generation of the matrix, and (2)
the generation of the answer set. We also demonstrate validity
of the synthesized RPMs.

3.1 Matrix Generation
Our generation of matrices consists of three steps:

Step 1: Instantiate the abstract representation As ex-
plained in Section 2, the generation of a RPM’s matrix can
be achieved by instantiating Formulas 1 and 2. In particular,
we need to assign values to the variables in Formula 1 and
implement the relations in Formula 2.

We first introduce how we realize UnaryRelation, BinaryRela-
tion and TernaryRelation, which guide our entire matrix genera-
tion procedure:

• UnaryRelation: Let the values of the cells on a row be x,
f(x) and g(f(x)). The formed relation can be considered

an arithmetic progression (treating f and g as the same
transformation). For example, with the size attribute for
a row, the relation yields a scaling variation pattern. Note
that this pattern may be inapplicable to some attributes,
such as the type of the shape.
• BinaryRelation: Let the values of the cells on a row be x,
y and z. The formed relation is f(x, y) = z, where the
operator f is chosen to be conjunction (∧), disjunction
(∨), or exclusive disjunction (⊕). For example, with the
texture attribute and disjunction as the operator f , we
obtain the relation that the texture of the element in the
last cell equals the union of those for the first two cells.
• TernaryRelation: In this case, the values of the cells on

a row (namely x, y and z) form a consistent set across
each row of the matrix. For instance, the example RPM
shows two relations with the shape attribute, one for the
horizontal elements and one for the vertical elements (see
Figure 1 and Section 2.3).

For each instantiation of Formulas 1 and 2, we first select
one implementation for the relation among the cells within
each row of the matrix. Next, we assign α in Formula 1 a value
a from all the attributes of an object. Then, we associate it
with three value sequences, denoted by V, computed to satisfy
the desired relation. We next illustrate how to fill in the value
sequences for each possible implementation of a relation:

• Arithmetic progression: Given the selected attribute a,
construct a random sequence of numbers from a’s domain
to form an arithmetic progression.
• Logical operator: Given the selected attribute a, con-

struct two random values from a’s domain, and pick one
of the three logical operators to obtain the third value.
• Consistent union: Given the selected attribute a, con-

struct a random collection of values from a’s domain, and
order them arbitrarily in the array.

If the matrix generation involves multiple instantiations of
Formulas 1 and 2, we tag each instantiation to differentiate it
from the others. The tag is represented as a name-value pair,
i.e. by assigning a separate attribute from a.

Step 2: Create the corresponding elements Given each
instantiation, we create the objects in two ways:

(1) Create objects from scratch: Each instantiation results
in the creation of three groups of objects placed in all rows
(or columns) of the matrix. Each created object has two
attributes (if necessary). The attribute a is assigned a value
in V w.r.t. the current object’s position in the matrix.
For example, if an object resides in the first cell on the
second row, the object will be assigned the item V[1][0].
When there are other instantiations, the objects also model
the tag from this instantiation.

(2) Compose attributes on existing objects: If each cell in
the matrix is already filled with objects created from other
instantiations, the current instantiation can be modeled as
another attribute on the existing objects. In other words,
they simply discard their tag and assign the only name-
value pair from a and V.

905

Algorithm 1: Matrix generation
1 procedure matrixGeneration()
2 begin

/* Randomly pick a number greater than 0 */
3 numberOfInstantiaitons← getRandomNumber()
4 for 1..numberOfInstantiaitons do
5 alpha← selectAnAttribute()
6 vals← computeArraysOfValues()
7 if numberOfInstantiaitons >1 then
8 tag← generateTheTag(alpha)

9 matrix← createObjects(alpha, vals, tag)

10 generateDistraction(matrix)

The mechanism for distributing V onto the existing objects
is the same as described in the first case. In particular,
we add a and the corresponding value in V as another
name-value pair for the chosen existing objects.
Composing the attributes on existing objects is clearly not
viable if a selected for the current instantiation has been
occupied in the chosen existing objects. In this case, we
will need to create new stand-alone objects.

Step 3: Add distractions After having created objects for
each instantiation, to increase the difficulty of a RPM, dis-
tractions may also be added. We can add distractions to a
cell along two dimensions: (1) additional attributes for the
existing elements, or (2) additional elements. Although those
attributes or objects are randomly added, they must not in-
troduce additional legal variation patterns (neither with the
existing elements, nor from the objects created for distraction).

These three steps combined lead to our matrix generation
procedure, shown in Algorithm 1. Next, we show how to
generate the answer set.

3.2 Answer Set Generation
Note first that the correct choice is already determined by the
matrix generation procedure. What remains is to generate the
other seven, incorrect choices.

Recall Definition 4, which requires that if a user fails to
identify any of the RPM constraints CR, the user will face at
least two choices in the answer set. Thus, an obvious approach
is to traverse all proper subsets C ′R (CR and use each to syn-
thesize at least two choices. This clearly meets the necessity
condition of Definition 4.

In addition, because these synthesized answers only satisfy
some, but not all, of the RPM constraints, they are all incor-
rect. Thus, the correctness condition defined in Definition 3
is also met. Therefore, this brute-force approach does indeed
synthesize a valid answer set of a RPM.

However, this process is inefficient; we show how to op-
timize it to substantially improve the efficiency of answer
set generation. First, we describe a property of RPMs that
provides the foundation for our optimized procedure.
Proposition 1 (Monotonicity of RPM Constraints). Given
two constraint setsC1 andC2 for a RPM problem, ifC1 (C2,
any answer that satisfies C2 must also satisfy C1.

Optimization Proposition 1 suggests that it suffices to only
consider the CR’s |CR| maximal proper subsets (MPS) with
size |CR| − 1 for any RPM. This holds because if all the MPS

Algorithm 2: Answer set generation
1 procedure answerSetGeneration(List arrayOfAlphas, Matrix matrix)
2 begin
3 totalFalseChoices← 7
4 answerObjects← retrieveAnswerObjects(matrix)
5 iterations← Ceil(totalFalseChoices/arrayOfAlphas.size())
6 foreach alpha in arrayOfAlphas do
7 value← getAnswerValue(answerObjects, alpha)
8 domain← getDomianOfAlpha(alpha)
9 groupOfChoices← ∅;

10 previousValue← null
11 for 1..iterations do
12 currentValue←

generateNewValue(domain, value, previousValue)
13 choice← generateAChoice(currentValue)
14 groupOfChoices.add(choice)
15 previousValue← currentValue

16 answerSet.add(groupOfChoices)

17 answerSet.resort()
18 answerSet.add(answerObjects())

have more than one answer, any smaller subsets will also have
more than one answer. Indeed, each of the MPS can be used
once to synthesize an answer. Since a typical RPM has seven
incorrect answers, the largest number of RPM constraints is
seven (to meet the necessity condition).

Answer Set Generation Algorithm In light of the above op-
timization, our answer set generation procedure can be sim-
plified to create choices that satisfy each of the MPS of the
given RPM constraint set for a problem. Combining with the
matrix generation procedure, we realize a RPM constraint as
an instantiation to Formulas 1 and 2.

Note that there is a unique value for the answer cell that can
satisfy a RPM constraint given two values from the existing
cells on the same row (or column). Thus, all the relations (i.e.
their underlying implementations) are deterministic. There-
fore, to create an incorrect choice to satisfy a MPS is essen-
tially to properly alter the answer elements. In particular, we
alter the elements determined by the missing RPM constraint.

Putting the above together, we obtain Algorithm 2, our
choices generation procedure. Note that Algorithm 2 creates
multiple groups to hold the choices generated for each of the
MPS (lines 9 and 14). Because the total number of incorrect
choices may not be divisible by the total number of MPS, each
group may accommodate more choices than necessary (line 5).
Later, if needed, the algorithm will randomly remove some
extra choices to have exactly seven incorrect choices. It still
guarantees that each group has at least one choice that satisfies
each of the MPS (line 17).

3.3 Discussions
This section discusses how a generated problem meets the
well-formedness property defined in Section 2.

• Prerequisite: As mentioned in Section 3.2, a RPM con-
straint is essentially accomplished by the realization of
an instantiation of Formulas 1 and 2. Because the num-
ber of the instantiations realized in the matrix generation
procedure is always greater than one, the prerequisite
condition is met.

• Necessity: As explained in Section 3.2, for any given

906

RPM, the generated answer set always contains more than
one satisfying choice w.r.t. any of the MPS of its RPM
constraint set. As mentioned earlier, RPM is monotonic,
meaning that any smaller subset will also have more than
one satisfying answer. Thus, whichever RPM constraint
is overlooked by a user, the user will face at least two
choices in the answer set. Thus, the necessity condition
also holds.

• Correctness: The only choice in the answer set that meets
all the RPM constraints is the one generated by the matrix
generation procedure. Any other choice is synthesized to
meet only an MPS of the constraint set, i.e. it is an incor-
rect choice. If a user identifies all the RPM constraints,
there will only be a single choice in the answer set.

4 Evaluation
This section presents two experiments to evaluate the perfor-
mance of our synthesis algorithm and the similarity of the
synthesized RPMs versus actual APM problems.

We implement our RPM synthesis algorithm in Java SE 1.6
and interface with SVG technology [Ferraiolo, 2000] to render
the figural elements in the browser. We design the figures
to have fifteen attributes, such as shape, position, orientation
and scale. Each of the attributes has a discrete value domain
(e.g. shape can be assigned triangle, circle, or square), except
for position and orientation, which are treated as continuous
variables.

4.1 Performance
First, we focus on evaluating the performance of our RPM
problem generation algorithm.

We classify the synthesized RPMs into 7 categories accord-
ing to the number of RPM constraints each problem has. For
each category, we synthesize 100 problems and measure the
time taken to synthesize each. We conducted our experiments
on a desktop with a 4th generation Intel Core i7-4770 proces-
sor and 16GB RAM, running Ubuntu 12.04 LTS.

Figure 3a shows the measurement results as a boxplot. We
adopt the conventional style of plot where the bottom and
top of the box are the first and third quartiles, and the marker
inside the box denotes the mean. The two ends of the whiskers
represent the minimum and maximum. As shown in Figure 3a,
the time taken to synthesize problems increases slightly as the
number of the RPM constraints increases. Nevertheless, our
synthesis algorithm takes on average under four milliseconds
to synthesize a RPM.

4.2 Problem Authenticity
This is the more important aspect of our evaluation. We have
conducted a pilot study to carefully assess the authenticity of
our synthesized RPMs from the actual APM problems. By
authenticity, we mean that RPMs share the same underlying
structure (i.e. the number and type of the RPM constraints)
should be similar in terms of their difficulty level from the
user’s perspective.

4.2.1 Study Design
Participants We invited twenty-four volunteers in total from
our institution to participate in the study. The occupations of

the participants vary and range from undergraduate student,
graduate student, postdoctoral researcher, and faculty.

Materials The APM test consists of two sets: Set I and Set
II. Set I has twelve problems, however, the first four problems
are excluded since they are not applicable for reasoning-based
solving procedures. The rest of the problem in Set I and the
whole Set II are included in the study (44 problems in total).
We have synthesized 200 RPMs (without adding distractions)
that use similar number and type of RPM constraints as the
APMs.

Procedure Each participant was given two test sets, each
containing 30 problems randomly sampled from each of the
two problem sets.1 Problems in the APM test are not uniformly
distributed in terms of difficulty (there are 21 problems with
one RPM constraint, 19 problems with two RPM constraints,
and 5 with three constraints). So, we control the sampling
process of the synthesized problems to maintain the correlation
between the two sets. Specifically, we allow no more than
10 problems with three RPM constraints in the synthesized
problem set. Problems in both sets are presented in the order
from the simplest to the most difficult. However, in order to
imitate the real RPM test environment, participants are free
to navigate through the tests. The total time is 30 minutes for
each of the test set. Half of the participants completed the
APM test set before beginning the other test set, and the other
half completed the test set with synthesized problems first.

4.2.2 Study Results
In the following discussion, we split the two problem sets
into three categories and report the results for each category
separately. To measure the similarity of the two problem sets
within each of the categories, we run a two one-sided test for
equivalence [Schuirmann, 1987] on the participants’ error rate.
An important decision is how to define the zone of “clinical
indifference”, i.e. a range of effects that can be considered
clinically trivial.

For this purpose, we randomly partitioned the APM prob-
lems within each category that a participant has been tested on
into two halves and summarized the participant’s error rates
for each half. Next, we apply the two sided test to compute the
threshold error margin — anything less than this value would
make the two APM partitions dissimilar. But the two randomly
partitioned problem sets from APM must be similar, so we
can use the threshold error margin to compute the similarity
between the synthesized problems and the APM.

Comparison Figure 3b shows the error rates for the two
problem sets within each category. The error margins are
computed to be 0.089, 0.139 and 0.242 from the two ran-
dom partitions on the APM problem set within the cate-
gory of one-constraint, two-constraint and three-constraint
respectively. Then, a two-sided test was used to compare
each participant’s error rates across the two sets of matri-
ces within each of the categories. These tests show that

1Please refer to http://www.cs.ucdavis.edu/∼su/rpm.html for a
sample of 30 synthesized problems as given to the participants. Due
to copyright constraints, we do not include the APM problems that we
purchased from Pearson at http://us.talentlens.com/pricing#ravens.

907

(a) Performance with varying difficulty. (b) APM vs. generated RPMs. (c) With and without distractions.

Figure 3: Evaluation results.

the error rate conforms significantly across the two sets
of problems [t(46) = −2.490, p = 0.008] and [t(46) =
2.596, p = 0.006], [t(46) = −2.572, p = 0.007] and
[t(46) = 5.016, p < 0.001], [t(46) = −3.595, p = 0.001]
and [t(46) = 4.212, p < 0.001], indicating that the overall
difficulty of the synthesized matrices is similar to that of the
original APMs.

Controlled Measure of Problem Difficulty Apart from the
error rates reported from Figures 3b, a paired t test was used
to compare each participant’s error rate across the one and two
RPM constraints, and two and three RPM constraints matrices
in the synthesized problem set only. As expected, the error
rate for the two RPM constraints problems was higher than
the one RPM constraint problems [t(23) = 1.98, p = 0.06]
despite the unsubstantial significance, indicating that the two
RPM constraints problems were more difficult. Similarly,
the error rate for the three RPM constraints problems was
significantly higher than the two RPM constraints problems
[t(23) = 9.46, p < 0.001], indicating that the three RPM
constraints problems were more difficult.

We have conducted another user study where the same
participants were asked to complete another separate test set
consisting of 30 synthesized problems. Those thirty problems
are randomly sampled from a corpus, where each problem is
also synthesized with distraction. The purpose of this study
is to assess the impact of distractions may have on the gen-
erated RPMs. Figures 3c shows that problems created with
distractions are indeed more difficult than those created with-
out distractions, using the same number of RPM constraints.

A paired t test was used to compare each participant’s er-
ror rate across the two problem sets with or without distrac-
tion for the same number of RPM constraints. For problems
with one RPM constraint and two RPM constraints, the er-
ror rate for problems mixed with distraction was significantly
higher than those without [t(23) = 7.81, p < 0.001] and
[t(23) = 9.21, p < 0.001], indicating that problems with dis-
tractions were more difficult than those without distractions.
As for RPMs with three constraints, the difference on error
rate was insignificant [t(23) = 1.51, p = 0.14] because the
participants’ error rates on the three RPM constraints matri-
ces were already very high, leaving little room to be able to
perceive the increased difficulty.

Completeness It is pertinent to ask whether our system can
generate all the matrices in the APM test set. Thus, we have
also manually inspected each of the matrices in the APM set

and found several problems that our system cannot synthesize.
The main reason is that the recently published APM test set
contains some underlying transformation patterns not covered
in our current implementation. Nevertheless, they could still
be instantiated from the three categories of relations we have
proposed in this paper. Thus, conceptually, if we include those
specific transformation operators, our tool would be able to
synthesize all the problems in the APM set.

5 Related Work
Automated RPM problems reasoning has been an active re-
search topic in cognitive systems. Based on the two qual-
itatively different RPM strategies, “Analytic” and “Gestalt”
proposed by Hunt [Hunt, 1974], we split existing computa-
tional models for solving RPMs into two groups, and briefly
discuss each. The RPM models developed to resemble Hunt’s
Analytic algorithm rely on propositional representations of
the problem inputs, and do not carry any structural correspon-
dence to what they represent. For example, the computational
models proposed by Carpenter et al. [Carpenter et al., 1990],
Lovett et al. [Lovett et al., 2010], Cirillo et al. [Cirillo and
Ström, 2010] and Rasmussen et al. [Rasmussen and Eliasmith,
2011] all reason over a problem’s propositional description,
which usually is manually converted from the given problem.

Another complementary computational model following
the Gestalt algorithm uses iconic representations of an input
problem. Those representations, as the name suggests, car-
ries the structural correspondence between format and content.
The most notable are the affine model [Kunda et al., 2012;
2013] and the fractal model [Kunda et al., 2012]. A significant
advantage of those models is the elimination of the manual con-
version from problem inputs to propositional representations.
In addition, many existing image transformation techniques
can be leveraged to handle those iconic representations.

Unlike the aforementioned work on solving RPM problems,
our work tackles an orthogonal dimension, namely the auto-
mated generation of RPM problems. The main novelty of
our work lies in the logic model of RPM problems and the
formalization covering special properties of RPMs.

Matzen et al.’s Sandia matrix [Matzen et al., 2010] is the
only effort that we are aware of that considers the automated
generation of RPM problems. Their approach is to manually
extract all types of relations that appear in Raven’s Standard
Progressive Matrices (SPM) through a manual study, and com-
bine those extracted relations to generate new problems. For
comparison, our work proposes the abstract representation of

908

variation models, from which the concrete relations among
the elements within the cells can be automatically synthesized.
Matzen et al. also represent a strong effort to investigate the
difficulty level for each type of the relations and combination
of the relations through a user study. In contrast, we tackle the
problem at a higher level by identifying the factors that can
influence the difficulty of RPM problems. Our user study has
clearly confirmed our approach’s effectiveness.

6 Conclusion
This paper has introduced an approach to effectively synthe-
size RPMs. Our evaluation results demonstrate the perfor-
mance of our synthesis algorithm and strong resemblance of
the synthesized RPMs to actual published problems. We ex-
pect that our work will facilitate general education and training.
Our immediate future work is to reach out to potential user
groups that can benefit from our system.

References
[Carpenter et al., 1990] Patricia A Carpenter, Marcel A Just,

and Peter Shell. What one intelligence test measures: A
theoretical account of the processing in the Raven Progres-
sive Matrices Test. Psychological Review, 97(3):404–431,
1990.

[Cirillo and Ström, 2010] Simone Cirillo and Victor Ström.
An anthropomorphic solver for Raven’s Progressive Matri-
ces. Technical Report 2010:096, Chalmers University of
Technology, Goteborg, Sweden, 2010.

[Ferraiolo, 2000] Jon Ferraiolo. Scalable Vector Graphics
(SVG) 1.0 Specification. Iuniverse Inc., 2000.

[Hunt, 1974] Earl Hunt. Quote the Raven? Nevermore! In
L. Gregg, editor, Knowledge and Cognition. L. Erlbaum
Associates, Hillsdale, NJ, 1974.

[Kunda et al., 2012] Maithilee Kunda, Keith McGreggor, and
AK Goel. Reasoning on the Raven’s advanced progressive
matrices test with iconic visual representations. In 34th
Annual Conference of the Cognitive Science Society, pages
1828–1833, 2012.

[Kunda et al., 2013] Maithilee Kunda, Keith McGreggor, and
Ashok K Goel. A computational model for solving prob-
lems from the Raven’s progressive matrices intelligence
test using iconic visual representations. Cognitive Systems
Research, 22:47–66, 2013.

[Lovett et al., 2010] Andrew Lovett, Kenneth Forbus, and Jef-
frey Usher. A structure-mapping model of Ravens Progres-
sive Matrices. In 32nd Annual Conference of the Cognitive
Science Society, 2010.

[Matzen et al., 2010] Laura E Matzen, Zachary O Benz,
Kevin R Dixon, Jamie Posey, James K Kroger, and Ann E
Speed. Recreating Raven’s: Software for systematically
generating large numbers of Raven-like matrix problems
with normed properties. Behavior Research Methods,
42(2):525–541, 2010.

[Rasmussen and Eliasmith, 2011] Daniel Rasmussen and
Chris Eliasmith. A neural model of rule generation in
inductive reasoning. Topics in Cognitive Science, 3(1):140–
153, 2011.

[Schuirmann, 1987] Donald J Schuirmann. A comparison
of the two one-sided tests procedure and the power ap-
proach for assessing the equivalence of average bioavailabil-
ity. Journal of Pharmacokinetics and Biopharmaceutics,
15(6):657–680, 1987.

[Snow et al., 1984] Richard E Snow, Patrick C Kyllonen, and
Brachia Marshalek. The topography of ability and learn-
ing correlations. Advances in the Psychology of Human
Intelligence, 2:47–103, 1984.

909

