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Abstract
Differential privacy preserving regression mod-
els guarantee protection against attempts to infer
whether a subject was included in the training set
used to derive a model. It is not designed to protect
attribute privacy of a target individual when model
inversion attacks are launched. In model inversion
attacks, an adversary uses the released model to
make predictions of sensitive attributes (used as in-
put to the model) of a target individual when some
background information about the target individ-
ual is available. Previous research showed that ex-
isting differential privacy mechanisms cannot ef-
fectively prevent model inversion attacks while re-
taining model efficacy. In this paper, we develop
a novel approach which leverages the functional
mechanism to perturb coefficients of the polyno-
mial representation of the objective function but ef-
fectively balances the privacy budget for sensitive
and non-sensitive attributes in learning the differen-
tial privacy preserving regression model. Theoreti-
cal analysis and empirical evaluations demonstrate
our approach can effectively prevent model inver-
sion attacks and retain model utility.

1 Introduction
Privacy-preserving data mining is an important research area.
In many applications, sensitive datasets such as financial
transactions, medical records, or genetic information about
individuals are often only disclosed to authorized users, yet
models learned from them are made public. The released
models may be exploited by an adversary to breach privacy
of both participant individuals in the datasets and regular non-
participant individuals.

Differential privacy [Dwork et al., 2006] has been devel-
oped and shown as an effective mechanism to protect pri-
vacy of participant individuals. Simply speaking, differen-
tial privacy is a paradigm of post-processing the models such
that the inclusion or exclusion of a single individual from the
dataset makes no statistical difference to the results found.
In other words, differential privacy aims to achieve the goal,
i.e., the risk to one’s privacy should not substantially increase
as a result of participating in a database when models built

from the database are released to public. On the contrary,
the models (or even the perturbed models which preserve dif-
ferential privacy of participants) may be exploited to breach
attribute privacy of regular individuals who are not necessar-
ily in the dataset. In [Fredrikson et al., 2014], the authors
developed a model inversion attack where an adversary uses
the released model to make predictions of sensitive attributes
(used as input to the model) of a target individual when some
background information about the target individual is avail-
able. Fredrikson et al. showed that differential privacy mech-
anisms prevent model inversion attacks only when the privacy
budget is very small. However, for privacy budgets effective
at preventing attacks, the model utility in terms of performing
simulated clinical trials is significantly lost.

Hence it is imperative to develop mechanisms to achieve
differential privacy protection for participants and prevent at-
tribute privacy disclosure from model inversion attacks while
retaining the utility of the released models. In this paper, we
focus on regression models which have been widely applied
in many applications. Regression studies often involve con-
tinuous data (e.g., blood lipid levels or heights) in addition
to categorical attributes (e.g., gender, race and disease). Var-
ious regression models including linear regression, logistic
regression, and lasso models have been developed. There
are generally two approaches to derive differential privacy
preserving regression models. The first approach is to di-
rectly perturb the output coefficients of the regression mod-
els. However, this approach requires an explicit sensitivity
analysis of the regression models, which is often infeasible.
The second approach is to add noise to the objective function
used to derive regression models [Chaudhuri and Monteleoni,
2008]. Recently the authors [Zhang et al., 2012] developed
the functional mechanism which adds noise to the coefficients
of polynomial representation of the objective function, and
showed that deriving a bound on the amount of noise needed
for the functional mechanism involves a fairly simple calcu-
lation on the object function.

Differential privacy preserving regression models [Chaud-
huri and Monteleoni, 2008; Zhang et al., 2012] guarantee
protection against attempts to infer whether a subject was in-
cluded in the training set used to derive a model. It is not
effective to protect attribute privacy, which is the target of the
model inversion attacks. This is because the mechanism per-
turbs coefficients equally no matter whether they correspond
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Table 1: Notations

Symbol Definition
ti = (xi, yi) the i-th tuple

ω the parameter vector of the regression model
ρ(ω) the released regression mode
f(ti, ω) the cost function on tuple ti
fD(ω) fD(ω) =

∑
ti∈D f(ti, ω)

ω∗ ω∗ = arg minω fD(ω)
φ(ω) a product of elements in ω1, ω2, ..., ωd
Φj the set of all possible φ of order j
λφti the polynomial coefficient of φ in f(ti, ω)
ε privacy budget for the regression model

εs, εn privacy for sensitive, non-sensitive attributes

to sensitive or non-sensitive attributes. However, model in-
version attacks seek to exploit correlations between the tar-
get sensitive attributes, known non-sensitive attributes and
the model output. In this paper, we aim to develop a new
approach to learn differential privacy preserving regression
models which effectively prevent model inversion attacks and
retain the model utility. Our approach leverages the func-
tional mechanism but effectively balances the privacy budget
for sensitive and non-sensitive attributes in learning the dif-
ferential privacy preserving regression models.

1.1 Problem Formalization

Let D be a data set that contains n tuples t1, t2, ..., tn re-
garding d explanatory attributes X1, X2, · · · , Xd and one re-
sponse attribute Y . The explanatory attributes can be di-
vided into two groups: non-sensitive attributes and sensitive
attributes. For simplicity, we consider there is only one sen-
sitive attribute Xs and all remaining ones are non-sensitive.
Our analysis can be straightforwardly extended to multiple
sensitive attributes. For each explanatory attribute Xi, with-
out loss of generality, we assume its domain Xi in the range
of [−1, 1]. Similarly, we denote Y as the domain of the re-
sponse attribute Y , which could be [−1, 1] for linear regres-
sion or {0, 1} for logistic regression. We denote each tuple
ti as (xi, yi) where xi = (xi1, xi2, ..., xid). Throughout this
paper, we use bold lower-case variables, e.g., xi, to represent
vectors; upper-case alphabets, e.g., Xi, to denote an attribute;
calligraphic upper-case alphabets, e.g., Xi, to denote the do-
main of attribute Xi. xT refers the transpose of vector x.
Table 1 summarizes the notations used in this paper.

The data mining task is to release a regression model from
D to predict the attribute value of Y given the corresponding
attribute value of X1, ..., Xd. That is to say, we are to release
a regression function ρ parameterized with a real number vec-
tor ω = (ω1, ..., ωd). The model takes xi as input and output
the corresponding prediction for yi as ŷi = ρ(xi, ω). Most
regression analytical methods often iteratively optimize some
objective functions with various constraints. A cost function
f is often chosen to measure the difference between the orig-
inal and predicted values based on specific ω. The optimal
model parameter ω∗ is defined as the one that minimizes the

cost function.

ω∗ = arg min
ω
fD(ω) = arg min

ω

n∑
i=1

f(ti, ω). (1)

In our paper, we consider two commonly used regression
models, linear regression and logistic regression.
Definition 1. (Linear Regression) Assume without loss of
generality that Y has a domain of [−1, 1]. A linear regression
on D returns a prediction function ŷi = ρ(xi, ω

∗) = xTi ω
∗,

where ω∗ is a d-dimensional real vector that minimizes the
following cost function.

ω∗ = arg min
ω
fD(ω) = arg min

ω

n∑
i=1

(yi − xTi ω)2. (2)

Definition 2. (Logistic Regression) Assume Y has a do-
main of {0, 1}. A logistic regression on D returns a pre-
diction function which returns ŷi = 1 with the probability
P (ŷi = 1|xi, ω∗) = exp(xTi ω

∗)/(1 + exp(xTi ω
∗)), where

ω∗ is a d-dimensional real vector that minimizes the follow-
ing cost function.

ω∗ = arg min
ω
fD(ω)

= arg min
ω

n∑
i=1

(log(1 + exp(xTi ω))− yixTi ω).
(3)

Releasing the regression model under differential privacy
requires noise injection to the model parameter ω∗. Adding
noise to ω∗ involves the derivation of the sensitivity of ω∗,
which is rather challenging. In this paper, we apply the func-
tional mechanism proposed in [Zhang et al., 2012], which
perturbs the objective function of the regression model. How-
ever, the release model parameter ω∗ or its perturbed one ω̄
could be exploited by the adversary to predict the value of
sensitive input attributes xαs for a target individual α when
some background information about the target individual is
available. Formally, the adversary has access to the regression
model with parameters ω∗, the domain value and marginal
probability of each attribute, accuracy metrics of the model
like the confusion matrix, in addition to some background
knowledge of the target individual including the value of a
subset of non-sensitive input attributes and the value of out-
put attribute of the model yα.

Our research problem is how to derive the perturbed re-
gression model parameter ω̄ such that we achieve differential
privacy protection for participants and prevent attribute pri-
vacy disclosure from model inversion attacks on regular indi-
viduals while retaining the utility of the regression model.

2 Background
2.1 Differential Privacy
We revisit the formal definition and the classic mechanism of
differential privacy. In prior work on differential privacy, a
database is treated as a collection of rows, with each row cor-
responding to the data of a different individual. Differential
privacy ensures that the inclusion or exclusion of one individ-
ual’s record makes no statistical difference on the output.
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Definition 3. (Differential Privacy[Dwork et al., 2006]) A
randomized function A gives ε-differential privacy if for all
data sets D and D′ differing at most one row, and all S ⊆
Range(A)

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] (4)

The privacy parameter ε controls the amount by which the
distributions induced by two neighboring data sets may differ
(smaller values enforce a stronger privacy guarantee).

A general method for computing an approximation to any
function f while preserving ε-differential privacy is given in
[Dwork et al., 2006]. It computes the sum of the true answer
and random noise generated from a Laplace distribution. The
magnitude of the noise distribution is determined by the sen-
sitivity of the computation and the privacy parameter spec-
ified by the data owner. The sensitivity of a computation
bounds the possible change in the computation output over
any two neighboring data sets (differing at most one record).

Definition 4. (Global Sensitivity[Dwork et al., 2006]) The
global sensitivity of a function f : Dn → Rd

GSf (D) := max
D,D′s.t.D′∈Γ(D)

||f(D)− f(D′)||1 (5)

Theorem 1. (Laplace Mechanism[Dwork et al., 2006]) An
algorithm A takes as input a data set D, and some ε > 0, a
query Q with computing function f : Dn → Rd, and outputs

A(D) = f(D) + (Y1, ..., Yd) (6)

where the Yi are drawn i.i.d from Lap(GSf (D)/ε). The Al-
gorithm satisfies ε-differential privacy.

2.2 Model Inversion
Model inversion attack [Fredrikson et al., 2014] leverages
the released regression model y = ρ(x, ω∗) trained from a
dataset D which contains a sensitive attribute Xs. An adver-
sary then exploits the released model to predict the sensitive
input attribute value of the target individual based on some
of the target individual’s background (values of some non-
sensitive input attributes, e.g. demographic information, for
the model) and the observed response attribute value.

The model inversion attack algorithm works as follows.
The adversary has access to the regression model ρ with pa-
rameter ω∗ trained over a dataset D drawn i.i.d from an un-
known prior distribution p. Recall that D has input domain
X1 × · · · × Xd and output domain Y . The target individual
is represented by tα = (xα, yα). The adversary is assumed
to know values of some (or all) input attributes of the target
individual except the sensitive one, i.e., S ⊆ X\Xs, and the
output value yα. The sensitive attribute value the adversary
wants to learn is referred to as xαs. Note that the target indi-
vidual tα is not necessarily in D. In addition to the released
model ρ(x, ω∗), the adversary also has access to marginal
p1, ..., pd, py of the joint prior p, the input domain and the
output domain, the information π about the model prediction
performance where π(y, y′) = Pr(yi = y|ρ(xi, ω

∗) = y′).
The algorithm makes prediction by estimating the probability
of a potential target attribute value given the available infor-
mation of the target individual and the model.

• Find the feasible set X̂ ⊆ X , i.e., for ∀x ∈ X̂ , xmatches
xα on each known attribute in S.
• if X̂ = 0, return null; otherwise, return x̂αs = z that

maximizes
∑

x∈X̂ :xs=z

π(yα, ρ(xα, ω))
∏

1≤j≤d pj(xj).

In step 1, the algorithm filters the domain space using
the known attribute values of the target individual. In step
2, the algorithm calculates weight to each candidate row in
the domain space based on known priors and how well the
model’s output on that row coincides with the target individ-
ual’s model output value. It then returns the value of the tar-
get sensitive attribute with the largest weight computed by
marginalizing the other attributes. The model inversion algo-
rithm is optimal as it minimizes the expected misclassifica-
tion rate on the maximum-entropy prior given the model and
marginals. It was demonstrated in [Fredrikson et al., 2014]
that the value of the sensitive attribute is predicted with sig-
nificantly better accuracy than guessing based on marginal
distributions. It was also concluded that differential privacy
mechanisms can prevent model inversion attacks only when
privacy budget is very small, but in those cases, the private
model usually does not simultaneously retain desirable effi-
cacy. In clinical trials, such lack of efficacy may put patients
in increased risk of health problems.

3 Our Approach
We propose a new approach to provide regression models un-
der differential privacy and against model inversion attacks.
Our approach aims to improve privacy specifically for sen-
sitive attributes while retaining the efficacy of the released
regression model by balancing the privacy budget for sensi-
tive and non-sensitive attributes. Our approach leverages the
functional mechanism proposed in [Zhang et al., 2012] but
perturbs the polynomial coefficients of the objective function
with different magnitudes of noise.

3.1 Functional Mechanism Revisited
Functional mechanism achieves ε-differential privacy by per-
turbing the objective function fD(ω) and then releasing the
model parameter ω̄ that minimizes the perturbed objective
function f̄D(ω) instead of the original one. Because fD(ω)
is a complicated function of ω, the functional mechanism ex-
ploits the polynomial representation of fD(ω).

The model parameter ω is a vector that contains d values
ω1, ω2, ..., ωd. Let φ(ω) denote a product of ω1, ω2, ..., ωd,
namely, φ(ω) = ωc11 · ω

c2
2 ...ω

cd
d for some c1, c2, ..., cd ∈ N.

Let Φj(j ∈ N) denote the set of all products of ω1, ω2, ..., ωd
with degree j, i.e.,

Φj = {ωc11 · ω
c2
2 ...ω

cd
d |

d∑
l=1

cl = j}. (7)

By the Stone-Weierstrass Theorem, any continuous and
differentiable f(ti, ω) can always be written as a polynomial
of ω1, ω2, ..., ωd, i.e., for some J ∈ [0,∞], we have

f(ti, ω) =
J∑

j=0

∑
φ∈Φj

λφtiφ(ω), (8)
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where λφti ∈ R denotes the coefficient of φ(ω) in the polyno-
mial. Similarly, fD(ω) can also be expressed as a polynomial
of ω1, ..., ωd.

For example, the polynomial expression of the linear re-
gression is as follows.

fD(ω) =
∑
ti∈D

(yi − xTi ω)2

=
∑
ti∈D

y2
i −

d∑
j=1

(2
∑
ti∈D

yixij)ωj

+
∑

1≤j,l≤d

(
∑
ti∈D

xijxil)ωjωl

(9)

We can see that fD(ω) only involves monomials in Φ0 =
{1}, Φ1 = {ω1, ω2, ..., ωd}, and Φ2 = {ωiωj |i, j ∈ [1, d]}.
Each φ(ω) has its own coefficient, e.g., for ωj , its polynomial
coefficient λφti

= −2yixij .
fD(ω) is perturbed by injecting Laplace noise into its poly-

nomial coefficients λφ, and then the model parameter ω̄ is de-
rived to minimize the perturbed function f̄D(ω). Each poly-
nomial coefficient λφ is perturbed by adding Laplace noise
Lap(∆

ε ), where ∆ = 2maxt
∑J
j=1

∑
φ∈Φj

||λφt||1, accord-
ing to the following Lemma 1.
Lemma 1. [Zhang et al., 2012] Let D and D′ be any two
neighboring datasets. Let fD(ω) and fD′(ω) be the objective
functions of regression analysis on D and D′, respectively,
and denote their polynomial representations as follows:

fD(ω) =
J∑

j=1

∑
φ∈Φj

∑
ti∈D

λφtiφ(ω),

fD′(ω) =
J∑

j=1

∑
φ∈Φj

∑
t′i∈D′

λφt′iφ(ω).

Then, we have the following inequality

J∑
j=1

∑
φ∈Φj

||
∑
ti∈D

λφti −
∑
t′i∈D

′

λφt′i ||1 ≤ 2 max
t

J∑
j=1

∑
φ∈Φj

||λφt||1.

(10)
where ti, t′i or t is an arbitrary tuple.

When the polynomial form of an objective function (e.g.,
logistic regression objective function) contains terms with un-
bounded degrees, [Zhang et al., 2012] developed an approxi-
mation polynomial form based on Taylor expansion. The per-
turbation method based on the functional mechanism [Zhang
et al., 2012] also removes the requirements, i.e., the convexity
of the objective function, from the original function perturba-
tion approach [Chaudhuri and Monteleoni, 2008].

3.2 Improved Perturbation of Objective Function
To better optimize the balancing between privacy and the re-
gression model’ efficacy, we propose a new algorithm based
on the functional mechanism to improve privacy specifically
for sensitive attributes. To improve the privacy onXs, we aim
to weaken the correlation betweenXs and the model output Y

by perturbing the corresponding ωs more intensely. In other
words, we need to add noise with larger magnitude to the co-
efficients of the monomials involving ωs and add noise with
smaller magnitude to the other coefficients. As a result, we
expect to retain the utility of the released regression model
while achieving differential privacy for participants and pre-
venting model inversion attacks.

In general, a database can contain more than one sensi-
tive attribute. We allocate privacy budget εn for non-sensitive
attributes and εs for sensitive ones. We introduce a ratio pa-
rameter, γ such that εs = γεn and 0 < γ ≤ 1. The smaller
the γ, the more noise added to the sensitive attributes.

Algorithm 1 Functional Mechanism with Different Perturba-
tion of Coefficients
Input: Database D, objective function fD(ω), privacy
threshold ε, privacy budget ratio γ
Output: ω̄

1: Set Φn = {},Φs = {};
2: for each 1 ≤ j ≤ J do
3: for each φ ∈ Φj do
4: if φ does not contain ωs for any sensitive attribute

then
5: Add φ into Φn;
6: else
7: Add φ into Φs;
8: end if
9: end for

10: end for
11: Set ∆ = 2maxt

∑J
j=1

∑
φ∈Φj

||λφt||1;
12: Set β1 = 2maxt

∑
φ∈Φn

||λφt||1/∆;
13: Set β2 = 2maxt

∑
φ∈Φs

||λφt||1/∆; (β1 + β2 = 1)
14: Set εn = 1

β1+γβ2
ε, εs = γ

β1+γβ2
ε;

15: for each 1 ≤ j ≤ J do
16: for each φ ∈ Φj do
17: if φ ∈ Φn then
18: set λφ =

∑
ti∈D λφti + Lap( ∆

εn
);

19: else
20: set λφ =

∑
ti∈D λφti + Lap( ∆

εs
);

21: end if
22: end for
23: end for
24: Let f̄D(ω) =

∑J
j=1

∑
φ∈Φj

λφφ(ω);
25: Compute ω̄ = argminω f̄D(ω);
26: return ω̄;

Specifically, we split all φs into two subsets Φn and Φs
based on whether they involve any sensitive attribute, as
shown in Lines 1-10 of Algorithm 1. Secondly, we determine
the privacy budget according to the given ε and the privacy
budget ratio γ. In Line 11, we set ∆ based on the maximum
value of all the coefficients λφt of φ(ω) in the polynomial.
Accordingly, In Lines 12-13, β1 and β2 can be considered
as the fraction of contributions to ∆ from coefficients corre-
sponding to elements in Φn and that in Φs. We will derive
formula of ∆, β1 and β2 for linear regression and logistic re-
gression and show they do not disclose any private informa-
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tion about dataset D in Results 1 and 2, respectively. Thirdly,
we add noise to polynomial coefficients of φ ∈ Φn with εn
and to those of φ ∈ Φs with εs, to derive the differentially
private objective function f̄D(ω). Finally, we calculate and
output the optimized ω̄ according to f̄D(ω). Next we show
our algorithm achieves ε-differential privacy.

Theorem 2. Algorithm 1 satisfies ε-differential privacy.

Proof. Assume D and D′ are two neighbouring datasets.
Without loss of generality, D and D′ differ in the last row
tn and t

′

n. ∆ is calculated as Line 11 of Algorithm 1, and
f̄(ω) is the output of Line 24. Φs (Φn) denotes the set of φ
that does (does not) contain sensitive attribute ωs. The maxi-
mum difference of the objective function onD andD′ is then
the maximum difference of coefficients introduced by tn and
t
′

n. Adding Laplace noise to coefficients would produce the
differentially private objective function. Specifically, we can
add different magnitudes of noise to coefficients correspond-
ing to φ ∈ Φn and those corresponding to φ ∈ Φs. γ is
pre-determined as the ratio of such difference of noise mag-
nitude. Formally, we have

Pr(f̄(ω|D)) =
∏
φ∈Φn

exp(

εn||
∑
ti∈D

λφti − λφ||1

∆
)

∏
φ∈Φs

exp(

εs||
∑
ti∈D

λφti − λφ||1

∆
)

(11)

Similarly, we have the formula for Pr(f̄(ω|D′)).

Pr(f̄(ω|D))

Pr(f̄(ω|D′))

≤

∏
φ∈Φn

exp(
εn
∆
||
∑
ti∈D

λφti −
∑
t
′
i∈D′

λφt′i
||1)

∏
φ∈Φs

exp(
εs
∆
||
∑
ti∈D

λφti −
∑
t
′
i∈D′

λφt′i
||1)

=

∏
φ∈Φn

exp(
εn
∆
||λφtn − λφt′n ||1)

∏
φ∈Φs

exp(
εs
∆
||λφtn − λφt′n ||1)

≤
∏
φ∈Φn

exp(
εn
∆

2 max
t
||λφt||1)

∏
φ∈Φs

exp(
εs
∆

2 max
t
||λφt||1)

= exp(εnβ1 + εsβ2)

= exp(
β1

β1 + γβ2
ε+

γβ2

β1 + γβ2
ε) = exp(ε)

(12)

Our algorithm needs to derive ∆, β1 and β2 to add noise
with different magnitudes to the polynomial coefficients of
sensitive attributes and non-sensitive attributes. Result 1
shows their derived formulas for linear regression and Re-
sult 2 shows for logistic regression. We can see they only

involve the number of attributes d and the number of sensi-
tive attributes k. As a result, they do not disclose any private
information of the dataset D, which guarantees the rigorous
ε-differential privacy. Due to space limitations, we only give
the proof for linear regression in Result 1 and skip the proof
for logistic regression in Result 2.
Result 1. For linear regression defined in Definition 1, as-
sume there are k sensitive attributes among the total d in-
put attributes. We have in Algorithm 1, ∆ = 2(d2 + 2d);
β1 = d−k

d and β2 = k
d .

Proof. According to Equation 9, we have

∆ = 2 max
t=(x,y)

J∑
j=1

∑
φ∈Φj

||λφt||1

≤ 2 max
t=(x,y)

(2
d∑
j=1

yx(j) +
∑

1≤j,l≤d

x(j)x(l))

= 2(2d+ d2)

(13)

where x(j) denotes the jth entry in vector x, which satisfies
|x(j)| ≤ 1. Similarly, for the coefficients related to k sensitive
attributes, we have

2 max
t=(x,y)

J∑
j=1

∑
φ∈Φs

||λφt||1 = 2(2k + kd) (14)

Thus β2 = 2(2k+kd)
2(2d+d2) = k

d . Similarly we have β1 = d−k
d .

Result 2. For logistic regression defined in Definition 2, as-
sume there are k sensitive attributes among the total d in-
put attributes. Algorithm 1 can be applied with the approxi-
mate objective function

∑n
i=1

1
8 (xTi ω)2 +

∑n
i=1( 1

2 −yi)x
T
i ω

based on Taylor expansion. We have ∆ = d2

4 + 3d and
β1 = d−k

d , β2 = k
d .

4 Evaluation
In our experiments, we mainly focus on the problem of releas-
ing the logistic regression model under differential privacy
against model inversion attacks. We use the Adult dataset
[Lichman, 2013] to evaluate the performance of Algorithm 1
and apply five-fold cross validation for all the accuracy cal-
culation. The Adult dataset contains census information of
30,175 individuals with 14 attributes such as age, workclass,
education, marital-status, hours-per-week and so on. The re-
gression task is to predict whether the income of an individual
is greater than 50K. Among the 13 input attributes, we pick
marital status as the sensitive attribute which the model in-
version attack would target.

Figure 1 shows how both the accuracy of the released
model and the accuracy of the model inversion attack are
affected by different ε values varying from 0.01 to 10. In
this experiment, we do not differentiate the privacy budget
for sensitive attribute and non-sensitive attribute. We can see
from Figure 1(a) that the prediction accuracy of the regres-
sion model increases as ε increases and from Figure 1(b) that
the accuracy of the model inversion attack on marital status
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Figure 1: Accuracy of logistic regression model and that of
model inversion attack vs. varying ε

Table 2: Privacy Budget for ε = 1

γ 0.5 0.25 0.1 0.05 0.025 0.01
εs 0.52 0.265 0.107 0.054 0.027 0.011
εn 1.04 1.061 1.074 1.079 1.081 1.082

also increases as as ε increases. This is not surprising be-
cause the larger ε is, the less noise introduced in the released
model. Hence, the model has high utility but also incurs high
risk under model inversion attacks. We can see even with
small ε values such as 0.01, the model inversion attack still
outperform random guessing based on the marginal probabil-
ity (0.57 vs. 0.53) although the model utility is significantly
lost.

In the second experiment, we set the privacy thresh-
old ε = 1 and change the privacy budget ratio γ from
{1, 0.5, 0.25, 0.1, 0.05, 0.025, 0.01}. Table 2 shows the cor-
responding εs and εn values under each γ. Note that these
values can be easily derived from Result 2.

Figure 2 shows the accuracy trend of the model prediction
task and the model inversion attack. We can see that the pre-
diction accuracy of the released model generally stays stable.
However, the accuracy of the model inversion attack shows a
clear decreasing trend as γ goes small. For example, when γ
is 0.01 or 0.025 , the model inversion attack would fail to beat
random guessing based on the marginal probability; while the
prediction accuracy of regression model can still stay higher
than 75%. This result shows that our approach can signif-
icantly decrease the attribute privacy disclosure risk due to
the model inversion attack while retaining the utility of the
released regression model.

5 Related Work
Differential privacy research has been significantly studied
from the theoretical perspective, e.g., [Chaudhuri and Mon-
teleoni, 2008; Hay et al., 2010; Kifer and Machanavajjhala,
2011; Lee and Clifton, 2012; Ying et al., 2013]. There are
also studies on the applicability of enforcing differential pri-
vacy in real world applications, e.g., collaborative recom-
mendation [McSherry and Mironov, 2009], logistic regres-
sion [Chaudhuri and Monteleoni, 2008; Zhang et al., 2012],
publishing contingency tables [Xiao et al., 2010; Barak et
al., 2007] or data cubes [Ding et al., 2011], privacy pre-
serving integrated queries [McSherry, 2009], synthetic graph
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Figure 2: Accuracy of logistic regression and that of model
inversion attack vs. varying γ when ε = 1

generation [Wang and Wu, 2013; Mir and Wright, 2009;
Sala et al., 2011], computing graph properties such as de-
gree distributions [Hay et al., 2009] and clustering coefficient
[Rastogi et al., 2009; Wang et al., 2012], and spectral graph
analysis [Wang et al., 2013] in social network analysis. The
mechanisms of achieving differential privacy mainly include
the classic approach of adding Laplace noise [Dwork et al.,
2006], the exponential mechanism based on the smooth sen-
sitivity [McSherry and Mironov, 2009], and the functional
perturbation approach [Chaudhuri and Monteleoni, 2008;
Zhang et al., 2012]. Privacy preserving models based on dif-
ferential privacy guarantee protection against attempts to in-
fer whether a subject was included in the training set used to
derive models. However, they are not designed to protect at-
tribute privacy of a target individual when model inversion
attacks are launched. In this paper, we have studied how
to effectively prevent model inversion attacks while retaining
model efficacy.

There are several studies that showed differential privacy
still could leak various type of private information. In [Kifer
and Machanavajjhala, 2011], the authors showed that when
rows in a database are correlated, or when previous exact
statistics for a dataset have been released, differential pri-
vacy cannot achieve the ultimate privacy goal – nearly all
evidence of an individual’s participation should be removed.
The authors in [Cormode, 2011] showed that if one is allowed
to pose certain queries relating sensitive attributes to quasi-
identifiers, it is possible to build a differentially-private Naive
Bayes classifier that accurately predicts the sensitive attribute.
The authors [Dankar and El Emam, 2012] examined the var-
ious tradeoffs between interactive and non-interactive mech-
anisms and the limitation of utility guarantees in differential
privacy. Another notable work [Lee and Clifton, 2012] stud-
ied the relationship of ε to the relative nature of differential
privacy.

6 Conclusion and Future Work
Recent work [Fredrikson et al., 2014] showed that the ex-
isting differential privacy mechanisms cannot prevent model
inversion attacks while retaining desirable model efficacy. In
this paper, we have developed an effective approach which si-
multaneously protects differential privacy of participants and
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prevents sensitive attribute disclosure of regular individuals
from model inversion attacks while retaining the efficacy of
released regression models. Leveraging the functional mech-
anism [Zhang et al., 2012], our approach rewrites the objec-
tive function in its polynomial representation and adds more
(less) noise to the polynomial coefficients with (w/o) sensitive
attributes. Our approach can effectively weaken the correla-
tion between the sensitive attributes with the output to prevent
model inversion attacks whereas retaining the utility of the
released model by decreasing the perturbation effect on non-
sensitive attributes. As a result, we still achieve ε-differential
privacy for participants. In our future work, we will evalu-
ate our research on real world applications such as clinical
study which involves genetic privacy. We plan to theoreti-
cally analyze applicability of model inversion attacks under
different background knowledge. We will explore other per-
turbation strategies to decrease utility loss under differential
privacy and potential model inversion attacks.
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