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Abstract
Covariate shift is a fundamental problem for learn-
ing in non-stationary environments where the con-
ditional distribution ppy|xq is the same between
training and test data while their marginal distri-
butions ptrpxq and ptepxq are different. Although
many covariate shift correction techniques remain
effective for real world problems, most do not
scale well in practice. In this paper, using inspi-
ration from recent optimization techniques, we ap-
ply the Frank-Wolfe algorithm to two well-known
covariate shift correction techniques, Kernel Mean
Matching (KMM) and Kullback-Leibler Impor-
tance Estimation Procedure (KLIEP), and identify
an important connection between kernel herding
and KMM. Our complexity analysis shows the ben-
efits of the Frank-Wolfe approach over projected
gradient methods in solving KMM and KLIEP. An
empirical study then demonstrates the effectiveness
and efficiency of the Frank-Wolfe algorithm for
correcting covariate shift in practice.

1 Introduction
Many machine learning algorithms assume that training and
test data come from the same distribution, which is often vi-
olated in practical applications. Researchers have thus en-
deavoured to resolve the distribution shift problem under
varied assumptions [Zadrozny, 2004; Bickel et al., 2007;
Quionero-Candela et al., 2009]. In this work, we focus on
the covariate shift scenario [Shimodaira, 2000] in which the
marginal data distributions are different between training and
test domains (ptrpxq ‰ ptepxq) while their conditional dis-
tributions remain the same (ptrpy|xq “ ptepy|xq). Correcting
covariate shift has a wide range of applications, such as in nat-
ural language processing [Jiang and Zhai, 2007], off-policy
reinforcement learning [Hachiya et al., 2009], computer vi-
sion [Yamada et al., 2012] and signal processing [Yamada et
al., 2010].

A common approach to correcting covariate shift is impor-
tance reweighting: each individual training point is assigned a
positive weight intended to diminish the discrepancy between
training and test marginals by some criterion [Sugiyama et
al., 2012]. If a reweighting function is modelled properly,

covariate shift can be effectively corrected in learning. For
example, for a given prediction function fpxq and a loss
function lpfpxq, yq, reweighting training points with weight
wpxq “ ptepxq{ptrpxq can minimize the loss over the test dis-
tribution:

Ex„pteEy|xrlpfpxq, yqs “ Ex„ptrEy|xrwpxq lpfpxq, yqs,

which suggests that one should seek the function f‹ that min-
imizes this expected loss. While these correction techniques
remain effective for many real world applications, most of
them do not exploit the structure of the solution and as a re-
sult, do not scale well in practice.

Recently, the Frank-Wolfe (FW) algorithm has begun to
gain popularity in the machine learning community [Zhang
et al., 2012; Bach, 2015]. It has been proven to be an ef-
ficient algorithm for many optimization problems, particu-
larly when the solution has sparse structure [Jaggi, 2013], and
has also been shown effective and efficient in many applica-
tions [Joulin et al., 2014; Salamatian et al., 2014]. However,
whether Frank-Wolfe can be applied to the covariate shift
problem has remained unexplored.

In this work, we show that herding [Welling, 2009;
Chen et al., 2010] (as a Frank-Wolfe algorithm) can be ap-
plied to the covariate shift scenario, and point out a con-
nection between kernel herding and Kernel Mean Matching
(KMM) [Gretton et al., 2009]. Moreover, we exploit the
structure of another commonly used covariate shift correc-
tion technique, Kullback-Leibler Importance Estimation Pro-
cedure (KLIEP) [Sugiyama et al., 2008], to speed up the
algorithm using Frank-Wolfe. We also analyse the conver-
gence rate and complexity of KMM(FW) and KLIEP(FW),
and present an empirical study that demonstrates the effi-
ciency of Frank-Wolfe in solving KMM and KLIEP over the
traditional projected gradient approach.

2 Related Work
This work is closely related to kernel herding [Chen et al.,
2010], which is a sampling technique for moment approxi-
mation. In the original setting, data points are iteratively gen-
erated to approximate the population mean (first moment),
either from a population when the distribution p is known,
or selected from existing dataset when p is unknown. This
work is different in that we apply herding to the covariate
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shift scenario, where the goal is to approximate the test mean
by sub-sampling existing training data.

Even though there are many ways to correct covariate shift,
few methods scale well, which hampers their usage in prac-
tice. Tsuboi et al. [2009] modifies KLIEP with a different
parametric form of the weight function. Although the com-
putation time of the new model is independent of the num-
ber of test points, the parametric form is less interpretable
than the original KLIEP. Here we apply Frank-Wolfe to the
original KLIEP, where the weight function is parametrized
by a mixture of Gaussians. Another attempt has been made
to solve KMM and KLIEP via online learning [Agarwal et
al., 2011]. However, the convergence rate of that approach,
Op1{

?
tq, is slower than our proposed method, Op1{tq, and

assumes the availability of explicit feature representation of
φpxq, contrary to the idea of Hilbert space estimation.

There are also several other techniques that correct covari-
ate shift. For instance, RuLSIF [Yamada et al., 2011] mini-
mizes the α-relative Pearson divergence using least squares,
while RCSA [Wen et al., 2014] corrects covariate shift in an
adversarial setting. We do not extensively investigate the pos-
sibility of applying Frank-Wolfe to these techniques, since
Frank-Wolfe is efficient primarily when a convex problem
has sparse solution structure and the corresponding linearised
problem can be solve easily.

3 A Brief Review of Herding
Kernel herding [Chen et al., 2010] is a greedy algorithm that
sequentially generates instances, φpxtq in the tth iteration, to
minimize a squared error E2

T :

E2
T “

›

›

›

›

›

1

T

T
ÿ

t“1

φpxtq ´ µp

›

›

›

›

›

2

H

,

where φp¨q is a feature map to a reproducing kernel Hilbert
space (RKHS) H and µp “ Ex„prφpxqs is the population
mean. Algorithmically, it generates instances according to:

xt`1 P argmax
xPX

xut, φpxqy,

ut`1 “ ut ` µp ´ φpxt`1q,
(1)

for some properly chosen u0, where X is the sampling space.
In the original kernel herding algorithm, the expectation is
taken with respect to the training population, i.e., p “ ptr.

Bach et al. [2012] showed that herding is equivalent to a
Frank-Wolfe algorithm (also known as conditional gradient
descent) for the objective

min
pµPM

1

2
}pµ´ µp}

2
H ,

where M is the marginal polytope (the convex hull of all φpxq
for x P X ). Specifically, it employs the following updates

st`1 P argmin
sPM

xpµt ´ µp, sy,

pµt`1 “ p1´ ρtqpµt ` ρtst`1,
(2)

where ρt P r0, 1s is step size. They pointed out that herding
corresponds to using a step size ρt “ 1{pt ` 1q, while other
choices (e.g., via line search) are also valid. With ρt “ 1{pt`
1q, st can be seen as φpxtq while pµt “ µ´ ut{t as in (1).

4 Frank-Wolfe for Covariate Shift
4.1 Kernel Herding and KMM
In this work, we apply kernel herding to the covariate shift
scenario, where the training and test marginal distributions
are different (ptrpxq ‰ ptepxq) while their conditional distri-
butions are the same (ptrpy|xq “ ptepy|xq). We use herding
to generate instances from the training pool in order to ap-
proximate the test mean, i.e., where X is the training set but
p “ pte is the test marginal distribution. Intuitively, herding
actively selects representative training points to approximate
the test population mean. With proper substitution of empiri-
cal estimates, our objective is

min
pµP xM

1

2

›

›

›

›

›

pµ´
1

m

m
ÿ

j“1

φpxjq

›

›

›

›

›

2

H

,

where xM is marginal polytope of training dataset and m is
the number of (unlabelled) test points. According to (2), in
each update step, a representative training point φpxtq will
be chosen from xM and pµt will be moved toward that direc-
tion. This objective is very similar to that of Kernel Mean
Matching (KMM) [Gretton et al., 2009]: 1

min
wPW

›

›

›

›

›

n
ÿ

i“1

wiφpxiq ´
1

m

m
ÿ

j“1

φpxjq

›

›

›

›

›

2

H

W “

#

w

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

wi “ 1, wi ě 0

+

Ă Rn,

(3)

where n training points and m test points are given. Prob-
lem (3) (a linearly constrained quadratic program) is gener-
ally solved by standard solver with gradient descent and fea-
sibility projection. However, according to the interpretation
in (2), herding for KMM is projection-free: with a proper step
size ρt P r0, 1s, the estimated mean pµt is a convex combina-
tion of previous chosen training points, and thus the constraint
W in (3) is automatically satisfied.

4.2 Frank-Wolfe for KLIEP
Once herding is viewed as a Frank-Wolfe algorithm, it can
be applied to other covariate shift correction procedures. For
instance, the Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) [Sugiyama et al., 2008], a popular choice for
covariate shift correction, can be efficiently solved by Frank-
Wolfe. The objective of KLIEP is to minimize the Kullback-
Leibler divergence from ptepxq to pptepxq, where pptepxq is at-
tained by reweighting the training marginal:

pptepxq “ pwpxq ptrpxq.

The reweighting function is further parametrized as a mixture
of Gaussians:

pwpxq “
b
ÿ

l“1

αlϕlpxq “
b
ÿ

l“1

αl exp

ˆ

´
}x´ cl}

2

2σ2

˙

,

1Here the predefined bound on the weight (wi ď B) and the
derivation tolerance (|

řn
i“1 wi´1| ď ε) are ignored for the sake of

clarity and simplicity. However, they can be easily incorporated into
the herding scheme.
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where αl are the mixing coefficients, cl are predefined centres
(usually test points) and σ is a parameter selected by some
criterion. After some derivation and substitution of empirical
marginals, the final objective becomes

max
α

F pαq “
m
ÿ

j“1

log

˜

b
ÿ

l“1

αlϕlpxjq

¸

s.t.
n
ÿ

i“1

b
ÿ

l“1

αlϕlpxiq “ n; α1, α2, ¨ ¨ ¨ , αb ě 0.

(4)

This is a convex optimization problem. To apply Frank-
Wolfe, we first derive the gradient of the objective

BF pαq

Bαl
“

m
ÿ

j“1

ϕlpxjq
řb
l1“1 αl1ϕl1pxjq

. (5)

Considering the constraint, one can observe that the possible
range for αl is r0, n{

řn
i“1 ϕlpxiqs. For the tth iteration, we

choose lt such that

lt “ argmax
l

B

BF pαq

Bαl
,

n
řn
i“1 ϕlpxiq

F

,

then update the current αt by

αt`1 “ p1´ ρtq ¨αt ` ρt

n
ÿ

i“1

ϕltpxiq ¨ elt , (6)

where ρt is the step size and el “ r0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0sT

(all zeros except for a one in the lth entry). Compared to
KMM(FW), this method chooses representative Gaussians to
match test marginal, instead of choosing individual points.

The chosen Gaussian centres (i.e., tclu) are crucial for
KLIEP. In the original paper, the tclu are set to be the test
points txju, which can be computationally intensive when
one has many test points. Therefore, for large test data, the
original authors proposed to randomly select b “ 100 test
points as Gaussian centres. However, such an approach can
significantly reduce the performance of the algorithm, since
the 100 chosen centres might not appropriately model the dis-
tribution difference, a phenomenon we observe in our exper-
iments (see Section 6.2). If Frank-Wolfe is applied, only one
Gaussian is amplified per iteration and the optimal solution
can be efficiently attained [Jaggi, 2013], since it tends to be
sparse [Sugiyama et al., 2008]. More importantly, we can use
all the test points as Gaussian centres in order to utilize their
information to capture the distribution difference.

5 Convergence and Complexity
5.1 Convergence Rate
In this section, we compare the convergence and complex-
ity of projected gradient (PG) and Frank-Wolfe methods.
For convergence, since both KMM and KLIEP are con-
vex problems, it is well known that the convergence rate of
PG is Op1{tq [Bertsekas, 1999]. The convergence rate of
Frank-Wolfe for KMM and KLIEP is also Op1{tq without
further assumptions [Jaggi, 2013]. However, under some
circumstances, Op1{t2q and even Ope´tq are possible for

KMM(FW) [Chen et al., 2010; Beck and Teboulle, 2004].
Moreover, the solutions to KMM and KLIEP tend to be sparse
in practice (for example, see Section 6.1), which is a very
suitable scenario for the Frank-Wolfe algorithm.

5.2 Complexity Analysis
Next we analyze the time and space complexities of the algo-
rithms. Since both KMM and KLIEP are convex, the com-
putation of the objective is not necessary in each iteration.
Instead, one can simply check the gradient of the objective
and stop when the norm of the gradient is sufficiently small.

We first focus on KMM. In this case, one can rewrite the
objective in (3) in matrix form as

min
wPW

1

2
wTKtrw ´ k

T
tew, (7)

where

pKtrqii1 “ xφpxiq, φpxi1qy, pkteqi “
1

m

m
ÿ

j“1

xφpxiq, φpxjqy,

and the constant term is ignored. For the projected gradi-
ent method, the bottleneck is the computation of the gradient.
From (7) it is obvious thatOpn2qmultiplications are required
to compute the gradient in each iteration. This cannot be sim-
plified because the projection to W creates a nonlinear op-
eration on wt in each iteration. Projected gradient requires
additional Opnq space to store the gradient. For Frank-Wolfe
using a 1{pt` 1q step size, we can see from (2) that the time
complexity is Opnq per iteration. As st`1 must be a single
φpxi‹q for some i‹, we only need to maintain a score list of
size n to store txpµt ´ µp, φpxiqyu for all i. After decompo-
sition, xµp, φpxiqy is simply pkteqi and can be precomputed,
while xpµt, φpxiqy can be easily maintained for each t as

xpµt`1, φpxiqy “ p1´ ρtqxpµt, φpxiqy ` ρtpKtrqii‹ .

This is faster than the projected gradient approach because
there is no projection step in Frank-Wolfe, and the score
list can be maintained efficiently with only Opnq additional
space. Finally, when line search is applied to ρt, the time
complexity is still Opnq, since the line search step size is
attained in closed form ρt “

xµp´pµt, st`1´pµty

}st`1´pµt}2
. We can de-

compose the inner products as before and see that all opera-
tions can be performed in Opnq time. While the computation
of }pµt`1}

2 “ wT
t`1Ktrwt`1 seems to require Opn2q multi-

plications, we can further decompose it, using the fact that
wt`1 “ p1´ ρtqwt ` ρtδwt, as

p1´ρtq
2wT

t Ktrwt`2p1´ρtqρtw
T
t Ktrδwt`ρ

2
t δw

T
t Ktrδwt

“ p1´ ρtq
2}pµt}

2 ` 2p1´ ρtqρtw
T
t pKtrq:i‹ ` ρ

2
t pKtrqi‹i‹ ,

where pKtrq:i‹ means the i‹th column of Ktr. Therefore, only
Opnq multiplications are required since the first term can be
used recursively and δwt only has one singular non-zero en-
try. Similar tricks cannot be applied to projected gradient be-
cause δwt is not sparse in that case, and δwT

t Ktrδwt still
requires Opn2q computation in general. An additional Opnq
storage is still needed for the score list in the line search case.
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Table 1: Complexities of projected gradient (PG) and Frank-
Wolfe with 1{pt`1q or line search step size. Time complexity
is the complexity of one iteration. The additional required
space is shared across iterations.

PG 1{pt` 1q Line

KMM Time Opn2q Opnq Opnq
Space Opnq Opnq Opnq

KLIEP Time Opmbq Opmbq Opmbq
Space Opm` bq Opm` bq Opm` bq

Next we investigate the complexity of KLIEP. Similar to
KMM, the bottleneck is the computation of the gradient (5).
The projected gradient method requires 2mb multiplications
to compute (5) for all l, while Frank-Wolfe only requires
2m`mbmultiplications, since the denominator is linear inα
and can be updated efficiently due to (6). This can lead to dif-
ferent run time in practice (see Section 6). Line search is less
efficient for KLIEP(FW) compared to KMM(FW) as there is
no closed form solution to ρt. Note that F pαt`1q “ Gpρtq is
a concave function of ρt. Moreover, the gradient G1p¨q is de-
creasing in (0,1) with G1p0q ą 0. If G1p1q ě 0, a step size of
1 is used, otherwise G1p1q ă 0 and we use binary search on
the interval r0, 1s to find ρt such that G1pρtq “ 0. Such a bi-
nary search requiresOpmqmultiplications. All three versions
requireOpm`bq space to compute and store the gradient. Ta-
ble 1 summarizes the results of this section.

6 Experiments
In this section, we demonstrate the results of the proposed
approach on both synthetic and some benchmark datasets. In
particular, we compare the proposed Frank-Wolfe method on
KMM and KLIEP with the projected gradient (PG) method.
In the experiments, a Gaussian kernel is applied to KMM
where the kernel width is chosen to be the median of the pair-
wise distances over the training set. For KLIEP, the width is
chosen according to the criterion of Sugiyama et al. [2008].

6.1 Synthetic Datasets
To investigate the efficiency of the different methods, we
compare their runtime to reach the same accuracy. Synthetic
data is generated from y “ x3 ´ x ` 1 ` ε, where ε „
N p0, 0.12q. Training points are generated from N p0.5, 0.52q
while test points are generated from N p0, 0.32q [Shimodaira,
2000]. In the experiment, n “ m. We first run the projected
gradient method to convergence, then run the Frank-Wolfe
methods (with two different step sizes: ρt “ 1{pt`1q and line
search) until it reaches the same objective. Figure 1 shows
the runtime in log scale with varied sample sizes. The Frank-
Wolfe methods are consistently faster than the projected gra-
dient method. In the case of KLIEP, although Frank-Wolfe
and projected gradient have the same theoretical complexity
and convergence as shown in Section 5, their actual runtime
can differ in practice, as the constant factor in the big-O no-
tation can be different. Also, note that line search has better
efficiency in the case of KLIEP, since the final solution is usu-
ally extremely sparse, meaning that line search can find it in
a few iterations while 1{pt` 1q takes some more time.

We next check the solution quality of the different meth-
ods on the same problems, to determine the effectiveness of
Frank-Wolfe. We generated n “ m “ 128 data points and
show the final training weights in Figures 2 and 3. On one
hand, the weights of the three KMM methods differ from
each other significantly, but their objective values remain very
close. This implies that although the objective of KMM (3)
is convex, there are many “optimal” solutions (in terms of
objective values) that minimize the discrepancy between the
means in the RKHS. This also leads to different behaviours in
the underling task (regression or classification, etc). No fur-
ther criteria is proposed in the literature to distinguish which
solution is preferable for KMM. For example, we include a
red line and a blue line in each graph, showing the linear mod-
els learned by least squares from the unweighted (i.e., with
uniform weights) and reweighted training set, respectively.
The blue lines of the three KMM methods are slightly differ-
ent from each other. More results can be found on benchmark
datasets in Section 6.2. On the other hand, although KLIEP
also demonstrates multiple solutions with close objective val-
ues, the final weights produced by the three KLIEP methods
are very similar, as shown in Figure 3. Note that Frank-Wolfe
tends to find sparser solutions than projected gradient in gen-
eral, which suggests the effectiveness of Frank-Wolfe in find-
ing sparse solutions if they exist.

6.2 Benchmark Datasets
Next we applied the reweighting methods on some bench-
mark datasets from the libsvm2 and delve3 libraries to show
their performance in correcting covariate shift on reweighted
learning. All methods are run until convergence.

For each dataset, we first normalize the input features and
the output to r´1, 1s if it is significantly out of scale. We
introduce a covariate shift by the following scheme. First
we compute the first (with largest eigenvalue) principle com-
ponent of the dataset. Let zmax and zmin be the maximum
and minimum projected values along the principle direction
and σz be the standard deviation of the projected values. In
each trial, we first draw m “ 2000 test points without re-
placement from the pool, with probability proportional to
N pzmax, σ

2
z{4q. After eliminating these test points from the

dataset, we then draw n “ 5000 training points without
replacement from the pool, with probability proportional to
N pzmin, σ

2
z{4q. After computing the weights for the training

points, we learn a linear model from the reweighted set and
evaluate the model performance on the test set, using hinge
loss for classification and squared loss for regression. We
compare the performance of the reweighting methods with
the unweighted method (i.e., with uniform weights for train-
ing points). For KMM(FW) we use 1{pt ` 1q as the step
size, while for KLIEP(FW) we use the line search step size,
since these choices are faster in practice. In addition to the
projected gradient solver KLIEP(PG), we also compare the
KLIEP(FW) method with the implementation of the origi-
nal authors KLIEP(100), where the “b “ 100” trick is used
for projected gradient when there are too many test instances

2www.csie.ntu.edu.tw/„cjlin/libsvm
3www.cs.toronto.edu/„delve/data/datasets.html
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Figure 1: Runtime plot over different sample sizes. Time is measured in seconds.
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(a) Projected gradient method.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

9

O
u

tp
u

t

Input

 

 

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

W
e

ig
h

t

Train point
Test point
Unweighted model
Reweighted model
True model
Weight

(b) Frank-Wolfe with 1{pt` 1q step size.
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(c) Frank-Wolfe with line search step size.

Figure 2: Illustrating the training point weights produced by different KMM optimization methods. Without reweighting, least
squares outputs the red line as the best linear fit. By adjusting the weights of the training points (as shown by the purple vertical
bars), a new linear fit (blue line) can be found for better test set prediction. Notice that the three methods produce significantly
different training weights (purple vertical bars), but their final objective values are very close.

(only randomly select 100 Gaussian centres; see Section 4.2
for more details).

Table 2 shows the test loss and Table 3 shows the runtime
over 50 trials. First, note that the performance of KMM is
not very reliable because 1) the kernel width used in the ex-
periment is difficult to tune, as observed by others [Cortes et
al., 2008] and 2) the solution to KMM tends to be sensitive to
random initialization – i.e., different solutions may have sim-
ilar objective values – which leads to unstable behaviour on
the underlying task. Next, we can see that KLIEP(FW) is ef-
fective in correcting covariate shift. In most cases its test loss
is smaller than unweighted learning as well as KLIEP(PG) on
the test set. One possible reason is that KLIEP(PG) may fail
to improve the objective on a step and stop prematurely. Com-
paring KLIEP(PG) and KLIEP(100), we can see that using all
information from the test set will probably reduce test loss, al-
though it may suffer from increased runtime. Finally, judging
from Table 3, Frank-Wolfe is a very efficient algorithm com-
pared to projected gradient in the current setting where sparse
solutions are possible. KLIEP(100) is extremely fast but its
task performance is so restrictive that it becomes impractical.
We may apply values other than b “ 100, but the best value
of b is dataset-dependent and could be hard to identify. In-

stead, FW does not require parameter tuning and can utilize
all Gaussians without computational issues.

7 Conclusion
We have proposed an efficient method that can be incorpo-
rated into two well-known covariate shift correction tech-
niques, Kernel Mean Matching (KMM) and Kullback-Leibler
Importance Estimation Procedure (KLIEP). Our approach is
inspired by noticing a connection between kernel herding
and KMM. By exploiting sparse solution structure, we ap-
ply the Frank-Wolfe algorithm to KMM and KLIEP. Since
Frank-Wolfe is projection-free, its time complexity per itera-
tion is in general smaller than the traditional projected gradi-
ent method. Our convergence and complexity analysis show
that KMM(FW) has an advantage over the projected gradient
method, while KLIEP(FW) has runtime performance compa-
rable to the projected gradient method. Our empirical stud-
ies show that Frank-Wolfe is very suitable and practical for
finding optimal solutions and correcting covariate shift as the
sample size grows. Whether Frank-Wolfe can be applied to
other covariate shift correction techniques remains an open
question. We are also exploring ways to incorporate covariate
shift correction to the underlying task for better performance.
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(a) Projected gradient method.
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(b) Frank-Wolfe with 1{pt` 1q step size.
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(c) Frank-Wolfe with line search step size.

Figure 3: Illustrating the training point weights produced by different KLIEP optimization methods. These methods choose
very different Gaussian centres (the values shown in the α graph at the bottom), but their training weights (purple vertical bars
in the top graphs) are very similar to each other, obtaining very close final objective values. Note that the mixing coefficients
α in (a) have a different scale for better visualization. The solutions obtained by Frank-Wolfe are sparser than that of projected
gradient. The final solution using line search in (c) has only 7 Gaussian components, which is extremely sparse compared to
all 128 possible Gaussian candidates. This shows the capability of Frank-Wolfe method in finding sparse solutions.

Table 2: Test losses for the different covariate shift correction methods over 50 trials (mean with standard error in parentheses).
Weights are computed using either Frank-Wolfe (FW) or projected gradient (PG). Losses are normalized so that the mean loss
of the unweighted method is 1.0. The upper half of the table considers classification datasets (hinge loss), while the lower
half considers regression datasets (squared loss). The best method(s) according to the Wilcoxon signed-rank test at the 5%
significance level is(are) shown in bold for each dataset.

Dataset Unweighted KLIEP(FW) KLIEP(PG) KLIEP(100) KMM(FW) KMM(PG)
a7a 1.000 (0.006) 0.978 (0.007) 0.998 (0.015) 0.999 (0.009) 0.968 (0.024) 0.955 (0.023)

a8a 1.000 (0.006) 0.971 (0.008) 1.002 (0.020) 0.997 (0.015) 0.969 (0.027) 0.959 (0.025)

a9a 1.000 (0.005) 0.968 (0.010) 0.983 (0.023) 0.998 (0.012) 0.963 (0.025) 0.965 (0.023)

mushrooms 1.000 (0.077) 1.010 (0.078) 0.981 (0.072) 1.078 (0.109) 0.800 (0.080) 0.923 (0.060)

cpusmall 1.000 (0.001) 0.893 (0.023) 0.943 (0.010) 0.936 (0.016) 1.034 (0.034) 0.978 (0.023)

kin-8fh 1.000 (0.003) 1.014 (0.043) 4.462 (0.511) 5.872 (1.212) 7.686 (2.566) 3.594 (1.059)

kin-8fm 1.000 (0.004) 0.738 (0.048) 5.060 (0.690) 5.329 (0.909) 3.028 (1.070) 1.786 (0.522)

kin-8nh 1.000 (0.002) 1.018 (0.040) 2.032 (0.329) 2.659 (0.454) 2.752 (0.398) 1.913 (0.370)

kin-8nm 1.000 (0.004) 0.803 (0.017) 1.172 (0.112) 1.396 (0.219) 1.031 (0.093) 0.899 (0.055)

Table 3: Average runtime in seconds over 50 trials (mean with standard error in parenthesis). KLIEP(FW) is generally faster
than KLIEP(PG). Although KLIEP(100) is extremely fast, its corresponding performance on the learning task is very restrictive.
KMM(FW) is faster than KMM(PG) for every dataset.

Dataset KLIEP(FW) KLIEP(PG) KLIEP(100) KMM(FW) KMM(PG)
a7a 6.22 (0.03) 5.29 (2.59) 0.07 (0.04) 1.32 (0.02) 1.76 (0.05)

a8a 6.25 (0.04) 7.17 (2.92) 0.04 (0.00) 1.31 (0.02) 1.78 (0.04)

a9a 6.28 (0.04) 4.39 (2.38) 0.06 (0.04) 1.30 (0.02) 1.77 (0.05)

mushrooms 4.19 (0.21) 23.90 (0.02) 0.89 (0.10) 1.18 (0.02) 1.97 (0.10)

cpusmall 1.24 (0.02) 3.18 (1.13) 0.08 (0.03) 1.12 (0.03) 3.32 (0.21)

kin-8fh 5.61 (0.21) 23.79 (0.02) 0.76 (0.13) 1.06 (0.02) 1.56 (0.06)

kin-8fm 5.60 (0.21) 23.78 (0.03) 0.60 (0.14) 1.07 (0.02) 1.53 (0.06)

kin-8nh 5.46 (0.30) 23.85 (0.02) 0.72 (0.13) 1.11 (0.02) 1.53 (0.06)

kin-8nm 5.69 (0.03) 23.76 (0.02) 0.73 (0.13) 1.08 (0.02) 1.55 (0.05)
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