
Symbolic Model Checking for One-Resource RB±ATL†

Natasha Alechina1 and Brian Logan1 and Hoang Nga Nguyen1 and Franco Raimondi2
1 School of Computer Science, University of Nottingham, UK
2 Department of Computer Science, Middlesex University, UK

1 {nza,bsl,hnn}@cs.nott.ac.uk, 2 f.raimondi@mdx.ac.uk

Abstract

RB±ATL is an extension of ATL where it is possi-
ble to model consumption and production of sev-
eral resources by a set of agents. The model-
checking problem for RB±ATL is known to be
decidable. However the only available model-
checking algorithm for RB±ATL uses a forward
search of the state space, and hence does not have
an efficient symbolic implementation. In this paper,
we consider a fragment of RB±ATL, 1RB±ATL,
that allows only one resource type. We give a sym-
bolic model-checking algorithm for this fragment
of RB±ATL, and evaluate the performance of an
MCMAS-based implementation of the algorithm
on an example problem that can be scaled to large
state spaces.

1 Introduction
Alternating Time Temporal Logic (ATL) [Alur et al., 2002] is
widely used to characterise coalitional abilities in multi-agent
systems. Recently, several extensions of ATL have been pro-
posed that can express coalitional ability under resource con-
straints, for example [Alechina et al., 2009; Bulling and Far-
wer, 2010; Alechina et al., 2010; Della Monica et al., 2011;
2013; Bulling and Goranko, 2013; Alechina et al., 2014].
These logics allow reasoning about coalitional ability un-
der resource constraints such as: ‘given resources b, coali-
tion A has a strategy to achieve ϕ’. There are many dif-
ferent variants of ATL with resources. If resource pro-
duction is allowed, the model-checking problem for many
of these variants becomes undecidable [Bulling and Far-
wer, 2010; Bulling and Goranko, 2013]. For resource log-
ics where the model-checking problem is known to be de-
cidable, the only symbolic model-checking algorithm that
has been proposed to date is that given in [Alechina et
al., 2015], which describes an implementation of symbolic
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model-checking for the resource-consumption only logic RB-
ATL. Symbolic model-checking uses Binary Decision Dia-
grams (BDDs) [Bryant, 1986] to represent sets of states sym-
bolically, and over the last 20 years it has been successfully
employed as a powerful optimisation technique in a range of
model checkers such as MCK [Gammie and Van Der Mey-
den, 2004] and MCMAS [Lomuscio et al., 2009].

In this paper we provide a symbolic model-checking al-
gorithm for a fragment of the logic RB±ATL. RB±ATL
does have a decidable model-checking problem, however it
is EXPSPACE-hard [Alechina et al., 2014]. The model-
checking algorithm proposed by Alechina et al. [2014] uses
a forward search of the state space, and hence does not have
an efficient symbolic implementation. In this paper, we con-
sider a fragment of RB±ATL, 1RB±ATL, that allows only
one resource type, for example, money. This is a natural spe-
cial case of resource logics, since in many situations only one
resource is of interest, or multiple resources are mutually con-
vertible. For example, in [Della Monica et al., 2013] it is as-
sumed that all resources can be converted into money. The
main contribution of this paper is a fixed point characterisa-
tion of 1RB±ATL modalities. This makes it possible to pro-
vide a symbolic model-checking algorithm for 1RB±ATL.
We analyse the complexity of the model-checking algorithm,
and also evaluate the performance of an MCMAS-based [Lo-
muscio et al., 2009] implementation of the algorithm on an
example problem that can be scaled to large state spaces.
The evaluation suggests that the symbolic implementation is
scalable and performs much better than the algorithm from
[Alechina et al., 2014].

2 RB±ATL
The logic RB±ATL was introduced in [Alechina et al., 2014]
as a generalisation of RB-ATL [Alechina et al., 2010]. In
contrast to RB-ATL which allows only consumption of re-
sources, RB±ATL allows agents to both produce and con-
sume resources. In this section, we briefly recall the syntax
and semantics of RB±ATL.

Let Agt = {a1, . . . , an} be a set of n agents, Res =
{res1, . . . , resr} be a set of r resources, Π be a set of propo-
sitions and B = Nr∞ be a set of resource bounds where
N∞ = N0 ∪ {∞}. We denote by 0̄ the smallest bound
(0, . . . , 0) and ∞̄ the greatest bound (∞, . . . ,∞).

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1069



Formulas of RB±ATL are defined by the following syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈Ab〉〉©ϕ | 〈〈Ab〉〉2ϕ | 〈〈Ab〉〉ϕU ψ

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a re-
source bound. Here, 〈〈Ab〉〉©ϕ means that a coalition A can
ensure that the next state satisfies ϕ under resource bound b.
〈〈Ab〉〉2ϕ means that A has a strategy to make sure that ϕ is
always true, and the cost of this strategy is at most b. Sim-
ilarly, 〈〈Ab〉〉ϕU ψ means that A has a strategy to enforce ψ
while maintaining the truth of ϕ, and the cost of this strategy
is at most b.

To interpret this language, the definition of concurrent
game structures [Alur et al., 2002] is extended with resource
consumption and production.

Definition 1. A resource-bounded concurrent game structure
(RB-CGS) is a tuple M = (Agt,Res, S,Π, π, Act, d, c, δ)
where:

• Agt is a non-empty set of n agents, Res is a non-empty
set of r resources and S is a non-empty set of states.

• Π is a finite set of propositional variables and π : Π →
℘(S) is a truth assignment that associates each proposi-
tion in Π with a subset of states where it is true.

• Act is a non-empty set of actions which includes idle,
and d : S × Agt → ℘(Act) \ {∅} is a function that as-
signs to each s ∈ S a non-empty set of actions available
to each agent a ∈ Agt. For every s ∈ S and a ∈ Agt,
idle ∈ d(s, a). We denote joint actions by all agents in
Agt available at s by D(s) = d(s, a1)× · · · × d(s, an).

• c : S × Agt × Act → Zr is a partial function that
maps a state s, an agent a and an action α ∈ d(s, a)
to a vector of integers where the integer in position i
indicates consumption or production of resource resi by
the action (positive value for consumption and negative
value for production). We stipulate that c(s, a, idle) = 0̄
for all s ∈ S and a ∈ Agt.
• δ : (s, σ) 7→ S is a function that, for every s ∈ S and

joint action σ ∈ D(s), gives the state resulting from
executing σ in s.

Given a RB-CGS M , we denote the set of all infinite se-
quences of states (computations) by Sω and the set of non-
empty finite sequences of states by S+. For a computation
λ = s0s1 . . . ∈ S+ ∪ Sω , we use the notation λ[i] = si and
λ[i, j] = si . . . sj ∀ j ≥ i ≥ 0.

Below, we use the usual point-wise notation for vec-
tor comparison and addition. In particular, (b1, . . . , br) ≤
(d1, . . . , dr) iff bi ≤ di ∀ i ∈ {1, . . . , r}, and (b1, . . . , br) +
(d1, . . . , dr) = (b1 + d1, . . . , br + dr). We assume that for
any b ∈ Z, b ≤ ∞ and b +∞ and ∞ − b = ∞. Given a
function f returning a vector, we denote by fi the function
that returns the i-th component of the vector returned by f .

Given a RB-CGS M and a state s ∈ S, a joint action by
a coalition A ⊆ Agt is a tuple σA = (σa)a∈A such that
σa ∈ d(s, a). The set of all joint actions for A at state s is
denoted byDA(s). Given a joint action by the grand coalition
σ ∈ D(s), σA denotes the joint action executed by A: σA =
(σa)a∈A. The set of all possible outcomes of a joint action

σA ∈ DA(s) at state s is: out(s, σA) = {s′ ∈ S | ∃σ′ ∈
D(s) : σA = σ′A ∧ s′ = δ(s, σ′)}. The cost of a joint action
σA ∈ DA(s) is defined as costA(s, σA) =

∑
a∈A c(s, a, σa).

Given a RB-CGS M , a strategy for a coalition A ⊆ Agt
is a mapping FA : S+ → Act such that, for every λs ∈
S+, FA(λs) ∈ DA(s). A computation λ ∈ Sω is con-
sistent with a strategy FA iff, for all i ≥ 0, λ[i + 1] ∈
out(λ[i], FA(λ[0, i])). We denote by out(s, FA) the set of
all consistent computations λ of FA that start from s.

Given a bound b ∈ B, a computation λ ∈ out(s, FA) is
b-consistent with FA iff, for every i ≥ 0,

i∑
j=0

costA(λ[j], FA(λ[0, j])) ≤ b

Note that this definition implies that the cost of every prefix of
the computation is below b. The set of all b-consistent compu-
tations of FA starting from state s is denoted by out(s, FA, b).
FA is a b-strategy iff out(s, FA) = out(s, FA, b) for any state
s.

Given a RB-CGS M and a state s, the truth of a RB±ATL
formula ϕ with respect to M and s is defined inductively on
the structure of ϕ as follows (the atomic case and the Boolean
connectives are defined in the standard way):
• M, s |= 〈〈Ab〉〉©ϕ iff ∃ b-strategy FA such that for all
λ ∈ out(s, FA): M,λ[1] |= ϕ;

• M, s |= 〈〈Ab〉〉2ϕ iff ∃ b-strategy FA such that for all
λ ∈ out(s, FA) and i ≥ 0: M,λ[i] |= ϕ; and

• M, s |= 〈〈Ab〉〉ϕU ψ iff ∃ b-strategy FA such that for all
λ ∈ out(s, FA), ∃i ≥ 0: M,λ[i] |= ψ and M,λ[j] |= ϕ
for all j ∈ {0, . . . , i− 1}.

Since the infinite resource bound version of RB±ATL modal-
ities correspond to the standard ATL modalities, we write
〈〈A∞̄〉〉γ = 〈〈A〉〉γ.

Note that although we only consider infinite paths, the con-
dition that the idle action with cost 0̄ is always available
makes the model-checking problem easier (we only need to
find a strategy with a finite prefix under bound b to satisfy
formulas of the form 〈〈Ab〉〉©ϕ and 〈〈Ab〉〉ϕU ψ, and then the
strategy can make the idle choice forever). This makes the
logic closer to the finitary semantics in [Bulling and Farwer,
2010].

3 Hybrid Model Checking RB±ATL
The model-checking problem for RB±ATL is the question
whether, for a given RB-CGS structure M , state s and
RB±ATL formula ϕ, M, s |= ϕ. An algorithm for solv-
ing the model-checking problem of RB±ATL was presented
in [Alechina et al., 2014], and is restated in Algorithm 1.
Given a RB-CGS structure M and a formula ϕ0, the algo-
rithm returns the set [ϕ0]M of states in M that satisfy ϕ, i.e.,
[ϕ0]M = {s |M, s |= ϕ0}.

The algorithm makes use of the primitive operator
Sub(ϕ0) which computes all sub-formulas of ϕ0 in the usual
way, and, in addition, if 〈〈Ab〉〉γ ∈ Sub(ϕ), its infinite re-
source version 〈〈A〉〉γ is also added to Sub(ϕ). Sub(ϕ) is
ordered in increasing order of complexity, and the infinite
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Algorithm 1 Labelling ϕ0

function RB±ATL-LABEL(M,ϕ0)
for ϕ′ ∈ Sub(ϕ0) do

case ϕ′ = p, ¬ϕ, ϕ ∧ ψ,
〈〈A〉〉©ϕ, 〈〈A〉〉ϕU ψ, 〈〈A〉〉2ϕ

standard, see [Alur et al., 2002]
case ϕ′ = 〈〈Ab〉〉©ϕ

[ϕ′]M ← Pre(A, [ϕ]M , b)

case ϕ′ = 〈〈Ab〉〉ϕU ψ
[ϕ′]M ← { s | s ∈ S ∧
UNTIL-STRATEGY(node0(s, b), 〈〈Ab〉〉ϕU ψ)}

case ϕ′ = 〈〈Ab〉〉2ϕ
[ϕ′]M ← { s | s ∈ S ∧
BOX-STRATEGY(node0(s, b), 〈〈Ab〉〉2ϕ)}

return [ϕ0]M

resource version of each modal formula comes before the
bounded version. Note that if a state s is not annotated with
〈〈A〉〉γ then s cannot satisfy the bounded resource version
〈〈Ab〉〉γ.

The algorithm then proceeds by cases. For all formulas in
Sub(ϕ) apart from 〈〈Ab〉〉©ϕ, 〈〈Ab〉〉ϕU ψ and 〈〈Ab〉〉2ϕ, the
standard ATL model-checking algorithm [Alur et al., 2002]
is used. The implementation of these cases can therefore be
done symbolically. Labelling states with 〈〈Ab〉〉©ϕ makes
use of a function Pre(A, ρ, b), which, given a coalition A,
a set ρ ⊆ S and a bound b, returns a set of states s in
which A has a joint action σA with cost(s, σA) ≤ b such
that out(s, σA) ⊆ ρ. Labelling states with 〈〈Ab〉〉ϕU ψ
and 〈〈Ab〉〉2ϕ is more complex, and requires two auxil-
iary functions: UNTIL-STRATEGY for 〈〈Ab〉〉ϕU ψ and BOX-
STRATEGY for 〈〈Ab〉〉2ϕ. Essentially, these functions search
the existence of a strategy for A which satisfies the corre-
sponding formula by depth-first and-or search of M . For a
detailed description of these functions, see [Alechina et al.,
2014].

While the function Pre(A, ρ, b) can be implemented sym-
bolically as shown in [Alechina et al., 2015], the last two
cases call auxiliary functions that search state by state. There-
fore, they can only be implemented non-symbolically, result-
ing in a hybrid (partially symbolic, partially non-symbolic)
implementation.

4 Symbolic Model Checking 1RB±ATL
1RB±ATL is a fragment of RB±ATL with |Res| = 1. Re-
source bounds in 1RB±ATL are therefore in N∞ and action
costs in Z. In this section, we present a symbolic implementa-
tion for the cases of until formulas 〈〈Ab〉〉ϕU ψ and box for-
mulas 〈〈Ab〉〉2ϕ in Algorithm 1 by providing a fixed point
characterisation of these formulas. This will enable us to
provide a symbolic implementation for the model-checking
problem of 1RB±ATL. The of question whether a similar ap-
proach would work with more than one resource type is open.
In particular it is not clear how to generalise the functions
used for the fixed point characterisation of until and box for-
mulas below. It is also not clear how, given a coalition A and

a model M , to estimate the maximal possible cost of a strat-
egy by A to satisfy an until formula (this estimate is required
for the model-checking algorithm). Intuitively, if there is a
cycle where resource r1 is produced and resource r2 is con-
sumed, and a cycle where r1 is consumed and r2 is produced,
it is not obvious what are the maximal amounts of r1 and r2

that may be needed to satisfy an until formula. This is a hard
problem related to the upper bound on reachability in Petri
nets (which is also an open problem, [Leroux, 2013]).

Below, we use the usual point-wise notation for compari-
son, intersection and union of vectors of sets. In particular,
for some k ≥ 1, (b1, . . . , bk) ⊆ (d1, . . . , dk) iff bi ⊆ di ∀ i ∈
{1, . . . , k}, (b1, . . . , br) ∩ (d1, . . . , dr) = (b1 ∩ d1, . . . , br ∩
dr) and (b1, . . . , br)∪ (d1, . . . , dr) = (b1 ∪ d1, . . . , br ∪ dr).
We drop the subscript M in [ϕ]M when this does not lead to
ambiguity.

4.1 Until Formulas
In this section, we show that [〈〈Ab〉〉ϕU ψ]M can be computed
from the least fixed point of a function UA,ϕ,ψ which does not
depend on b (only on costs of actions in M ).

For each agent i ∈ Agt, we denote by minci =
min{c(s, i, a) | a ∈ Acti, s ∈ S} the minimal cost of any ac-
tion by an agent i. Obviously, minci ≤ 0 due to the presence
of idle, and the fact that there is no action for i that costs less
that minci. Similarly, we denote by mincA =

∑
i∈Aminci

the minimal cost of any joint action by the non-empty coali-
tion A. Again, mincA ≤ 0 and there is no joint action for A
that costs less than mincA.

We extend the definition of [〈〈Ab〉〉©] : ℘(S) → ℘(S) in
[Alechina et al., 2010] with b ∈ Z∪{∞} as [〈〈Ab〉〉©](X) =
{s ∈ S | ∃σ ∈ DA(s) : cost(σ) ≤ b ∧ out(s, σ) ⊆ X}.
Obviously, [〈〈Ab〉〉©](X) = ∅ for any b < mincA and X ⊆
S.

Lemma 1. [〈〈Ab〉〉©] is monotone.

Proof. Assume that X ⊆ Y . Then:

s ∈ [〈〈Ab〉〉©](X) ⇒ ∃σ ∈ DA(s) : cost(σ) ≤ b ∧
out(s, σ) ⊆ X

⇒ ∃σ ∈ DA(s) : cost(σ) ≤ b ∧
out(s, σ) ⊆ X ⊆ Y

⇒ s ∈ [〈〈Ab〉〉©](Y )

Therefore, [〈〈Ab〉〉©](X) ⊆ [〈〈Ab〉〉©](Y ).

Next we define a predecessor to the function UA,ϕ,ψ that
does depend on the bound b:

UAb,ϕ,ψ((X0, . . . , Xb−mincA)) = [ψ] ∪ [ϕ] ∩

(
⋃

mincA≤b1≤b

[〈〈Ab1〉〉©](Xb−b1))

For convenience, we drop the subscripts ϕ,ψ in the re-
mainder of this section. Note that UAb(([〈〈A0〉〉ϕU ψ], . . . ,
[〈〈Ab−mincA〉〉ϕU ψ])) = [〈〈Ab〉〉ϕU ψ].

Observe that since mincA ≤ 0 and b ≥ 0, we always have
0 ≤ b− b1 ≤ b−mincA for all b1 ∈ {mincA, . . . , b}.
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Lemma 2. UAb is monotone.

Proof. Assume that X = (X0, . . . , Xb−mincA), Y =
(Y0, . . . , Yb−mincA) and X ⊆ Y , i.e., Xi ⊆ Yi for all
0 ≤ i ≤ b−mincA. Then,

UAb(X) = [ψ] ∪ ([ϕ] ∩
⋃

mincA≤b1≤b

[〈〈Ab1〉〉©](Xb−b1))

⊆ [ψ] ∪ ([ϕ] ∩
⋃

mincA≤b1≤b

[〈〈Ab1〉〉©](Yb−b1))

by Xi ⊆ Yi for all 0 ≤ i ≤ b−mincA and
Lemma 1

= UAb(Y ) 2

Lemma 3. There exists a bound min ∈ N such that
[〈〈Amin〉〉ϕU ψ] ⊇ [〈〈Ak〉〉ϕU ψ] for any bound k.

Proof. Consider an infinite sequence of bounds 0, 1, . . .. As
℘(S) is finite, there is an infinite subsequence 0 ≤ i1 <
i2 < . . . such that [〈〈Ai1〉〉ϕU ψ] = [〈〈Ai2〉〉ϕU ψ] =
[〈〈Ai3〉〉ϕU ψ] = . . .

Let min = i1. For any k, there exists j ≥ 1
such that k ≤ ij . Then [〈〈Aij 〉〉ϕU ψ] ⊇ [〈〈Ak〉〉ϕU ψ]
As [〈〈Ai1〉〉ϕU ψ] = [〈〈Aij 〉〉ϕU ψ], we have that
[〈〈Amin〉〉ϕU ψ] ⊇ [〈〈Ak〉〉ϕU ψ].

From Lemma 3, [〈〈Amin〉〉ϕU ψ] = [〈〈Ak〉〉ϕU ψ] for k ≥
min. As a result, we define the following function which
is similar to UAk but accepts input vectors of the same size
min+ 1 for any k ≥ 0:

ÛAk,ϕ,ψ((X0, . . . , Xmin)) = [ψ] ∪ ([ϕ]∩⋃
mincA≤k1≤k

[〈〈Ak1〉〉©](

{
Xk−k1 if k − k1 ≤ min

Xmin otherwise
))

By Lemma 2, it is straightforward that ÛAk is also monotone.
Finally, we define the function used for fixed-point charac-

terisation of Until:

UA,ϕ,ψ((X0, . . . , Xmin))

= (ÛAk((XA0 , . . . , Xmin)))0≤k≤min

Lemma 4. UA is monotone.

Proof. This is straightforward as, by Lemma 2, ÛAk is mono-
tone for any k.

Lemma 5. ([〈〈A0〉〉ϕU ψ], . . . , [〈〈Amin〉〉ϕU ψ]) is the least
fixed point of UA.

Proof. The Lemma follows from Claims 1 and 2 below by
Knaster-Tarski’s fixed-point theorem.

Claim 1. X = ([〈〈A0〉〉ϕU ψ], . . . , [〈〈Amin〉〉ϕU ψ]) is a pre-
fixed point of UA.

Proof. To show that X is the prefixed point of UA, we need
to prove that UA(X) ⊆ X , i.e., ÛAk(X) ⊆ Xk for all 0 ≤
k ≤ min:

s ∈ ÛAk
(X) ⇒ s ∈ [ψ] ∪ ([ϕ] ∩⋃

mincA≤k1≤k

[〈〈Ak1〉〉©](

{
Xk−k1 if k − k1 ≤ min

Xmin otherwise
))

⇒ s ∈ [ψ] ∪ ([ϕ] ∩⋃
mincA≤k1≤k

[〈〈Ak1〉〉©](Xk−k1))

as Xk−k1 = Xmin for all k − k1 > min

⇒ s ∈ [ψ] or s ∈ ([ϕ] ∩⋃
mincA≤k1≤k

[〈〈Ak1〉〉©](Xk−k1))

⇒ s ∈ [ψ] or ∃k1 ∈ {mincA, k} :

s ∈ [ϕ] ∩ [〈〈Ak1〉〉©](Xk−k1)

If s ∈ [ψ], then it is obvious that s ∈ Xk = [〈〈Ak〉〉ϕU ψ].
If s ∈ [ϕ] ∩ [〈〈Ak1〉〉©](Xk−k1) = [〈〈Ak1〉〉©]

([〈〈Ak−k1〉〉ϕU ψ]), then there exists a joint action σ ∈
DA(s) such that cost(σ) ≤ k1 and out(s, σ) ⊆
[〈〈Ak−k1〉〉ϕU ψ]. Then, for all s′ ∈ out(s, σ), there exists a
k−k1-strategy Fs′ to satisfy 〈〈Ak−k1〉〉ϕU ψ. Let us consider
the strategy F where F (s) = σ and F (ss′λ) = Fs′(s

′λ)
for all λ ∈ S∗. Obviously, F is a k-strategy to satisfy
〈〈Ak〉〉ϕU ψ. Therefore, s ∈ [〈〈Ak〉〉ϕU ψ].

Claim 2. LetX = ([〈〈A0〉〉ϕU ψ], . . . , [〈〈Amin〉〉ϕU ψ]). For
any pre-fixed point Y of UA, Y ⊇ X .

Proof. We have that Y ⊇ UA(Y ); as UA is monotone, it also
implies Y ⊇ UA(Y ) ⊇ U2

A(Y ) ⊇ . . . ⊇ U iA(Y ) ⊇ . . .
In order to prove Y ⊇ X , we show that for all 0 ≤ k ≤
min, there exists i : Xk ⊆ Û iAk(Y ) where Û iAk(Y ) is the
shorthand for ÛAk(U i−1

A (Y )). First,

s ∈ Xk ⇒ s ∈ [〈〈Ak〉〉ϕU ψ]

⇒ s ∈ ∃ k-strategy FA : ∀λ ∈ out(s, FA) :

∃ls,λ ≥ 0 : λ[ls,λ] |= ψ ∧ ∀l′ < ls,λ : λ[l′] |= ϕ

Let ls,k = max{ls,λ | λ ∈ out(s, FA)}, we continue the
proof by induction on ls,k that s ∈ Û lAk(Y ) for all l ≥ ls,k.

Base case: If ls,k = 0, then s ∈ [ψ], hence s ∈ Û lAk(Y ) for
any l ≥ 1 by definition of ÛAk .
Induction step: If ls,k > 0, then s ∈ [ϕ] ∩
[〈〈Ak1〉〉©](Xk−k1) for some mincA ≤ k1 ≤ k, i.e.,
∃σ ∈ DA(s) : cost(s, σ) ≤ k1 ∧ out(s, σ) ⊆ Xk−k1 .
Then ls′,k−k1 < ls,k (i.e., ls′,k−k1 ≤ ls,k − 1) for all
s′ ∈ out(s, σ) ⊆ Xk−k1 . By the induction hypothesis,
we have that s′ ∈ Û l

Ak−k1
(Y ) for all l ≥ ls′,k−k1 ; then,

s′ ∈ Û l
Ak−k1

(Y ) for all l ≥ ls,k − 1 and s′ ∈ out(s, σ).
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This means for all l ≥ ls,k − 1 we have:

out(s, σ) ⊆ Û lAk−k1 (Y ) ⇒ [〈〈Ak1〉〉©](out(s, σ)) ⊆
[〈〈Ak1〉〉©](Û lAk−k1 (Y ))

as [〈〈Ak1〉〉©] is monotone
⇒ s ∈ [ϕ] ∩

[〈〈Ak1〉〉©](Û lAk−k1 (Y ))

⇒ s ∈ Û l+1
Ak (Y )

Therefore, s ∈ Û lAk(Y ) for all l ≥ ls,k. Let lk = max{ls,k |
s ∈ Xk}, we have that s ∈ Û lAk(Y ) for all l ≥ lk and s ∈ Xk,
i.e., Xk ⊆ Û lkAk(Y ).

As usual, the least fixed point (Xk)0≤k≤min of UA can
be computed by repeatedly applying UA to (∅, . . . , ∅) until
a fixed point is reached. Then,

[〈〈Ab〉〉ϕU ψ] =

{
Xb if b ≤ min

Xmin otherwise.

It remains to find min. A coarse estimation is that min =
maxcA × |S| where maxcA =

∑
i∈Amaxci with maxci =

max{c(s, i, a) | a ∈ Acti, s ∈ S}, i.e. the maximal cost of
any action of any agents inA. The idea behind this estimation
is that any strategy to satisfy 〈〈Amin〉〉ϕU ψ can be converted
into a strategy that does not revisit any states (does not contain
loops) on a path to a state where ψ is satisfied. This is made
precise by the following lemma.
Lemma 6. If s ∈ 〈〈Ak〉〉ϕU ψ for some k ∈ N then s ∈
〈〈AmaxcA×|S|〉〉ϕU ψ.

Proof. As s ∈ 〈〈Ak〉〉ϕU ψ, there exists a k-strategy FA such
that for all λ ∈ out(s, FA): ∃lλ ≥ 0 : λ[lλ] |= ψ and ∀l′ <
lλ : λ[l′] |= ϕ.

Let us construct a simpler strategy F ′A based on FA as
follows: for an arbitrary λ ∈ out(s, FA) such that ∃l1 <
l2 ≤ lλ : λ[l1] = λ[l2] : F ′A(λ[0, l1]λ′) = FA(λ[0, l2]λ′)
for any λ′ ∈ S∗; for others λ′′, F ′A(λ′′) = FA(λ). We
repeat this construction until no further simplifications can
be made. Let F ′′A be the resulting strategy. We have that
for all λ ∈ out(s, F ′′A): ∃lλ ≥ 0 : λ[lλ] |= ψ and
∀l′ < lλ : λ[l′] |= ϕ. Furthermore, no state is repeated
along any λ[0, lλ] where λ ∈ out(s, F ′′A). This means lλ <
|S|. Furthermore, costA(λ[i], F ′′A(λ[0, i])) ≤ maxcA for all
i ≤ lλ; therefore, the total cost along λ[0, lλ] is less than
maxcA × |S|; i.e., F ′′A is a (maxcA × |S|)-strategy; hence
s ∈ 〈〈AmaxcA×|S|〉〉ϕU ψ.

4.2 Box Formulas
In this section, we show that [〈〈Ab〉〉2ϕ]M can be computed
from the greatest fixed point of a function BA,ϕ defined be-
low.

First, we define a function (dependent on the bound b)

BAb,ϕ((X0, . . . , Xb−mincA)) = [ϕ] ∩

(
⋃

mincA≤b1≤b

[〈〈b1〉〉©](Xb−b1))

We shall drop the subscript ϕ for convenience. Intuitively,
BAb(([〈〈A0〉〉2ϕ], . . . , [〈〈Ab−mincA〉〉2ϕ])) = [〈〈Ab〉〉2ϕ].
Then, we have the following result:
Lemma 7. BAb is monotone.

Proof. The proof is similar to that of Lemma 2.

Lemma 8. There exists a bound min ∈ N such that
[〈〈Amin〉〉2ϕ] ⊇ [〈〈Ak〉〉2ϕ] for any bound k.

Proof. The proof is similar to that of Lemma 3.

Again, the result of Lemma 8 means that [〈〈Amin〉〉2ϕ] =
[〈〈Ak〉〉2ϕ] for k ≥ kmin. As a result, we define the following
function, which is similar to BAk but accepts input vectors of
the same size min+ 1 for any k ≥ 0:

B̂Ak,ϕ((X0, . . . , Xmin)) = ([ϕ]∩

(
⋃

mincA≤k1≤k

[〈〈Ak1〉〉©](

{
Xk−k1 if k − k1 ≤ min

Xmin otherwise
))

This function is also monotone.
Finally, we define the following function:

BA,ϕ((X0, . . . , Xmin)) =

(B̂Ak((X0, . . . , Xmin)))0≤k≤min

Lemma 9. BA is monotone.
Lemma 10. ([〈〈A0〉〉2ϕ], . . . , [〈〈Amin〉〉2ϕ]) is the greatest
fixed point of BA.

Proof. The proof is similar to that of Lemma 5.

As usual, the greatest fixed point (Xk)0≤k≤min of BA can
be computed by repeatedly applying BA to (S, . . . , S) until a
fixed point is reached.

Then,

[〈〈Ab〉〉2ϕ] =

{
Xb if b ≤ min

Xmin otherwise.

It remains to find min. Again, a coarse estimation is that
min = maxcA × |S|. The idea behind this estimation is that
any strategy to satisfy 〈〈Amin〉〉2ϕ will eventually maintain a
zero-cost cycle. Then, it can be simplified so that the prefix
leading to the zero-cost cycle does not repeat a state.
Lemma 11. If s ∈ 〈〈Ak〉〉2ϕ for some k ∈ N then s ∈
〈〈AmaxcA×|S|〉〉2ϕ.

Proof. The proof is similar to that of Lemma 3.

4.3 Symbolic Algorithm for 1RB±ATL
The above results enable us to provide the symbolic model
checking algorithm for 1RB±ATL shown in Algorithm 2.

In Algorithm 2, ·̄ denotes a vector of size maxcA×|S|+ 1
where ·̄i denotes the i-th element of ·̄ for i ≥ 0. The algorithm
differs from Algorithm 1 only for the cases of until formulas
〈〈Ab〉〉ϕU ψ and box formulas 〈〈Ab〉〉2ϕ. For until formulas
〈〈Ab〉〉ϕU ψ, the algorithm computes the least fixed point of
UA,ϕ,ψ . It also makes use of the maximal cost maxcA of
any action by agents inA which can be computed in advance.
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Algorithm 2 Labelling ϕ0

function 1RB±ATL-LABEL(M,ϕ0)
for ϕ′ ∈ Sub(ϕ0) do

case ϕ′ = p, ¬ϕ, ϕ ∧ ψ, 〈〈A〉〉©ϕ,
〈〈Ab〉〉©ϕ, 〈〈A〉〉ϕU ψ, 〈〈A〉〉2ϕ

see Algorithm 1
case ϕ′ = 〈〈Ab〉〉ϕU ψ

ρ̄← ∅̄ and τ̄ ← [ψ]M
while τ̄ 6⊆ ρ̄ do

ρ̄← ρ̄ ∪ τ̄ and τ̄ ← UA,ϕ,ψ(ρ̄)

if b < maxcA × |S| then
[ϕ′]M ← ρ̄b

else
[ϕ′]M ← ρ̄maxcA×|S|

case ϕ′ = 〈〈Ab〉〉2ϕ
ρ̄← S̄ and τ̄ ← [ϕ]M
while ρ̄ 6⊆ τ̄ do

ρ̄← τ̄ and τ̄ ← BA,ϕ(ρ̄)

if b < maxcA × |S| then
[ϕ′]M ← ρ̄b

else
[ϕ′]M ← ρ̄maxcA×|S|

return [ϕ0]M

Both are defined in Section 4.1. For box formulas 〈〈Ab〉〉2ϕ,
the algorithm computes the greatest fixed point of BA,ϕ as
defined in Section 4.2. The correctness of these two cases is
due to Lemmas 5, 6, 10 and 11. Termination is guaranteed as
the set S of states in M is finite.
Theorem 1. Algorithm 2 runs in timeO(|Act||Agt|×|Agt|3×
|S|4× (−mp)×m2

c) where mp is the least cost of any action
and mc is the greatest cost of any action.

Proof. We only discuss the three RB±ATL modalities.
First, observe that the function Pre(A, [ϕ]M , b) used in

the computation of [〈〈Ab〉〉©ϕ]M case involves evaluating a
boolean expression which encodes all possible joint actions of
A and their costs (one boolean per cost). The size of this ex-
pression is O(|Act||Agt| × |Agt|). Hence the operation takes
time O(|Act||Agt| × |Agt|). For readability, we abbreviate
|Act||Agt| × |Agt| as TPre.

For the next two cases, we will use the following abbrevi-
ations. Mc = |Agt| × mc is the maximal cost of any joint
action. Mc × |S| is an upper bound on maxcA × |S| used in
the algorithm. Mp = |Agt|×−mp is the maximal production
of resource by any joint action.

For Until formulas, the loop is executed at most |S|
times. During each iteration, UA,ϕ,ψ(ρ̄) is computed. Since
UA,ϕ,ψ(ρ̄) = (ÛA0(ρ̄), . . . , ÛA(Mc×|S|)(ρ̄)), and the compu-
tation of ÛA(Mc×|S|)(ρ̄) is the most expensive, let us compute
the time required for that and multiply by Mc × |S|.
ÛA(Mc×|S|)(ρ̄) = [ψ]∪ ([ϕ]∩ (Z1 ∪ . . .∪ZMp+(Mc×|S|))),

where each Zj is of the form [〈〈Akj 〉〉©](ρ̄j), so computing it
takes time O(TPre). Then the computation of ÛA(Mc×|S|)(ρ̄)
is O(TPre × (Mp + (Mc × |S|))) and the computation of

UA,ϕ,ψ(ρ̄) is O(TPre × (Mp + (Mc × |S|))× (Mc × |S|)).
Finally, the loop for until formulas takes time

O(TPre × (Mp + (Mc × |S|))× (Mc × |S|)× |S|)

A similar analysis shows that the running time of the Box
loop is the same, hence so is the running time of the whole
algorithm. Substituting expressions for TPre, Mc and Mp

gives O(|Act||Agt| × |Agt|3 × |S|4 × (−mp)×m2
c).

Note that the |Act||Agt| component is the cost of computing
Pre symbolically, and it corresponds to the number of all
possible joint actions in the model. If the set of joint actions
is considered to be part of the input, the algorithm runs in
time polynomial in the size of the model.

5 Experimental Evaluation of Performance
In this section, we describe an experiment designed to show
the scalability of the symbolic implementation of the model-
checking algorithm for 1RB±ATL, and compare its perfor-
mance with that of the hybrid model-checking algorithm for
RB±ATL.

Consider a scenario in which three agents compete in an in-
finite sequence of car races by spending and earning money.
Each car is equipped with one of three possible types of en-
gine T = {1, 2, 3}. Initially, agent 1 has an engine of type 1,
agent 2 of type 2, and agent 3 of type 3. Each race consists of
3 steps:

Set-up: Agents can choose whether to upgrade their engine;
upgrading from engine type i to type i+ 1 costs $1 (i ≤
|T | − 1).

Race: Agents can choose to race (at a cost of $1), or to re-
main idle (at a cost of $0). The ranking of the race is
decided as follows: idle agents have rank 4th. The other
agents are partitioned in disjoint sets of participants with
the same engine type. The agents in the set with engine
type 3 have rank 1st; the agents in the next partition have
a rank equal to the number of agents in the previous set
plus the rank of those agents, and so on.

Award: Agents can execute an action to accept their ranking,
or perform an idle action. The action of accepting their
ranking produces $3 if the agent ranks 1st, $2 if they
rank 2nd, and $1 for 3rd.

The race is then repeated.
If all agents decide to race starting from the configuration

above, agent 3 will win and produce $3, agent 2 will produce
$2, while agent 1 will produce $1. It is possible to verify that
no agent can participate in the race with a bound of $0. It
is also possible to verify that agent 1 cannot be ranked 1st
with a bound of $2, but it can if the bound is $3 (because it
can decide to upgrade but not race in the first two rounds, and
only race in the third one). More interestingly, it is possible to
verify that if agents 1 and 2 cooperate, then they can both be
ranked 1st under a bound $1. To achieve this, one of the two
agents has to idle (not race), until the other agent has accumu-
lated enough money to upgrade its engine; when both agents
have upgraded their engines they can both win the race.
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This scenario can be scaled up to any number of agents
and any number of engine types. We have implemented Al-
gorithm 2 on top of the model checker MCMAS [Lomuscio et
al., 2009] and we have encoded examples in which the num-
ber of engine types |T | ∈ {3, 4, 5, 6}1.

In the experiment, we verify, for each encoding with T
types of engines, whether agent 1 can eventually win the
race within the bounds b ∈ {|T | − 1, |T |} and the coalition
of agents 1 and 2 can cooperate so that eventually agent 1
wins the race. In other words, we want to check if the for-
mulas ϕ1(b) = 〈〈{1}b〉〉>U 1fst for b ∈ {|T | − 1, |T |} and
ϕ2 = 〈〈{1, 2}1〉〉>U 1fst where 1fst is a proposition that is
only true in states where agent 1 ranks first. The experiment
was carried out on a quad-core 64-bit Processor running at
2.66 GHz with 32GB of memory. The results are summarised
in Table 1 (Holds records whether the formula is true in the
model). As it can be seen, in this example the symbolic al-
gorithm always uses less memory. It also outperforms the
hybrid algorithm when verifying ϕ1 (from 2 to 1961 times
faster) and catches up when verifying ϕ2 (eventually 3 times
faster).

Hybrid Symbolic Ratio Hybrid Symbolic Ratio
No 0.509 0.175 2.91 10.23 9.09 1.12
Yes 0.595 0.175 3.40 10.23 9.09 1.12
Yes 0.210 0.745 0.28 10.01 9.16 1.09
No 37.300 0.826 45.16 11.40 9.31 1.22
Yes 64.252 0.821 78.26 11.40 9.31 1.22
Yes 1.649 5.146 0.32 10.82 9.51 1.14
No 4582.360 3.543 1293.36 14.19 10.22 1.39
Yes 6792.980 3.463 1961.59 15.60 10.22 1.53
Yes 14.678 19.154 0.77 13.52 10.33 1.31
No time-out 6.233 - 10.15 -
Yes time-out 6.182 - 10.15 -
Yes 115.370 30.013 3.84 14.57 10.23 1.42

4

5

6

Time (s) Memory (MB)
Types Fomulas Holds

3

time-out
time-out

Table 1: Comparison between symbolic and hybrid imple-
mentations. Time-out means no termination within 3 hours.

6 Conclusion and future work
We have presented a fixed point characterisation of coalition
modalities in the resource logic 1RB±ATL. This enabled us
to state and implement a symbolic model-checking algorithm
for 1RB±ATL. We gave an evaluation of the performance of
the algorithm on a parameterised example, which shows that
the symbolic algorithm is more scalable than the hybrid one.

We conjecture that full RB±ATL does not have a fixed
point characterisation. In future work, we plan to settle this
question and investigate other resource logics (or their frag-
ments) with decidable model-checking problems.
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