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Abstract

We present a novel negotiation protocol to facili-
tate energy exchange between off-grid homes that
are equipped with renewable energy generation and
electricity storage. Our protocol imposes restric-
tions over negotiation such that it reduces the com-
plex interdependent multi-issue negotiation to one
where agents have a strategy profile in subgame
perfect Nash equilibrium. We show that our proto-
col is concurrent, scalable and; under certain con-
ditions; leads to Pareto-optimal outcomes.

1 Introduction
It is estimated that 1.4 billion people have no access to elec-
tricity and a billion more only have access to unreliable elec-
tricity networks [IEA, 2010]. This lack of access to electricity
is a serious hindrance to their social and economic develop-
ment and particularly acute in Sub-Saharan Africa and South
Asia; where the majority of this population is scattered in
small communities over vast areas of land [UNDP 2012]. Re-
cent initiatives have sought to provide these remote commu-
nities with off-grid renewable microgeneration infrastructure
such as solar panels and electric batteries.1 At present, these
resources (i.e., microgeneration and storage) are operated in
isolation for individual home needs. However, recent works
show that interconnection and autonomous coordination of
such resources could result in their more efficient use.2

In line with this vision, Alam et al. [2013b] investigates
the idea of energy exchange between homes in communities;
whereby self-interested autonomous agents (i.e., households)
negotiate and reach energy exchange agreements in order to
maximise their own utility. Negotiation in this context poses
many issues that come from the very nature of communities
and realities of life in developing countries: e.g., lack of bank-
ing/payment systems, and absence of a centralised infrastruc-
ture. Furthermore, negotiation over energy exchange involves
multiple issues, as it requires deciding the amount of energy
exchanged and, also, how this amount is scheduled across
the day. These issues are interdependent as the recipient’s
utility for any period may depend on the energy received in
earlier periods (since energy can be stored). This interdepen-
dent multi-issue negotiation, along with the socio-economic

limitations of remote communities, make negotiation over en-
ergy exchange a very challenging task for agents. To address
this challenge, Alam et al. [2013b] presented a protocol to
facilitate negotiation over energy exchange. Their protocol
restricts the type and number of offers such that negotiation
leads to a subgame perfect Nash equilibrium (SPNE). How-
ever, their protocol only allows point-to-point communica-
tion and relies on a fully connected network topology (i.e.,
each home is connected to all other homes in the commu-
nity) whereby the number of connections and messages ex-
changed; grow quadratically with the number of connected
homes. Consequently, their protocol neither scales nor is ap-
plicable in communities with more general topologies.

More general work on interdependent multi-issue negoti-
ation is focused on two tracks. The first focuses on settings
where interdependence between issues is reducible. For ex-
ample, Hindriks et al. [2006] and Fujita et al. [2010] attempt
to remove dependencies by approximating the utility space.
However, they both conclude that their techniques work only
when a few (among all) issues are interdependent. This is not
the case in energy exchange problems where the battery usage
makes all time periods interdependent (e.g., energy drawn at
one time period depends on the stored/drawn energy in all
prior time periods). The second track (e.g., Hattori et al.
[2007] and Ito et al. [2007]) uses a mediator and thus is not
suitable to our decentralised settings where there is no centre
and agents are required to negotiate directly with each other.

Against this background, we present a novel negotiation
protocol to address the issue of negotiation over energy ex-
change. Our protocol imposes four key restrictions on the
offers that agents make and specifies the negotiation process
such that it leads to an SPNE and other desirable properties.
Our work can be seen to be in line with Alam et al. [2013b]
as it enables concurrent, many-to-many negotiation in a simi-
lar fashion. However, our protocol is superior as it (i) utilises
broadcasting to scale up to communities with 100s of house-
holds (ii) is topology-agnostic as it makes no assumption on
the underlying topology; and is thus applicable to communi-
ties in general. These properties, coupled with no requisite of

1See the Rural Solar Homes (www.tatabpsolar.com) in In-
dia and the Solar Homes (www.gshakti.org) in Bangladesh.

2See [Yasir et al., 2013; Alam et al., 2013a] for examples of
works on community-based resource coordination for the efficient
use of energy generation, storage and demand satisfaction.
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financial payments or a mediator, bring our protocol closer to
applicability in remote communities. More specifically, we
extend the state-of-the-art in the following ways:

1. We present a novel negotiation protocol for decen-
tralised, concurrent negotiation over energy exchange.

2. We prove that this protocol leads to a subgame perfect
Nash equilibrium where outcomes are Pareto-optimal
(under certain conditions).

3. We provide empirical evaluation to show that, in this in-
stance, our protocol (i) can be used to reduce the overall
battery charging by close to 40% in a community and
(ii) scales to communities with 100s of households.

The rest of the paper is as follows. Section 2 and 3 present
home and community models. Section 4 to 6 present our pro-
tocol; and 7 and 8 discuss its properties. Section 9 concludes.

2 Model of an Individual Home
Here, we provide a model of a home that is similar to
the models presented in related works [Alam et al., 2013b;
Vytelingum et al., 2011]. We assume that each home has
a renewable generation unit, some loads and a battery to
store electricity. Let agent a represent a home, with a gen-
eration g = (g1, ..., gt) ∈ Rt

≥0 denoting the energy it gen-
erates over t = (1, ..., t) ∈ Nt time periods and a load
h∈Rt

≥0 denoting its load requirements. The battery is char-
acterised by four parameters: a storage capacity, qmax∈R≥0,
maximum charging and discharging rate, cmax ∈ R≥0 and
dmax∈R≥0, and an efficiency e ∈ [0, 1] which describes the
loss of energy during charging. The dynamic state of the bat-
tery is captured by: the energy flow into the battery (charge)
c ∈ Rt

≥0| ∀ci ∈ c 0 ≤ ci ≤ cmax, the flow going out (dis-
charge) d∈Rt

≥0| ∀di∈d 0 ≤ di ≤ dmax and the amount of
charge stored in the battery q∈Rt

≥0| ∀qi∈q 0 ≤ qi ≤ qmax.
Finally, in some cases an agent may not be able to immedi-
ately use or store the available energy due to its limited charg-
ing or capacity. We refer to it as the wasted energy,w ∈Rt

≥0.
Using the battery an agent can compute an energy alloca-

tion, p = (p1, ..., pt)∈Rt
≥0, allocating the generated energy

g to loads h. The utility of agent a at time i is then load pi
that is powered at time i. The overall utility ua is given by:

ua =
t∑

i=1

pi (1)

Thus, the goal of an agent is to power as much of its load as
possible to maximise its utility. The battery is useful here as
it enables the agent to find an optimal energy allocation, p∗:

p∗ = argmax
p

t∑
i=1

pi ∀ i ∈ t (2)

This can be transformed to a linear programming (LP) model
with the following constraints: Constraint 1: At time i, the
allocated power pi depends on the generated power gi, charg-
ing ci and discharging di:

pi = gi − ci + di − wi ∀ i ∈ t (o1)

Constraint 2: The current battery state qi depends on the last
battery state q(i−1), charge c(i−1) and discharge d(i−1). The
charge flow ci ∈ c is subjected to the battery efficiency e.
Also, the initial battery state q1 is zero.

qi =

{
q(i−1) + e× c(i−1) − d(i−1) if i > 1
0 if i = 1

(o2)

Constraint 3: Allocated power pi must not exceed load hi:

pi ≤ hi ∀ i ∈ t (o3)

We now discuss our model of a connected community.

3 Connecting Agents to Build a Community
Given the home model in Section 2, connecting two agents re-
quires a physical link between them to enable them to (i) com-
municate and (ii) exchange energy. However, the absence of a
centralised infrastructure (e.g., the electricity grid) in remote
communities makes it challenging to connect homes and this
status quo is unlikely to change in the near future due to the
infrastructure costs and the lack of demand. We envision that
this challenge can be addressed by establishing a light-weight
peer-to-peer (P2P) network of homes where each home owns
an exchange box that connects it to other homes; forming a
network of interconnected agents from the ground-up without
any centralised infrastructure. Now, when an agent is con-
nected, the power available to it also includes the flow on the
links between it and the agents to which it is connected to. If
agent a is connected to agents j ∈M then its total flow fi is:

fi = z ×
∑
∀j∈M

f ji ∀i ∈ t

Here z ∈ [0, 1] is the efficiency of the physical link. We can
modify constraint o1 to include the link flow f as follows:

pi = gi − ci + di − wi + fi ∀i ∈ t (o4)

Now, for a given flow f̂ = (f̂1, ..., f̂t)∈Rt, a can maximise
its utility by using Eq (1) and constraint o4 as follows:

ua(f̂) = max
t∑

i=1

(gi − ci + di − wi + f̂i) ∀i ∈ t (3)

Where ua(f̂) denotes the maximum utility that a can get for
f̂ , subjected to constraints {o2, ..., o4}. Similarly, when a
needs to compute f∗ that maximises its utility it can use:

f∗ = argmax
f ∈ Rt

t∑
i=1

(gi − ci + di − wi + fi) ∀i ∈ t (4)

Now that an agent can compute its optimal flow and evalu-
ate its utility for any offered flow, it can negotiate with other
agents to reach an agreed flow that increases its utility. Here,
the increase in utility comes from the fact that, via exchange,
an agent can avoid energy storage losses and utilise energy
that will be unused otherwise. To be clear on this, if an agent
has a 100% efficient battery and infinite storage, it cannot in-
crease its utility via exchange. Here, the negotiation is chal-
lenging for agents as it involves interdependent issues (see
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Section 1) and it becomes even more complex when an agent
needs to negotiate with multiple agents, because reaching an
agreement with one agent can affect the ongoing negotiations
with the others. To faciliate negotiation in this context, we
next present a protocol that reduces this complexity and en-
ables agents to reach agreements more efficiently.

4 Energy Exchange Protocol (EEP)
We now present our energy exchange protocol (EEP) to fa-
cilitate negotiation over energy exchange. The core idea here
is to divide agents into two power pools that need energy at
alternate times, and impose restrictions on the negotiation to
reduce complexity. The ingenuity comes from the fact that
these restrictions are engineered so that the negotiation ends
in outcomes with certain desirable properties (see Section 7).

Before defining the EEP, we define our terminology. We
consider exchange over finite time (e.g., a day) which can
be divided into exchange periods. An exchange period is an
atomic unit of time (e.g., 12 consecutive hours) for energy
exchange and consists of at least one time period. The EEP
allows only two exchange periods (ex1 and ex2) and divides
agents into two exchange types (et1 and et2) where et1 re-
quires energy in ex1 while et2 requires energy in ex2. Only
one exchange type (called makers) is allowed to make simul-
taneous offers to the other exchange type (called receivers).
Given these terms, Figure 1 describes the EEP in detail.

Now, we note that an agent a can use Eq (4) to find f∗∈Rt

that maximises its utility ua. However, under the EEP only
valid flows (VF) can be agreed, and in this sense, the EEP
reduces all flows to the set of VFs, SV F ⊂Rt. To find f∗ ∈
SV F , a can use Eq (4) subjected to r1 and r2; in addition to
{o2, ..., o4}. Knowing f∗, a can easily infer its exchange type
(which exchange period it prefers to receive energy in). Here,
we note that r1 and r2 are designed such that SV F is a convex
set where all members lie on the same geometric line. More
specifically, if f = (f1, f2, f3, f4) ∈ SV F then r1 requires
the sum of energy in both exchange periods to be equal (e.g.,
|f1+f2|=|f3+f4|) while r2 says |f1|=|f2|=|f3|=|f4|. Now,
any scalar multiple of f , c×falso meets r1 and r2 and hence
all scalar multiples of f are in SV F . This also implies that, if
f ∈SV F then all f ′∈SV F can be described as c × f 3. This
geometric characteristic of SV F ensures that if f∗ ∈ SV F

maximises ua, then f∗ is unique and ua is monotonically
decreasing over the interval 0≤f≤f∗ (see Lemma 1).

5 Energy Exchange as a Sequential Game
Negotiation under the EEP can be modelled as a sequential
game with an infinite horizon where agents make their moves
in a well-defined sequence as specified by the EEP. We next
formulate the strategies of all participating agents.
Strategies for Round Zero: Strategy Γ of an agent is to de-
clare an exchange type, i.e., Γ : et → et | et = {et1, et2}.
Now, consider a strategy Γ̂ ∈ Γ whereby an agent declares
its true exchange type. Theorem 1 (Section 6) shows that the
strategy profile where agents play Γ̂ is an NE in round zero.

3f=(1, 1,−1,−1)∈SV F =⇒ 2×f=(2, 2,−2,−2) ∈ SV F .

Energy Exchange Protocol (EEP)

1. Negotiation starts at a specified time with round zero where
all agents simultaneously broadcast their exchange type. Only
et1 is allowed to make offers from now on, while et2 can only
respond to offers.

2. Subsequent offer rounds take place at specified intervals. If
there are at least one maker and one receiver, offer rounds con-
tinue as follows:

• All makers make simultaneous offers. Each maker is re-
quired to make a valid flow offer f 6= 0 to all receiver it
is connected to. An offer f is valid if:
– The offer comprises of exactly two exchange periods.

Each exchange period consists of an equal number of
consecutive time periods. The amount of energy ex-
changed in each exchange period must be the same.

f = (f1, .....ft) |
t/2∑
i=1

fi = −
t∑

i=t/2+1

fi (r1)

– The amount of energy in each time period is equal.

f = (f1, .....ft) | ∀ fi ∈ f : |fi| = |fi+1| (r2)

• On receiving offers, each receiver simultaneously broad-
casts a valid flow fB 6= 0 to all agents which must not
exceed the minimum offer it received. (r3)

• The agreed flow lA in this offer round is the minimum
flow in the set of all broadcast flows FB , i.e., lA =
min (FB). (r4)

• All receivers simultaneously broadcast a boolean signal
to their respective makers to indicate if they wish to re-
ceive offers in the next offer round.

• The current offer round terminates.

3. The EEP terminates.

Figure 1: The Energy Exchange Protocol (EEP)

Strategies for Offer Rounds: In an offer round, the strat-
egy Ω of a maker describes how it chooses an offer for each
of its intended receivers, i.e., Ω : Rt → Rt×n where n is the
number of receivers. The strategy π of a receiver describes its
choice of valid flow to broadcast, given the offers it received
from nmakers and its optimal flow, i.e., π :Rt×n×Rt → Rt.
Now, consider a VF d= f∗

n of agent awhere f∗ is its optimal
VF and n is either the number of its intended receivers (if a
is a maker) or makers it received offers from. We call d the
optimal divided flow (ODF) of a. The ODF is special in the
sense that, when the agreed flow in an offer round equals the
ODF of an agent (i.e., lA= f∗

n ) then the total agreed flow for
that agent is lA×n= f∗. Thus, it gets its optimal VF and,
consequently, its maximum utility. Now, consider a strategy
Ω̂∈Ω whereby a maker offers f=d to each of its receivers.
Also, consider a strategy π̂ ∈ π whereby a receiver broad-
casts the minimum of its ODF and offers F n it received, i.e.,
fB = min(d,min(F n))4,5. In Section 6, we show that Ω̂
and π̂ constitute an NE. Now, having defined the strategies of
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agents, we next discuss their strategic interaction in the EEP.

6 A Game Theoretic Analysis of the EEP
We now present a detailed game-theoretic analysis of the EEP
sequential game to prove; via a series of theorems; that a par-
ticular strategy profile is an SPNE for this game, as follows.

Theorem 1. In round zero, the strategy profile λ =

(Γ̂1, ...., Γ̂n), for n participating agents is an NE.

Proof. We know that et1 requires energy in ex1 while et2 requires
energy in ex2 (see Section 4); thus, energy exchange is possible only
between opposite types (i.e., et1 and et2). In λ, when all agents
declare truthfully, all et1 agents become makers and et2 become
receivers. Now, in the subsequent offer rounds, energy exchange
is possible only between any maker and receiver as they are of the
opposite types. Hence, no participating agent has an incentive to
unilaterally deviate from the strategy profile λ.

Theorem 2. Let ϕ=(Ω̂1, ..., Ω̂m, π̂m+1, ..., π̂m+r) be a pro-
file for an offer round wheremmakers play Ω̂ and r receivers
play π̂. Then ϕ leads to an outcome such that the agent with
the minimum divided optimal flow, obtains its optimal flow.

Proof. Let D = (d1, ...,dm,dm+1, ...,dm+r) be the set of the
ODFs of m makers and r receivers, F be the set of offers made
and FB = (fB

m+1, ...,f
B
m+r) be the set of broadcast flows. We

know that r4 dictates lA = min (FB). Now, let F i ⊂ F be the
offers that receiver i receives. When i plays π̂i, it broadcasts fB

i =
min(di,F i) where di ∈D is its ODF. Substituting for FB :

lA = min(fB
m+1, ...,f

B
m+r) (5)

= min
(
dm+1, ...,dm+r, ...,Fm+1, ...,Fm+r

)
= min

(
dm+1, ...,dm+r,min(Fm+1, ...,Fm+r)

)
= min

(
dm+1, ...,dm+r,min(F )

)
(6)

Here, Eq (6) states that under ϕ, lA is the minimum of the ODFs of
the receivers and all offers by makers. Now, we know that a maker
j playing Ω̂j , makes offers F j ⊂ F | min(F j) = dj , thus:

min(F ) = min(min(F 1), ....,min(Fm)) (7)
min(F ) = min(d1, ....,dm) (8)

Substituting for min(F ).

lA = min(d1, ...,dm,dm+1, ...,dm+r) = min(D)

Clearly, under ϕ, lA equals the minimum ODF among all agents.
Now, when an agent iwith di = min(D) obtains di, its total agreed
flow is di × n = f∗ (see Section 5); thus it obtains its optimal flow
f∗ and, consequently, its maximum utility. Hence, proved.

Theorem 3. In profile ϕ = (Ω̂1, ..., Ω̂m, π̂m+1, ..., π̂m+r),
no maker has an incentive to unilaterally deviate from Ω̂.

4With a slight abuse of notation,min() is defined as an operation
that returns the minimum flow in the provided collection(s) of VFs.

5Suppose a receiver has f∗ = (4, 4,−4,−4) and it receives
offers F n = {(1, 1,−1,−1), (2, 2,−2,−2)} from two makers,
then d = (2, 2,−2,−2). Since min(F n) = (1, 1,−1,−1) and
min(F n) < d, strategy π̂ dictates fB = d = (1, 1,−1,−1).

lA= Total Agreed Flow Utility
min(D/i,F i) lA × x

min(F i) > di min(D/i) f̂ = min(D/i)× x ui(f̂)min(F i) = di min(D/i)
min(F i) < di min(D/i,F i) f ′ = min(D/i,F i)× x ui(f

′)

Table 1: Utility of maker i when min(D/i) ≤ di

Proof. LetD = (d1, ...,dm,dm+1, ...,dm+r) be the set of ODFs
and F be the set of offers made. Let maker i that makes offers to
x receivers, deviate from ϕ by making offers F i ⊂ F such that
min(F i) 6= di, where di ∈ D is its ODF. Since all other makers
play Ω̂, we modify Eq (7) as follows:

min(F ) = min
(
d1, ...,di−1,di+1, ...,dm,min(F i)

)
(9)

Substituting for min(F ) in Eq (6):

lA = min
(
d1, ...,di−1,di+1, ...,dm,dm+1, ...,dm+r,min(F i)

)
lA = min

(
min(D/i),min(F i)

)
( ∵ D/i ∪ di = D)

lA = min(D/i,F i) (10)

Eq (10) states that lA is the minimum of the ODFs of all but maker
i, and the offers that i makes. Let Ωi be the set of all strategies
for i and suppose that ∃ Ωi ∈ Ωi | ui(Ωi, ϕ/i) > ui(Ω̂i, ϕ/i).
We note that strategies in Ωi can be summarised into two cases
with respect to di. In each case, we prove by contradiction that
@ Ωi ∈ Ωi | ui(Ωi, ϕ/i) > ui(Ω̂i, ϕ/i), as follows:

Case 1: min(D/i) ≤ di, whereby all strategies in Ωi can be sum-
marised as Ωi = {Ω1

i , Ω̂i,Ω
2
i } | Ω1

i = min(F i) > di, Ω̂i =
min(F i) = di,Ω

2
i = min(F i) < di. Given this, Table 1 shows

the outcomes and utilities corresponding to {Ω1
i , Ω̂i,Ω

2
i }. Now,

given min(D/i) ≤ di and Table 1, we can establish:

min(D/i,F i) ≤ min(D/i) ≤ di =⇒ f
′ ≤ f̂ ≤ f

∗
(∵ di × x = f

∗
)

=⇒ ui(f
′
) ≤ ui(f̂) ≤ ui(f

∗
)

(∵ Lemma 1)

Hence, in Case 1 @ Ωi ∈ Ωi | ui(Ωi, ϕ/i) > ui(Ω̂i, ϕ/i).

Case 2:min(D/i)>di It is sufficient to show that Ω̂i=min(F i)=di

leads to lA = min(D/i,F i) = di where the total agreed flow
is di×x= f∗ which is the optimal VF of i. Hence, Ω̂i provides i
with the maximum utility ui(f

∗) that no other strategy can improve.
Hence for Case 2, @ Ωi∈Ωi |ui(Ωi, ϕ/i)>ui(Ω̂i, ϕ/i).

Taken together, Case 1 and 2 show that @ Ωi ∈ Ωi |
ui(Ωi, ϕ/i) > ui(Ω̂i, ϕ/i); thus, maker i has no incentive to unilat-
erally deviate from strategy Ω̂i in profile ϕ. Hence, proved.

Theorem 4. In profile ϕ = (Ω̂1, ..., Ω̂m, π̂m+1, ..., π̂m+r),
no receiver has an incentive to unilaterally deviate from π̂.

Proof. Let receiver i receive offersF i and broadcast fB
i . We know

that lA = min (FB) (see r4). Let FB = FB
/i ∪ fB

i , then:

lA = min(FB
/i,f

B
i )

Suppose ∃ πi ∈ πi | ui(πi, ϕ/i) > ui(π̂i, ϕ/i) where
πi is the set of all strategies for i. We note that strategies in
πi can be summarised into 3 cases according to their respec-
tive outcomes. In each case, we prove by contradiction that
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lA= Total Agreed Flow Utility
min(FB

/i, f
B
i ) lA × x

fB
i = min(F i) min(F i) f̂ = min(F i)× x ui(f̂)

fB
i < min(F i) fB

i f ′ = fB
i × x ui(f

′)

Table 2: Utility of receiver i when min(F i) ≤ di ≤ min(FB
/i).

lA= Total Agreed Flow Utility
min(FB

/i, f
B
i ) lA × x

fB
i = min(F i)

min(FB
/i) f̂ = min(FB

/i)× x ui(f̂)fB
i < min(F i)

fB
i = di

fB
i < di min(FB

/i, f
B
i ) f ′ = min(FB

/i, f
B
i )× x ui(f

′)

Table 3: Utility of receiver i when min(FB
/i) ≤ di ≤ min(F i).

@ πi ∈ πi | ui(πi, ϕ/i) > ui(π̂i, ϕ/i), as follows:

Case 1: min(F i) ≤ di ≤ min(FB
/i), whereby πi can be sum-

marised as:6 πi = {π̂i, π
′
i} | π̂i = fB

i = min(di,min(F i)) =
min(F i) (given in Case 1), π′i = fB

i < min(F i). Table 2
shows the outcomes and utilities, corresponding to {π̂i, π

′
i}.

Now, given min(F i) ≤ di ≤ min(FB
/i) and Table 2, we have:

f
B
i < min(F i) ≤ di =⇒ f

′
< f̂ ≤ f

∗
(∵ di × x = f

∗
)

=⇒ ui(f
′
) ≤ ui(f̂) ≤ ui(f

∗
)

(∵ Lemma 1)

Hence, in Case 1 @ πi ∈ πi | ui(πi, ϕ/i) > ui(π̂i, ϕ/i).

Case 2: min(FB
/i) ≤ di ≤ min(F i): We summarise πi as πi =

{π1
i , π

2
i , π̂iπ

3
i } | π1

i = min(F i), π
2
i =di< f

B
i <min(F i), π̂i =

fB
i = min(di,min(F i)) = di (given in Case 2), π3

i = fB
i < di.

Table 3 shows the outcomes and utilities for πi. Now, given
min(FB

/i) ≤ di ≤ min(F i) and Table 3, we have:

min(FB
/i, f

B
i ) ≤ min(FB

/i) ≤ di =⇒ f
′≤ f̂ ≤ f

∗
(∵ di × x = f

∗
)

=⇒ ui(f) ≤ ui(f̂) ≤ ui(f
∗
)

(∵ Lemma 1)

Hence, in Case 2 @ πi ∈ πi | ui(πi, ϕ/i) > ui(π̂i, ϕ/i).

Case 3: di ≤ min(FB
/i) ≤ min(F i): It is sufficient to show that

π̂i = fB
i = di leads to lA = min(FB

/i,f
B
i ) = di such that the

total agreed flow is di × x = f∗ which is the optimal VF of i (see
Section 5). Hence, Ω̂i provides i with the maximum utility ui(f

∗)
that no other strategy can improve. Hence, proved in Case 3.

Taken together, Case 1, 2 and 3 show that @ πi ∈ πi |
ui(πi, ϕ/i) > ui(π̂i, ϕ/i); thus receiver i has no incentive to uni-
laterally deviate from π̂i in strategy profile ϕ. Hence, proved.

Theorem 5. In an offer round, the strategy profile ϕ =

(Ω̂1, ..., Ω̂m, π̂m+1, ..., π̂m+r) is a Nash equilibrium.

Proof. This immediately follows from Theorem 3 and 4. In The-
orem 3, we showed that no maker has an incentive to unilaterally
deviate from ϕ. Similarly, in Theorem 4 we showed that no receiver
has an incentive to unilaterally deviate from ϕ. Hence, in strategy

6Broadcasting fB
i > min(F i) is a violation of r3 and easily

detectable by the maker(s) that made the minimum offer.
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Figure 2: Consumption and generation profiles.

profile ϕ, no participating agent has an incentive to unilaterally de-
viate from ϕ. Hence, ϕ constitute an NE in an offer round.

Theorem 6. The strategy profile µ = (λ, ϕ) is a subgame
perfect Nash equilibrium of the EEP sequential game.

Proof. This immediately follows from Theorem 1 and 5. In Theo-
rem 1, we proved that strategy profile λ is in NE in round zero. In
Theorem 5, we proved that ϕ is in NE in an offer round. Now, any
subgame of the EEP sequential game will consist of round zero and
zero or more offer rounds. Thus, µ is the strategy profile such that
for any given round in a subgame, there is a corresponding profile in
µ that is in NE for that round. Hence, µ is an SPNE.

7 Properties of the Equilibrium Outcomes
Having shown the existence of an SPNE in the EEP negotia-
tion, we now discuss some properties of its outcomes.

1. Termination: The termination guarantee for the EEP
emerges in a similar fashion to monotonic concession proto-
cols (MCP); as long as there are some agents willing to make
and accept offers in offer rounds, exchange agreements will
take place and the cumulative need for energy exchange will
reduce [Endriss, 2006]. This reduction, much like the utility
reduction in rounds in MCPs, guarantees termination.
2. Pareto-optimality Under Strict Monotonicity: The EEP
equilibrium outcomes are guaranteed to be Pareto-optimal in
cases where the monotonicity in utility function of agents is
strict (see Lem 1). While intuition tells us that this may gen-
erally be the case, the strict monotonicity may not hold in
some cases: in particular, when an agent has abundant wasted
energy. To show that strict monotonicity entails Pareto-
optimality, consider agent a with optimal VF f∗. Its total
agreed flow when the negotiation ends, can be either (i) equal
to f∗- now any further change in the agreed flow will de-
crease its ua, or (ii) less than f∗- but no other agent of op-
posite type is willing to negotiate in further rounds (they al-
ready have reached their optimal VFs) and although agreeing
to more flow will improve ua, other agents will no longer gain
their maximum utilities. Hence, Pareto-optimality ensues.
3. Tractability and Scalability: The EEP restrictions sim-
plify negotiation such that it becomes tractable and scalable.
Specifically, r1 and r2 constrain negotiation to SV F where
it becomes easier for agents to compute its optimal VF or
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Charging Messages
kWh. Rdct. No. Rdct.

NoEx 237.8 – – –
EEP-A 146.4 38.4% 1946 –
EEP 144.5 39.2% 212 89%

Table 4: Comparison -EEP vs EEP-A
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Fig. 4: Diversity Effect in generation

evaluate offers using an LP solver (see Eq (4) and (3)). Simi-
larly, r3 and r4 ensure that the best responses of agents remain
scalable.For example, for a maker, the number of receivers it
makes offers to, is simply a number by which it divides its op-
timal VF (see Theorem 3). While for a receiver, the number
of its makers is irrelevant in the sense that it does not need
to evaluate each individual offer, or a combination thereof.
Instead, its best response is to broadcast a single flow (see
Theorem 4). More importantly, these restrictions ensure that
the number of overall messages (e.g., offers and broadcasts)
required to converge to an SPNE outcome (as well as other
properties), has a linear relationship with the number of par-
ticipants for scalability (see Section 8 for details).
4. Concurrent, Many-to-Many Negotiation: The EEP al-
lows many-to-many concurrent negotiation in the sense that
a maker can simultaneously make offers to many receivers.
Similarly, a receiver can simultaneously agree to exchange
with many makers. Consequently, in an offer round, many
agents make offers to many agents who respond to many.

8 Empirical Evaluation
Here, we set up a realistic example to demonstrate (i) the
benefit of energy exchange via the EEP and (ii) its com-
parison to the EEP-A by Alam et al. [2013b] which
is the state-of-the-art. To this end, we consider an ex-
ample of energy exchange in a community where each
agent has either a 1.5kW wind turbine or a 1.75kW so-
lar panel with equal probability. The energy generation
data for the wind turbine comes from a wind farm near
Lugo, Northwest Spain (www.sotaventogalicia.com), while
the output of the solar panel is estimated to be directly
proportional to the daily radiance for the same region
(www.re.jrc.ec.europa.eu/apps/radday.php). We use data for
July 2011, estimate the average generation for a day and scale
it to match the output of a 1.5kW wind turbine and a 1.75kW
solar panel. At present, the load requirements of homes in
remote areas are not available, so we use load data recorded
and provided by a UK electric company in low-income homes
equipped with smart meters. Figure 3 shows this consump-
tion along with the generation (solar and wind). The actual
generation and consumption for each agent comes from a
distribution over these profiles. More specifically, we model

generation/consumption in each time unit as an independent
Gaussian distribution (with scaled value as the mean and the
variance within 10% of it). We assume that agents have iden-
tical batteries [s = 20kWh, c = 4kW, d = −4kW, e = 90%].

Given this setup, we repeatedly (50 times) create a fully
connected P2P community of 20 agents and simulate energy
exchange via the EEP and EEP-A. We find that agents can re-
duce their need for overall battery charging by exchanging en-
ergy, as shown in Table 4. This is important because electric
batteries are expensive (costing as much as 500 USD/kWh)
and have a limited number of charging cycles7(3000 to 5000).
Reducing the battery charging prolongs the battery life and
reduces the need for frequent replacements; thus saving main-
tenance costs. We also note that (i) the reduction in overall
charging via the EEP and EEP-A is comparable; this is be-
cause both are MCPs (see Section 7) which terminate when
no further energy exchange is possible thus leading to similar
reductions, and (ii) the number of messages needed to con-
verge to an SPNE outcome (henceforth; convergence) are sig-
nificantly fewer in the EEP. This is due to the efficient mech-
anistics of the EEP that rely on a systematic propagation of a
single broadcast message from each receiver, unlike the EEP-
A that requires all offers to be propagated to all receivers.8

To demonstrate scalability, we use the same experimental
setup (no repetition) to simulate exchange in the communi-
ties of up to 100 agents (chosen to be close to the number of
households (98) in an average Indian village [Govt. of India,
2011]). Figure 2 shows the number of messages needed for
convergence in the EEP and EEP-A, as a function of the num-
ber of agents. We note that while the EEP-A can be suitable
for small (<30) neighbourhoods, the explosion in the number
of messages quickly renders it infeasible for larger communi-
ties. In contrast, the EEP scales up nicely and needs orders of
magnitude fewer messages, compared to that of the EEP-A.9

7In Lithium-based batteries, one life cycle means a full charge of
the battery, even when the charging is discrete.

8For r receivers and m makers, each offer round in the EEP re-
quires

∑M
i=1 (2rmi + r) messages where rmi is the number of re-

ceivers of maker i; conversely, the EEP-A requires
∑m

i=1 r(r + 1).
9The time required for convergence depends on factors such as

the computational power of each agent, network latency and band-
width etc. In our case, the EEP-A takes over 8 hours and the EEP
takes less than 10 minutes for 100 agents on a 72TFlops (4 nodes
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Finally, we note that any quantitative improvement; as the
result of energy exchange in a community, is dependent on
the nature and degree of diversity (e.g., generation means or
load profile, battery specification) among agents. To explore
this effect and provide a more balanced interpretation, we cre-
ate an unstructured (i.e., no specific topology) P2P commu-
nity where each agent is randomly connected to up to 5 agents
(i.e., rmi

=U(1, 5)). We then use the same experimental setup
to simulate exchange for each day in July, 2011; with the ex-
ception of using the power generated from wind on that day.
Figure 3 shows the overall battery charging (mWh) with no
energy exchange and the EEP, and the similarity (i.e., corre-
lation coefficient) between the wind and solar generation pro-
files on each day. It is evident that, in general, as the genera-
tions from solar and wind become dissimilar (negatively cor-
related), agents have more opportunities to exchange energy;
resulting in more reductions in battery charging. We note that
the agents (in Figure 3) differ only in their energy generation,
and more diversity in other aspects (e.g., consumption) have
the potential to make energy exchange even more useful.

9 Conclusion and Future Work
The problem of negotiation over energy exchange is a com-
plex interdependent multi-issue negotiation problem. The
EEP tackles this complexity by imposing certain restrictions
over negotiation and guarantees certain desirable properties.
Using real-world data, we empirically evaluate the EEP and
show that, in this instance, exchange via the EEP reduces the
total battery charging up to 40%. When taken together, these
results show that energy exchange via the EEP is useful and
scalable in communities to improve the efficient use of en-
ergy and storage. Future work will investigate how relaxing
the EEP restrictions affects the negotiated outcomes when the
energy generation is uncertain and loads are deferrable.

A Appendix
Lemma 1. Let IV F = [f0, f̂ ] ⊂ SV F be an interval where f0 is
the zero flow and f̂ is the optimal flow that gives agent a maximum
utility. Then utility is a monotonic function on IV F i.e., f ′,f ′′ ∈
IV F | f0<f ′<f ′′ < f̂ =⇒ u(f0) ≤ u(f ′) ≤ u(f ′′) ≤ u(f̂).

Proof. We first modify our LP model in Section 3 to one where t
flow constraints can be replaced by a single inequality constraint; to
show that change in t flows equates to change in a single constraint.
We then use a general property of LP to prove monotonicity in u(f).
Step 1: Equivalent Representation of Valid Flows: We know that
the amount of flow in each time period of a VF is the same. Hence,
a VF can be described as f = (z, ..., z,−z...,−z) where z ∈ R.
Similarly, IV F = [f0, f̂ ] can be mapped to IR = [0, ẑ] ⊂R.
Step 2: Equivalent Representation of the Utility Function: For a
given f , an agent can compute its utility via Eq. 3. We can reformu-
late Eq. 3 as per the equivalent representation of f :

u(f) = max

t∑
i=1

(gi − ci + di − wi + fi) ∀i ∈ t (3)

u(z) = max

t∑
i=1

(gi − ci + di − wi + z) ∀i ∈ t (11)

each containing an 8-core with each core 2.27 Ghz) supercomputer.

This establishes (i) u(f) = u(z), (ii) evaluating Eq. 3 over IV F

equates to evaluating Eq. 11 over IR and (iii) if f̂∈IV F maximises
Eq. 3 then ẑ∈IR maximises Eq. 11.
Step 3: Monotonicity in Eq. 11: To show that u(z) is monotonic
over IR, let us evaluate Eq. 11 subjected to

z ≤ ẑ (o19)
We are given that Eq. 3 attains maxima at ẑ. Hence, o19 is sat-
isfied at the maximal value which is referred to as a ≤ inequality
constraint being strictly satisfied. Now, as we tighten or decrease
o19, the change in u(z) (also known as the shadow price or the La-
grangian multiplier) is guaranteed to be monotonically decreasing.
Thus, z′, z′′ ∈ IR | z′ < z′′ < ẑ =⇒ u(z′) ≤ u(z′′) ≤ u(ẑ).
Since evaluating Eq. 3 over IV F equates to evaluating Eq. 11 over
IR, for f ′ < f ′′ ∈ IV F and their corresponding z′, z′′ ∈ IR, we
have u(z′) ≤ u(z′′) =⇒ u(f ′) ≤ u(f ′′). Hence, proved.
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