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Abstract

We contribute a novel approach to understand, dia-
logue, plan, and execute complex sentences to com-
mand a mobile service robot. We define a com-
plex command as a natural language sentence con-
sisting of sensing-based conditionals, conjunctions,
and disjunctions. We introduce a flexible template-
based algorithm to extract such structure from the
parse tree of the sentence. As the complexity of
the command increases, extracting the right struc-
ture using the template-based algorithm decreases
becomes more problematic. We introduce two dif-
ferent dialogue approaches that enable the user to
confirm or correct the extracted command struc-
ture. We present how the structure used to represent
complex commands can be directly used for plan-
ning and execution by the service robot. We show
results on a corpus of 100 complex commands.

1 Introduction

As robots are moving out of factories and labs into our every-
day life, humans need to be able to specify complex tasks in
an intuitive and flexible way. In this paper, we enable users to
give complex instructions to a robot using natural language.

Simple instructions refer to simple commands, such as
“Please, take this book to the lab.” Natural language how-
ever enables the specification of requests in a more elaborate
manner. The user may request a robot to perform a set or
a sequence of tasks, give options to the robot or ask to per-
form a task, only if certain conditions are met. We view such
elaborate natural language as complex commands. In order
to handle these types of complexity, we introduce a flexible
template-based approach able to break a complex command
into atomic components and connectors.

Due to the complexity of natural language, the approach
we propose is, inevitably, not always able to correctly resolve
a complex command in its atomic components. Therefore we
design two dialogue systems for the user to refine and correct
the extracted command structure, guided by the robot.

We then show how breaking a complex command into its
atomic components can be leveraged to improve the task ex-
ecution by the robot. By rearranging the order in which each
atomic task is executed, while at the same time enforcing the
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constraints imposed by the structure of the sentence, our al-
gorithm can substantially reduce the distance traveled by the
robot to execute complex commands.

In order to evaluate our template-based algorithm, we gath-
ered a corpus of 100 complex commands. The approach pro-
posed is able to correctly break 72% of the commands in their
atomic components. The two dialogue approaches proposed
are either able to recover the correct structure of a complex
command by asking a number of questions linear in the num-
ber of atomic tasks involved in the original command; or able
to improve the accuracy by asking for rephrased commands.
Finally, we evaluate the robot execution planning algorithm
on a set of 150 randomly generated complex commands. We
compare our approach to a base line and show that we can
consistently improve on it.

2 Related Work

In one of the earliest works on natural language understand-
ing, SHRDLU [Winograd, 1971], natural language instruc-
tions were processed and executed in a virtual environment.
Following up on SHRDLU, many researchers tried to extend
its capabilities to real-world systems, and soon started tack-
ling natural language processing also for robotic systems.

We can now find many examples of robots executing nat-
ural language instructions for a variety of tasks, such as ma-
nipulation of small objects [Zuo et al., 2010], mapping of
unknown environments [Ghidary ef al., 2002; Kruijff et al.,
20071, or following navigation instructions [MacMahon et
al., 2006; Marge and Rudnicky, 2010; Tellex et al., 2011].

In this work, we focus on a mobile service robot executing
tasks in an office-like environment for prolonged periods of
time, similarly to the work of [Biswas and Veloso, 2013]. The
robot tasks are represented using semantic frames [Fillmore,
1985]. Semantic frames have been extensively applied both
to linguistics [Baker et al., 1998] and robotics [Kollar et al.,
2013; Thomas and Jenkins, 2012].

Complex commands have been considered as a combina-
tion of LSNL (Limited Segments of Natural Language) also
for a service robot [Chen et al., 2010]. We build upon this
work and move forward by reducing the limitations and in-
creasing the flexibility on the language used by the user.



3 Complex Commands

We represent the tasks a robot can execute with semantic
frames. We define a separate frame for each task with its own
set of frame elements. As an example, consider a robot that
can execute two tasks only: navigate to a room in the building
and deliver objects. These two tasks can be represented with
the following frames: GoTo and Delivery. These frames have,
respectively, the following frame elements: {Destination}
and {Object, Destination}.

When users give commands to a robot, they are asking the
robot to perform one of its tasks. Therefore semantic frames
can also be used to represent the command given to a robot.
When the command refers to a single frame and each frame
element is uniquely instantiated, we call it an atomic com-
mand. An example of an atomic command is: “Please robot,
go to the lab.” This command refers to a single frame, GoTo,
and its only frame element, Destination, is instantiated as “the
lab” and therefore we consider it an atomic command.

When a command is not atomic, we call it a complex com-
mand. We identify four different types of complexity that can
arise in a command, as we now introduce.

Set of tasks: The user may ask the robot to perform a set of
tasks, for which the command refers to multiple frames.

Example 1. “Go to the lab and bring these papers to my
office.”

With this command, the user is asking the robot to per-
form two tasks, GoTo and Deliver.

Disjunctive task elements: The command might refer to a
single frame but some of the frame elements are not uni-
vocally instantiated.

Example 2. “Bring me some coffee or tea.”

This command refers to the Delivery frame but the Ob-
Ject can be instantiated both as “tea” or “coffee”.

Explicit sequence of tasks: The user may ask the robot to
perform an ordered sequence of tasks. Users can refer
to a sequence of tasks explicitly in their command, as in:

Example 3. “Go to the lab and then to my office.”

Conditional sequence of tasks: The user may ask the robot to
perform an ordered sequence of tasks, while using con-
ditionals. For example:

Example 4. “Bring me some coffee if it’s freshly
brewed.”

Assuming that we have a frame to represent the action
of checking if coffee is freshly brewed, this command
then refers to a sequence of two tasks, where the sec-
ond might or might not be executed depending on the
outcome of the first one.

Our goal is to represent a complex command with a set of
atomic commands. In order to preserve the original mean-
ing of the command, we use four operators to connect the
atomic commands extracted from the original command. The
operators are AND, OR, THEN, IF. Each of these operators
corresponds to one of the types of complexity just introduced:
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AND is used for commands referring to a set of tasks,
therefore the command in Example 1 becomes:

[Go to the lab] AND [Bring these papers to my office]

OR is used when an element of the frame can be instan-
tiated in multiple ways. Example 2 would then become:

[Bring me some coffee] OR [Bring me some tea]

THEN orders tasks in a sequence. Accordingly, Exam-
ple 3 can be rewritten as:

[Go to the lab] OR [Go to my office]

IF is used for the sequence of tasks involving condition-
als. Example 4 then becomes:

[Coffee is freshly brewed] IF [Bring me some coffee]

For the IF operator, as in this last example, the condition is
always moved to the beginning of the sequence, as the robot
needs to check it before proceeding.

Finally, in order to measure the complexity of each com-
mand, we use the number of atomic commands it contains.
Accordingly an atomic command has a complexity level of
one and all the examples given in this section have a com-
plexity level of two.

4 Detecting Complex Commands

In the previous section, we have identified the different types
of complexity a command can present. In Section 4.1, we
present a template-based algorithm to break complex com-
mands in their atomic components and, in Section 4.2, we
show the results on a corpus of 100 commands.

4.1 A Template-Based Algorithm

In order to detect complex commands and break them down
in their atomic components, we leverage the syntactic struc-
ture of the sentences. We define a template as a specific struc-
ture in the parse tree of the command. We identify one or
more templates for each of the operators defined. Each tem-
plate not only defines the structure associated with a specific
operator, but also the rules to break the complex command
into its components. Figures 1(a), 1(b), 1(c), and 1(d) show
the templates found in the four examples presented in Sec-
tion 3. Highlighted in boldface are the templates used to
break the complex commands down into atomic commands.

Our approach is to first parse the received command and
then inspect the parse tree for the defined templates. In all
the given examples, each complex command is composed by
only two atomic commands. However, this is not always the
case. Therefore, we propose to break down a command into
simpler components and then recursively check each of them
until we get atomic commands. Algorithm 1 shows the de-
tails of the proposed approach. The DECOMPOSE function
takes as input a command s and parses it. The loop in line
3 checks, in breadth-first fashion, if any sub-tree of the parse
tree matches any of the structures defined templates and, if
so, calls the BREAK_SENTENCE.
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Figure 1: Examples parse trees, and corresponding textual
parenthetic representations. Used templates are in boldface.

The BREAK_SENTENCE function, in line 5, takes as input
the command s and the matching template, applies the rule
specified by the template to decompose the input command,
and returns three values: two simpler commands, called left-
hand (LH) and right-hand (RH), and the operator. Finally, in
lines 6 and 7, the function is called recursively on the two
simpler commands extracted.

Algorithm 1

1: function DECOMPOSE(S)

p = parse(s)

3 for node in p do

4 if node == template then

5: LH,O,RH, = BREAK_SENTENCE(s, template)
6: L = DECOMPOSE(LH)
7.
8

R = DECOMPOSE(RH)
: return [L O R]
9: end if

10: end for
11: return s

12: end function

Now consider a complex command such as “If the door is
open go to the lab and to my office” and let us look on how
the DECOMPOSE function operates on it. Once the sentence
is parsed the function finds a template for the IF operator and
breaks it into “the door is open” as the left-hand, and “go to
the lab and to my office” as the right-hand. Next the function
is called recursively. The left-hand is a simple commands so
the function returns the sentence as it is. For the right-hand
the function, after parsing, finds a second template matching
the AND template. The function breaks the sentence and the
new left-hand and right hand are, respectively, “go to the lab”
and “go to my office”. These are returned to the initial call of
the function that can now end and returns:

[the door is open IF [go to the lab AND go to my office]]

4.2 Evaluation

We gathered a corpus of 100 complex commands by ask-
ing 10 users to give each 10 commands. (This corpus is
available at http://www.cs.cmu.edu/~vdperera/corpora/) The
users, graduate students at our institution, had different back-
grounds ranging form math and stats to computer science and
robotics. The exact instructions given to the users were:

The commands can contain conjunctions (i.e., “Go to
the lab and then to Jane’s office”), disjunctions (i.e.,“Can
you bring me coffee or tea?”’) and conditionals (i.e., “If
Jane is in her office tell her I'll be late). A single sen-
tence can be as complex as you want, for instance you
can have conjunctions inside of a conditional (i.e., “If
Jane is in her office and she’s not in a meeting tell her
I’'m on my way”). Please while the sentences can be as
complex as you want, we are looking for sentences that
you would realistically give to the robot (both in length
and content).

Figure 2 shows the number of commands for each level of
complexity, and Figure 3 shows, for each complexity level,
one example of the sentences contained in the corpus.
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Figure 2: Number of commands per complexity level.

Bring some coffee to my office please.

If you have no tasks scheduled, go explore the 5th floor.
Go to the supply room and, if you find a stapler, bring it
to me.

Please go to the lab and if the door is closed go to John’s
office, and ask him to send me the memory stick.

I need you to first bring me a cup of tea, or a bottle of
water, or a soda, and then go to Chris office and ask her
to order more bottled water.

If Jane is in her office, ask her when she wants to go
to lunch, go to Chris office and tell him her reply, then
come back here and tell Jane’s reply to me.

If Christina is in her office, pick up a package from her,
deliver it to Jane, then go to the lab and say that the
package has been delivered. Otherwise, go to the lab
and say that the package has not been delivered.

W N =

Figure 3: Examples of commands in the corpus for each com-
plexity level.

While most of the commands have a complexity level be-
tween one and three, people also use more complex instruc-
tions, and occasionally long and convoluted sentences.

To measure the accuracy of our approach, we broke each
command in its atomic component manually and compared
the extracted structure with the result returned by our algo-
rithm. The overall accuracy of the algorithm was 72%. Fig-
ure 4 shows the percentage of matching commands, for each
complexity level.

As to be expected, our approach does not have any prob-
lem with atomic commands, out of 14 only one is not under-
stood correctly. The only sentence not correctly understood
is: “The 3rd floor lab has taken our gaffer tape and screw
driver. Please bring it to the 7th floor lab.” In this sentence,
the algorithm incorrectly recognizes the template for an AND
operator even if the user is asking only for one of the tools.

For commands of complexity two and three, the algorithm
is able to correctly decompose 76.9% of the complex com-
mands. As the complexity increases, the accuracy decreases,
but so does the corresponding number of commands. The
main reason we identify for the lower accuracy on more com-
plex commands is the lack of appropriate templates. As an
example consider the following sentence: “If the person in
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Figure 4: Complex commands correctly decomposed for each
complexity level.

Office X is there, could you escort me to his/her office if
you’re not too busy?”. This sentence can be represented as
[person in office X is there AND not too busy] IF [escort me
to his/her office]. Our templates allow conditions of an IF op-
erator to be at the beginning or at the end of the command but
not in both. Therefore our current set of templates were not
able to properly break down this type of command, while they
successfully covered a wide range of other commands. In-
evitably, templates will not be able to cover all the variations
of language. Our approach is to combine the template-based
automation with dialogue.

S Dialogue

After processing our corpus using Algorithm 1, we are still
left with few complex commands that we are not able to un-
derstand correctly. Nonetheless, in order to execute a com-
plex command correctly, the robot needs to recover the cor-
rect structure representing it. In this section we introduce two
models for a dialogue that allow to recover the structure of a
complex command.

5.1 A Structure-Based Dialogue

The first dialogue model we introduce aims at recovering the
structure of a complex command. When receiving a com-
mand, the robot executes Algorithm 1 and offers the user the
extracted structure, as its corresponding textual parenthetic
representation (see Figures 1(a)-1(d)). If the offered struc-
ture correctly represents the command broken in its atomic
components, the user can confirm and the robot starts execut-
ing the command. Otherwise the robot enters in a dialogue
with the user to get the correct structure. Algorithm 2 shows
the details of the structure-based dialogue.

First the algorithm checks if the command is simple or
complex. If it is a simple command, the robot asks for confir-
mation for it and then executes it. If it is a complex command,
the robot needs to recover all of its components. In the dia-
logue, the robot first asks for the operator and then for left
and right-hand commands. Since both the left-hand and the
right-hand commands can be themselves complex commands
the dialogue will recur on each of them.



Algorithm 2
1: function ST_DIALOGUE( )

2: cmpl = ASK_COMPLEX( )

3: if cmpl then:

4: 0 = ASK_OPERATOR( )

5: rh = ST_DIALOGUE( )

6: lh = ST_DIALOGUE( )

7: return [rh, o, 1h]

8: else

9: return ASK_SIMPLE( )
10: end if

11: end function

The ASK_COMP LEX function asks the user if the command
is complex or not and saves the answer in the boolean vari-
able cmpl. If cmpl is false, the robot, using the function
ASK_SIMPLE, asks for a simple command. Otherwise, if
cmpl is true, the robot enters in the recursive step of the di-
alogue and asks for a connector and two simpler commands.
This dialogue generates, in the worst case, a total of 2n — 1
questions to recover a command of complexity n.

5.2 A Rephrasing Dialogue

Instead of asking for the correct structure of the command,
our second dialogue model asks for a rephrased command.

Similarly to the structure-based dialogue, the rephrasing
dialogue asks the user for confirmation on the correctness of
the structure extracted, using a textual parenthetic notation. If
the user finds the structure incorrect, the dialogue algorithm
requests the command to be rephrased using one of the known
templates, by giving short examples of the four complex com-
mand operators.

To respond to this rephrasing dialogue approach, we
rephrased the sentences with an incorrect structure. We
achieved an improvement from 72% to 88% in accuracy. Fig-
ure 5 shows the results for each complexity level.
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Figure 5: Complex commands correctly decomposed for the
original command and the rephrased one.

As we can see using a rephrasing dialogue improves the
accuracy but, still does not cover all the sentences. If the
rephrasing dialogue is not able to extract the correct structure,
it can be followed by a second, structure-based dialogue to
ensure all the commands are correctly understood.
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6 Execution

Before being able to execute a complex command, the robot
needs to ground it. To ground a command, for a service robot,
means to extract from a natural language sentence a represen-
tation of the tasks it should execute (i.e., a semantic frame)
that allows the robot to perform the command received. The
grounding is carried out, for each atomic command, indepen-
dently. While a detailed discussion of the grounding process
is outside of the scope of this paper, our approach builds upon
the work by [Kollar ez al., 2013]. We briefly report it here for
completeness.

We consider the problem of grounding an atomic command
as a joint probabilistic inference. Our model is composed by
the possible groundings I, the command C' and its parse P.
The inference is made possible by a Knowledge Base (KB)
that gathers previous grounding of natural language expres-
sions. We formally define the inference problem as:

argmax p(I', P, C|KB)
r

In the rest of this section we assume the correct struc-
ture representing a complex command has been extracted and
each atomic command has been grounded. Next we present
an algorithm to compute an optimal plan to execute all the
atomic commands in a complex command and evaluate it.

6.1 A Reordering Algorithm

Once all the atomic commands have been grounded, the robot
can start executing them. A naive approach would simply ex-
ecute each task in the order given by the initial command.
We assume that the robot has a measure of the cost to exe-
cute each single task. Our goal is, therefore, to find the opti-
mal plan that satisfies the constraints expressed in the original
complex command and minimize the overall execution cost.

The idea is to leverage the structure extracted from a com-
plex command. Each of the four operators we use to describe
the structure of a complex command allows for different op-
timizations or specifies a constraint. For each operator we
generate different sequences of commands, namely:

e AND operators originally refer to a set of commands.
We therefore generate a sequence for each permutation
of the commands connected.

OR operators give multiple options to the robot. Ac-
cordingly we generate a sequence for each command
connected, each sequence only contains one of the com-
mands.

THEN operators express a constraint in the order in
which tasks should be executed.

IF operators, similarly to THEN, express a constraint
but the left-hand part of the command is executed only
if the conditions expressed in the right-hand part are met.

The algorithm we presented at generates all the possible se-
quences of tasks that satisfy the complex command, evaluates
the cost of each of them and, finally, executes the optimal one.
The algorithm takes as input a command C and starts with an
empty list of tasks sequences. If C is atomic, the correspond-
ing task is returned. Otherwise, the algorithm considers the
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Figure 6: Comparison between our reordering the commands and executing them in the given order, measured as the ration of
the traveled distances. Commands including: (a) only AND operators, (b) only OR operators and (c) any of the operators.

right-hand (RH) and the left-hand sides (LH) separately, gen-
erates all the possible sequences for both of them, combines
them accordingly to the operator O, and adds them to the list
of possible sequences. Algorithm 3 shows our approach.

Algorithm 3
1: function CREATE_SEQUENCE(C)

2: if 1Is_aAToMIC(C) then:
3: return C
4: else
5: LH,O,RH+ C
6: L = CREATE_SEQUENCE(LH)
7: R = CREATE_SEQUENCE(RH)
8: result =[]
9: for alllin L do
10: for allrin R do
11: result.append(COMBINE(, r, O))
12: end for
13: end for
14: return result
15: end if

16: end function

6.2 Evaluation

In order to test our reordering algorithm, we generated 3 dif-
ferent sets of random commands; the first containing only
AND operators, the second containing only OR operators and
a third containing IF or THEN operators and, for more com-
plex commands, AND and OR operators as well. The first
two sets are composed of commands of increasing complex-
ity from one to five atomic tasks, while the third one contains
commands of complexity two to ten. Each set contains fifty
commands, ten for each complexity level.

Our approach is compared to a naive base-line that, for
AND, THEN and IF, executes the tasks in the order given
and, for OR, randomly picks one of the alternatives. To mea-
sure the cost of each sequence of tasks we used the travel
distance of the robot. We measured the improvement of our
algorithm over the baseline as the ratio of the two distances.
In measuring the cost of the execution, we assumed, for both
the baseline and our approach, that the conditions of com-
mands with IF operators are always met.

Figure 6(a) shows the result for the AND set. As to be

1182

expected for commands of complexity one the baseline and
our approach achieve the same result. As the complexity in-
creases, our reordering algorithm consistently improves and,
for a command of complexity five, we get a travel distance
1.68 times shorter than the baseline.

Figure 6(b) shows the result for the OR set. Again, for
commands of complexity one, the baseline and the reorder-
ing algorithm have the same result. As the complexity level
increases, our approach starts improving over the baseline.
The improvement is non-monotonically increasing due to the
nature of the baseline. Since it chooses the task to execute
randomly the improvement cannot be constant.

Finally, Figure 6(c) shows the result on complex com-
mands containing all the four operators. For this set, we start
with commands of complexity two (that is a sequence of two
tasks). Our approach consistently improves over the baseline.

7 Conclusion and Future Work

In this paper we presented a novel approach to understand
and execute complex commands for service robot task re-
quests. We identified four different types of complexity, and
designed a template-based algorithm able to break down a
complex command in its atomic components. Experiments
show that the algorithm is able to correctly reduce a complex
command 72% of the time. To further recover the correct
structure of a complex command, we introduced two differ-
ent dialogue approaches. Finally we presented a reordering
algorithm able to find the optimal plan to execute a complex
command that substantially improves over a naive baseline.

In this paper we focused on enabling a robot to understand
and execute complex sentences. A key component of our ap-
proach is the dialogue with users and, in our experiments, we
used a parenthetic notation to represent the structure of com-
plex commands. Many other representations can be adopted
such as parse trees or verbal description by the robot. In our
future work we plan to investigate the optimal way to convey
this information.
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