
Automated Geometry Theorem Proving
for Human-Readable Proofs

Ke Wang Zhendong Su
Department of Computer Science

University of California, Davis
{kbwang, su}@ucdavis.edu

Abstract

Geometry reasoning and proof form a major and
challenging component in the K-121 mathematics
curriculum. Although several computerized systems
exist that help students learn and practice general ge-
ometry concepts, they do not target geometry proof
problems, which are more advanced and difficult.
Powerful geometry theorem provers also exist, how-
ever they typically employ advanced algebraic meth-
ods and generate complex, difficult to understand
proofs, and thus do not meet general K-12 students’
educational needs. This paper tackles these weak-
nesses of prior systems by introducing a geome-
try proof system, iGeoTutor, capable of generating
human-readable elementary proofs, i.e. proofs using
standard Euclidean axioms. We have gathered 77
problems in total from various sources, including
ones unsolvable by other systems and from Math
competitions. iGeoTutor solves all but two problems
in under two minutes each, and more importantly,
demonstrates a much more effective and intelligent
proof search than prior systems. We have also con-
ducted a pilot study with 12 high school students,
and the results show that iGeoTutor provides a clear
benefit in helping students learn geometry proofs.
We are in active discussions with Khan Academy
and local high schools for possible adoption of iGeo-
Tutor in real learning environments.

Video demo: https://www.youtube.com/watch?v=KL0dUb6hKxU

1 Introduction
Geometry is a key, mandatory subject in the secondary school
curriculum. An important part of geometry learning is proof
writing [Schoenfeld, 1994; Hanna, 1995] which helps train
students’ logic and deductive reasoning skills. Because of this,
it is also one of the most challenging subjects for students.
The standard format of a geometry proof problem consists of a
given geometry figure, a set of provided constraints and a goal
to prove. Students are asked to write a step-by-step deduction

1The term “K-12” is commonly used in the United States and
Canada to collectively refer to primary and secondary education.

B C

DA

P

Given: Square ABCD,AP = PD,∠PAD = 15◦

Goal: 4PBC is equilateral

Figure 1: Example geometry proof problem.

using Euclidean axioms. Figure 1 depicts an example prob-
lem. The task becomes more difficult when a proof requires
auxiliary constructions — adding lines/arcs to the problem
figure to help discover a proof — because finding appropriate
constructions can be very challenging as one could add any
geometric elements anywhere in the problem figure.2

Due to the aforementioned reasons, we envision that a pow-
erful automated geometry proof system can benefit students,
because it provides a foundation to help them practice their
problem-solving skills. It can also facilitate the current nascent
paradigm shift in education toward massively online and per-
sonalized learning, targeting the K-12 students.

Background and Related Work Although computer-based
geometry learning tools have been successfully applied in
education, many of these systems focus on simple tasks,
such as drawing and calculation, and do not deal with ge-
ometry proofs (e.g. Cabri II Plus, Sketchpad, and Geome-
try Expression). The few exceptions [Gao and Zhu, 1999;
Janičić, 2006; Narboux, 2007] are all limited by their under-
lying geometry theorem proving algorithms. For example,
GeoProof [Narboux, 2007] and GEX [Gao and Zhu, 1999]
adopt algebraic methods [Wu, 1986; Kutzler and Stifter, 1986;
Buchberger et al., 1988] for geometry theorem proving. Al-
though these methods are powerful, they rely on algebraic
theories and can only decide the validity of geometry state-
ments [Jiang and Zhang, 2012]. GCLC [Janičić, 2006] is built
on top of the area method [Chou et al., 1993], which utilizes
a specialized set of nonstandard axioms unfamiliar to students

2The interested reader may attempt the problem in Figure 1.
Trigonometry is not needed.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1193

learning standard Euclidean geometry. For the above reasons,
none of the systems is suitable for general K-12 students.

The goal of our work is to help students learn geometry
proof reasoning, thus our primary design objective is proof
readability. By readable proofs, we mean proofs that are for-
mulated using Euclidean geometry axioms taught in schools.
The most challenging technical obstacle that we face is aux-
iliary construction, which is necessary for many problems.
Matsuda et al. [Matsuda and Vanlehn, 2004] propose the first
technique for auxiliary construction. Their idea is to only add
elements to satisfy premises of a postulate whose consequence
“matches” a goal. Although Matsuda et al. have made an im-
pressive first step toward generating human-readable proofs
using standard Euclidean axioms, their approach is ineffec-
tive and can cause combinatorial explosion when multiple
construction steps are needed.

Template-based Geometry Theorem Proving To address
the weaknesses of prior systems, we introduce a general tem-
plate matching-based approach to tackle the auxiliary con-
struction challenge for geometry theorem proving. Our key
observation is that problem solving typically involves the use
and trained familiarity with a number of important problem
solving strategies. At the high-level, we (1) distill a set of
strategies in the form of template figures from studying around
20 problems frequently used for competition training, and (2)
develop a template matching scheme to recover templates from
a given figure.

We have realized our approach as a new automated ge-
ometry theorem prover, iGeoTutor and extensively evaluated
it. Our problem corpus has 77 problems in total, including
ones cited in prior work and from Math competitions. Evalua-
tion results show that iGeoTutor is very effective — it solves
all but two problems in under two minutes each. Moreover,
its construction process is significantly more efficient than
GRAMY’s on the same problem set (cf. Table 2, Section 3.2
for the detailed comparison). We have also performed a test
pilot with 12 high school students, and found iGeoTutor is
effective in helping student to learn geometry proof. Based
on all the evaluation results, we expect iGeoTutor will impact
K-12 geometry education by helping students become strong
problem solvers and self learners.

Contributions Our main contributions are:

• We propose a novel, template matching-based approach
that is powerful and produces human-readable proofs.

• We realize our approach in iGeoTutor, which can effec-
tively solve nearly all problems in our collection using
six simple templates.

• We present details of our extensive evaluation of iGeo-
Tutor’s performance in solving geometry proof problems
and its effectiveness in helping students learn.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our methodology and approach in designing
iGeoTutor, and Section 3 details our evaluation results. We
conclude in Section 4 with a discussion of future work .

Figure 2: iGeoTutor system architecture.

2 Methodology and Approach

This section presents the design of iGeoTutor.3 Central to
our system is a novel approach for auxiliary construction, that
forms the foundation for our work. In particular, we introduce
the concept of templates and template-matching scheme.

2.1 System Architecture
Figure 2 shows the overall system architecture of iGeoTutor.
We discuss the other key components in this section, and
defer the discussion of the core component — the “Auxiliary
Construction Engine” — to later sections. We next give a step-
by-step description of iGeoTutor’s workflow:

(1) Parsing: iGeoTutor parses a given geometry figure from
its pictorial representation to an internal representation
using first-order predicates and store them in the Knowledge
Base. This paper omits the details of this step as it is not
the focus of this work.

(2) Retrieving: The Reasoning Engine retrieves the facts from
the Knowledge Base and derives new facts using Geometry
Axioms and Arithmetic Reasoning rules.

(3) Storing: iGeoTutor stores any derived facts to the Knowl-
edge Base.

(4) Checking: iGeoTutor checks whether the goal is in the
Knowledge Base.

(5) Result: Two cases:

(a) Producing: If the goal is in the Knowledge Base, iGeo-
Tutor terminates and produces a proof.

(b) Consulting: Otherwise, it consults Auxiliary Construc-
tion Engine for additional facts according to the exist-
ing geometric configuration in the problem figure.

(6) Constructing: iGeoTutor stores the facts about an aux-
iliary construction in the Knowledge Base and diverts its
execution to step (2) and repeat.

3In our current prototype, we focus on problems involving line
segments and angles, and do not consider those involving circles,
arcs, and solid geometry, which we leave for future work.

1194

Knowledge Base Given a geometry diagram and a set of
associated constraints, iGeoTutor uses first-order predicates
for its internal representation. The predicates can be classified
into three categories4:

• Geometrical elements, such as line(A,B) and angle(A,B,C);

• Position relation, such as parallel(line(A,B),line(C,D));

• Quantity relation, such as lineEqual(line(A,B),line(C,D)).

For example, the problem in Figure 1 is represented internally
as follows:

• Given: square(A,B,C,D), line(A,P), line(B,P), line(C,P),
line(D,P), lineEqual(line(A,P),line(D,P)) and
angleEqual(angle(P ,A,D),15◦).

• Prove: equilateralTriangle(B,P ,C).

Apart from the problem representation, the Knowledge Base
also stores derived facts.

Geometry Axioms Geometry Axioms refer to definitions, pos-
tulates, and previously proved theorems within the scope of
Euclidean geometry. Each axiom consists of premises and a
consequence, which are represented internally using the predi-
cates introduced earlier. For example, the “Side-Angle-Side”
postulate can be expressed as the following Horn clause:
triangleCongruent(triangle(A,B,C),triangle(D,E,F))←

triangle(A,B,C) ∧ triangle(D,E,F) ∧
lineEqual(line(A,B),line(D,E)) ∧ lineEqual(line(B,C),line(E,F)) ∧
angleEqual(angle(A,B,C),angle(D,E,F)).

Arithmetic Reasoning This component refers to the arith-
metic reasoning capability incorporated into iGeoTutor. In
particular, we employ an off-the-shelf state-of-the-art SMT
solver Z3 [De Moura and Bjørner, 2011; Microsoft Research,
] to resolve the arithmetic constraints when needed. We inter-
face iGeoTutor and Z3 in three phases: (1) iGeoTutor converts
all its quantitative predicates in the knowledge base to Z3 com-
mands in Z3’s script language; (2) the Z3 checker executes
the Z3 script to infer additional quantitative constraints; and
(3) we convert Z3 inferred constraints back to iGeoTutor’s
internal predicates to store in the Knowledge Base.

Reasoning Engine The Reasoning Engine applies the Geome-
try Axioms and the Arithmetic Reasoning rules on facts stored in
the Knowledge Base to deduce additional facts. iGeoTutor em-
ploys forward chaining [Chou et al., 2000] to update the given
constraints. For example, on the internal representation of the
problem in Figure 1, the Reasoning Engine applies the afore-
mentioned Horn clause of the “Side-Angle-Side” postulate to
derive, among others, the following:

• triangleCongruent(triangle(A,B,P),triangle(D,C,P))

• lineEqual(line(B,P),line(C,P))

Clearly, the goal of the problem cannot be reached given the
original problem figure; auxiliary constructions are needed.
We explain next how we tackle this difficulty.

4The interested reader may refer to http://www.cs.ucdavis.edu/
∼su/igeotutor.html for the complete list of predicates and axioms.

B C

A

D

Isosceles Triangle 1 (IT1)

B C

A
Isosceles Triangle 2 (IT2)

C D

O

A B
Opposite Triangles (OT)

B C

A

D E

Midpoint Connector (MC)
B C

A

B′ C ′

A′
Congruent Triangles (CT)

B C

A

D B′ C ′

A′

D′

Equal Area Triangles (EAT)

Figure 3: The six distilled template figures.

2.2 Auxiliary Construction
This section describes our template-based technique for aux-
iliary construction. We introduce the six templates that we
use, illustrate via examples how templates guide auxiliary
construction, and present our detailed construction procedure.

2.2.1 Templates
As mentioned earlier, templates intuitively capture problem
solving strategies. Templates can be adapted to solve particu-
lar classes of geometry problems. We represent each template
by a common geometry shape that is used to illustrate one stan-
dard Euclidean axiom. Take the “IT2” template in Figure 3 for
example, this template captures the strategy of exploiting the
equivalence of a pair of angles or segments. A key challenge
is how to discover these templates, which we discuss next.

We distill a small set of template figures from our close
examination of around 20 training problems. We discover that
over all these problem instances, any auxiliary construction
that leads to an eventual proof is used mostly to realize some
specific geometry shape. Perhaps quite surprisingly, only six
shapes are used frequently. Figure 3 depicts these six template
figures, which are quite basic. They all concern line or angle
congruence, which in retrospect may not be surprising as the
concept of congruence underlies most geometry proof prob-
lems. This study confirms our hypothesis that a few common,
effective strategies exist for geometry proof problems. Next,
we show how to use these templates to steer proof search.

2.2.2 Template-Matching Example
We use the example problem in Figure 1 to illustrate how to
use the template figures to discover auxiliary constructions.

As mentioned in Section 2.1, the given problem figure suf-

1195

Statement Reason
4AQB ∼= 4APD SAS
∠BAQ = 15◦,∠BQA = 150◦ CPCTC5

∠QAP = 60◦ Subtraction
∠AQP = ∠APQ = 60◦ Isosceles Triangle
∠BQP = 150◦ Subtraction
4AQB ∼= 4PQB SAS
AB = BP CPCTC
BC = BP = CP Transitive Equality

Table 1: Sample proof.

B

A D

C

P
Q

• Template: Congruent Triangles
• Matching Instance: AB,4APD, AB = AD

• Auxiliary Construction: Find a point Q such that
4AQB is congruent to4APD

• Realization: Introduce a point Q, with ∠BAQ =
∠PAD and AQ = AP , and connect BQ

Figure 4: Applying the “CT” template (step 1).

fices to help derive BP = PC, but to prove BP = BC or
PC = BC, we must add auxiliary constructions. First, assume
that we decide to apply the “CT” template on the existing
4APD and AB. To complete the “CT” template, we con-
struct a new point Q to make 4AQB congruent to 4APD as
shown in Figure 4. Second, assume that we decide to use the
“IT2” template to complete an isosceles4AQP by connecting
P and Q as depicted in Figure 5. With these constructions, we
can discover a proof via forward-chaining.

Table 1 shows a short version of the proof iGeoTutor dis-
covers by applying the “CT” template and the “IT2” template.
There is an obvious alternative algebraic solution by utilizing
tan 15◦ and the Pythagorean Theorem to calculate the length
of BP . However, the sample proof discovered by iGeoTutor
uses only standard Euclidean axioms (not any trigonometry),
which is more elegant and suitable for students learning el-
ementary geometry. Note that the problem has a number of
alternative solutions; here we illustrate one of them.

Next, we focus on two important questions: (1) How to
decide which template to apply? and (2) How to select the
existing geometric elements to apply for the template? To this
end, we introduce our template matching scheme next.

2.2.3 Template-Matching Scheme

We discuss our high-level template matching process first and
then introduce key optimizations to make it practical.

5“Corresponding Parts of Congruent Triangle are Congruent”

B C

DA

P
Q

• Template: Isosceles Triangle (2)
• Matching Instance: AP , AQ, AQ = AP

• Construction: Complete the triangle4APQ

• Realization: Connect P and Q

Figure 5: Applying the “IT2” template (step 2).

High-Level Template Matching Process Let each template
t be a pair 〈G,C〉, where G is the template figure and C the
set of constraints satisfied by G. Let ℘(C) denote the power
set of C. For each subset S ∈ ℘(C), construct the tuple
Ts = 〈Gs, C \ S〉, where Gs is a sub-figure of G induced by
S and \ is set difference.

At the high-level, a template matching step traverses S ∈
℘(C) and unifies the constraints in each subset S against the
constraints Cp from the current problem configuration, i.e. the
constraints Cp and figure Gp. If a unification check succeeds,
we overlay Gs on Gp to add any missing elements Gm from
G and constraints C \ S; the pair 〈Gm, C \ S〉 constitute an
auxiliary construction.

Key Optimizations We introduce two important heuristics to
optimize the high-level search procedure. One prioritizes the
search of the subsets, while the other opportunistically lever-
ages the goal and any of its derived constraints for matching.

Optimization 1: Search Prioritization A template may in-
duce a large number of subsets to unify against, thus it is im-
portant to order them such that the more “profitable” subsets
are checked earlier. To this end, we develop two techniques.

First, for each template 〈G,C〉, we call a set S ∈ ℘(C) a
minimum sufficient set iff

S |= C ∧ ∀S′ ⊂ S S′ 6|= C

i.e., S is a minimal, logically equivalent subset of C. The
intuition is that a minimum sufficient set induces a complete
figure w.r.t. the template and should be matched first. For
example, the constraints for the problem figure in Figure 5
unify with the minimum sufficient set (w.r.t. the “IT2” tem-
plate) {AQ = AP}, specifying that two equivalent lines share
a common end-point. In contrast, the matching example in
Figure 4 is achieved via a non-minimum sufficient set. For
matching purposes, minimum sufficient sets are given higher
priorities than the other subsets.

Second, we introduce a ranking heuristic to target the non-
minimum sufficient sets. The basic intuition behind the heuris-
tic is to maximize “gain” of a subset — few added elements
lead to many derived constraints. Thus, we define “gain” as
the ratio of the number of derived constraints (from constraints
induced by the added elements and the given constraints in the
problem figure) and the number of added elements to realize

1196

Algorithm 1: Construction search via template matching
1 procedure SearchConstruction(int depth, Knowledge knowledge)
2 begin
3 if depth < maxDepth then
4 matchedTemplates

← TemplateSearchProcedure(knowledge)
5 foreach template in matchedTemplates do
6 construction← SynthesisConstruction(template)
7 knowledge.addConstruction

(construction)
8 if knowledge.reasoning() then
9 return knowledge.getProof () else

10 return SearchConstruction
(depth + 1, knowledge)

Algorithm 2: Template matching procedure
1 function TemplateSearchProcedure(Knowledge knowledge)
2 begin
3 goalDerived

← FindingTruePropositions(knowledge.getGoal(),
knowledge.getConditions())

4 backwardTemplates
← BackwardMatching(knowledge.getGoal(), goalDerived,
knowledge.getConditions())

5 forwardTemplates
← ForwardMatching(knowledge.getConditions())

6 matchedTemplates
← MixAndRank(backwardTemplates, forwardTemplates)

7 return matchedTemplates

a template figure. Our heuristic is to rank the non-minimum
sufficient sets w.r.t. their “gain”. Later, we show empirically
that the heuristic is effective and performs better than the pure
random ranking scheme.

Optimization 2: Goal-Directed Matching To complement
the first optimization, we introduce another novel technique to
further improve the accuracy and effectiveness of the template
matching procedure. In particular, before template matching,
the reasoning engine incorporates the problem goal into its
knowledge base and performs exhaustive forward chaining un-
til it derives no new facts (i.e. reaching the constraint closure).
For template matching, all constraints in the closure are con-
sidered. Our insight is to exploit every fact associated with the
given geometric figure. Note that this does not invalidate the
soundness of our system because the goal and any goal-related
facts are removed from the knowledge base in the actual rea-
soning phase — the sole purpose of this optimization is to aid
template matching for discovering auxiliary constructions.

Putting Everything Together As shown in Algorithm 1, our
construction search procedure is cast as depth-first search. It
begins by attempting to find all matching templates through
the function TemplateSearchProcedure w.r.t. the current prob-
lem configuration (line 4). While traversing each matched
template, it synthesizes the respective auxiliary constructions
and incorporates them to the original problem figure repre-
sented by knowledge (lines 5-7). Next, the reasoning engine
exhaustively derives new facts (line 8). If it finds the goal, the
construction procedure exits with the discovered proof (line 9).
Otherwise, it invokes a recursive call to continue the search

(line 10). This procedure repeats until a proof is found.
Note that in the function TemplateSearchProcedure shown

in Algorithm 2, FindingTruePropositions helps infer all facts
after the goal has been incorporated (line 3). Subsequently
BackwardMatching uses the goal and any goal-derived facts
(along with the existing facts) to find and match templates
(line 4). Finally it ranks and returns all matching templates
(lines 6-7).

3 Evaluation
First, we present our empirical evaluation of iGeoTutor’s ef-
fectiveness. It also includes a comparison with GRAMY, the
previously state-of-the-art system. Second, we describe a
field study for assessing iGeoTutor’s effectiveness in helping
students learn geometry proofs.

3.1 Test Corpus
Our test corpus contains 77 problems in total (please refer to
http://www.cs.ucdavis.edu/∼su/igeotutor.html for the full list of
problems and their descriptions). The problems have been
gathered from various sources, including 22 from the work
on GRAMY [Matsuda and Vanlehn, 2004]6 for comparison.
The rest of the problems are from an archive of classical ge-
ometry proof problems online [Liu, 2011] and two Chinese
textbooks [Shen, 2006; Zhou, 2004], both of which are popu-
lar practice materials for the Chinese Mathematics Olympiad.
A number of the problems involve arithmetic calculations.
As mentioned earlier, iGeoTutor supports arithmetic, but not
trigonometry, and restricts its search for auxiliary construc-
tions to rely only on the supplied constraints when given a
measurement problem, i.e. a problem that asks for the size of
an angle or the length of a segment.

3.2 Evaluation Setup and Results
iGeoTutor runs on a workstation with a third generation Intel
Core i7-3770 processor and 16GB RAM. We present two
sets of results: (1) general results on all 77 problems, and (2)
detailed results on the 22 problems from GRAMY.

3.2.1 iGeoTutor Performance
First, out of the 77 problems, iGeoTutor solves 75 in under
two minutes each (we defer to Section 3.4 to discuss the two
problems that iGeoTutor fails to solve). All constructions are
accomplished using the six templates from Section 2. For each
of the successfully solved problems, iGeoTutor matches three
or fewer templates before discovering a proof. Moreover, 17
problems are solved only by incorporating their goals, demon-
strating the importance of our goal-directed search heuristic.

Second, Table 2 presents detailed results for both iGeoTutor
and GRAMY on the 22 problems from GRAMY. We discuss
the results for iGeoTutor first. In the table,

• Depth refers to the depth of iGeoTutor’s construction
search procedure (Algorithm 1). In parentheses, we also
specify each construction’s matching type: (1) m for
matching via a minimum sufficient set, and (2) n for
matching via a non-minimum sufficient set. For example,

6The original list contains 32 problems, but nine are from text-
books that we do not have access to, and one requires trigonometry.

1197

Problem iGeoTutor GRAMY
Depth Length States Time(s) Gain Depth Length States

P001 2 (n,m) 0 2 1 26 6 6 130
P002 2 (n,m) 0 6 7 5.1 7 7 7
P003 2 (n,m) 0 2 2 11.5 7 7 7
P004 2 (n,m) 0 31 87 32.9 7 7 7
P005 1 (m) 0 1 1 1 4 3 4
P006 1 (m) 0 1 1 1 5 4 15
P007 1 (n) 0 2 3 .4 5 5 198
P008 1 (m) 1 4 2 1 5 5 313
P009 1 (n) 1 4 3 1.6 6 9 48
P010 1 (n) 0 4 2 3.1 6 8 23
P011 2 (n,m) 0 2 2 3.2 6 14 112
P012 1 (m) 3 3 1 1 – 30 78
P013 1 (n) 0 1 1 3.5 7 18 26
P014 1 (m) 0 2 2 1 8 7 80
P015 1 (n) 0 3 14 68 9 10 13
P016 1 (m) 0 1 2 1 9 19 85
P017 2 (m,m) 0 4 8 1 – 4 36
P018 1 (m) 0 1 1 1 – 6 9
P019 1 (n) 1 1 8 2.3 – 7 9
P020 1 (n) 0 1 2 6 – 13 52
P021 1 (n) 0 23 34 3.1 – – –
P022 3 (n,n,m) 0 47 106 1.8 7 7 7

Table 2: Evaluation results.

“3(n,n,m)” for P022 indicates that it requires 3 construc-
tions, with the first two being “n” and the last “m”.

• Length refers to the number of axiom applications until
the first successful templating matching attempt (i.e. all
premises of a template matching are satisfied).

• States refers to the total number of states expanded be-
fore reaching a proof. In general, for geometry theorem
proving, a state consists of a problem figure, all true
propositions associated with the figure’s geometrical ele-
ments, and goals to prove. For iGeoTutor, the traversered
states correspond to the different instantiations of tem-
plate matching for auxiliary construction.

• Time refers to the total time in seconds that iGeoTutor
takes to produce a proof.

• Gain refers to the performance gain of our search prioriti-
zation heuristic over when it is disabled (i.e. using purely
random search).

From the table, it is clear that iGeoTutor performs well and
the search prioritization heuristic is effective.

3.2.2 iGeoTutor vs. GRAMY
Since GRAMY shares the same high-level goal as iGeoTutor
and is the previously state-of-the-art system, we evaluate how
the two systems compare. Table 2 also includes GRAMY’s
performance results on the identical problem set. The per-
formance numbers for GRAMY are extracted from its pub-
lication [Matsuda and Vanlehn, 2004], where ‘–’ indicates
unavailable data.

Because the GRAMY system is unavailable and it was eval-
uated on older hardware, we do not include any of its timing
data, but rather focus on the other data that reflect the complex-
ity of its proof search for a fair comparison. Thus, we focus
on the common, similar metrics as in iGeoTutor: “Depth”,

Figure 6: Pilot study results.

“Length”, and “States”. In particular, (1) Depth refers to the
total number of invocations of GRAMY’s construction proce-
dure before it finds a proof as its proof procedure is formalized
as a breadth-first search [Matsuda and Vanlehn, 2004], (2)
Length refers to the number of axiom applications needed to
realize the first successful construction, and (3) States refers
to the total number of expanded states before finding a proof.
Because GRAMY also employs backward chaining, so state
changes are not only due to attempted constructions but also
changes in the problem goal (by adding sub-goals).

iGeoTutor successfully solved all four problems that
GRAMY failed to solve (marked by ‘7’) — two (P002 and
P003) took little time and had relatively simple proof search,
while the other two (P004 and P022) took relatively longer
and had more complex proof search. Table 2 also shows that
iGeoTutor’s proof search is significantly more effective. For
example, in terms of the number of expanded states, the most
direct measure on search complexity, iGeoTutor exhibits or-
ders of magnitude improvement over GRAMY.

3.3 Pilot Study
Participants For the study, we have recruited 12 students
from the local high school. All students are in ninth grade, the
typical grade level for the Geometry standards in California.

Procedure First, the participants took a pre-test. Then, they
used iGeoTutor to explore those problems they failed to solve
on the pre-test. Finally they took a post-test. Both the pre-test
and post-test contain three geometry proof problems (please
refer to http://www.cs.ucdavis.edu/∼su/igeotutor.html for the two
tests). Each participant was given 30 minutes to complete each
of the three parts of the study.

Results Figure 6 summarizes the results of our study. Speci-
ficially, it shows each student’s performance improvement on
the post-test over the pre-test: dark bars illustrate improvement
measured in terms of successfully solved problems, while gray
bars illustrate improvement measured in terms of correctly
identified constructions. We have run a paired t test to com-
pare each participant’s performance (in terms of number of
solved problems) across the two test sets. The results show that
students’ post-test performance is significantly better than that
of the pre-test [t(10) = 2.3834, p = 0.0384], thus indicating
that iGeoTutor clearly helps students learn.

1198

3.4 iGeoTutor’s (In)Completeness
As aforementioned, iGeoTutor failed to solve two (P073 and
P076) of the 77 problems (please refer to http://www.cs.ucdavis.
edu/∼su/igeotutor.html for details on these two problems). This
section discusses the reasons for iGeoTutor’s proof search to
be incomplete and possible solutions. We identify two sources
of incompleteness:

Missing Axioms For P076, iGeoTutor found two construc-
tions that could successfully lead to the solution (∠BAC =
40◦). iGeoTutor failed even with the right auxiliary construc-
tions because it was unable to exploit a property of four points
on a circle to derive ∠ACE = ∠ADE. As mentioned earlier,
iGeoTutor is only given the axioms for dealing with non-circle
problems and therefore it fails to solve the problem that re-
quires circle-related axioms. A simple solution is to equip
iGeoTutor with all elementary geometry axioms.

Missing Templates The six templates that we distilled from
around 20 problems are sufficient to help solve nearly all
problems in our corpus. We do not, however, claim that iGeo-
Tutor’s construction search procedure is complete. P073 is
the only problem from the corpus that iGeoTutor fails to solve
due to incomplete templates — one step of the construction is
not covered by the six templates. However, the figure was very
similar to “OT” and could be considered its variant, which
may be obtained by relaxing the midpoint constraint for “OT”.
For cases like this, one possible direction is to support a set
of shape variants for each template while fixing some origi-
nal constraints. This would allow more flexible and effective
problem solving strategies.

4 Conclusion
This paper has presented a novel, practical template-based con-
struction search algorithm for automated geometry theorem
proving. Our evaluation demonstrates its power in geometry
problem solving and its effectiveness in helping students to
learn geometry proof. For future work, we plan to explore
three main directions. First, we plan to utilize statistical predic-
tions trained on our problem corpus to suggest good candidates
for template matching. Second, we would like to extend our
work to support problems that involve circles and arcs, and
in solid geometry. Third, we plan to further evaluate and re-
fine our system in real learning environments, and improve
students’ learning experience.

References
[Buchberger et al., 1988] B. Buchberger, G. Collins, and

B. Kutzler. Algebraic methods for geometric reasoning.
Annual Reviews in Computer Science, 3:85–120, 1988.

[Chou et al., 1993] Chou, Gao, and Zhang. Automated pro-
duction of traditional proofs for constructive geometry the-
orems. In LICS: IEEE Symposium on Logic in Computer
Science, 1993.

[Chou et al., 2000] Shang-Ching Chou, Xiao-Shan Gao, and
Jing-Zhong Zhang. A deductive database approach to au-
tomated geometry theorem proving and discovering. J.
Autom. Reasoning, 25(3):219–246, 2000.

[De Moura and Bjørner, 2011] Leonardo De Moura and
Nikolaj Bjørner. Satisfiability modulo theories: Intro-
duction and applications. Communications of the ACM,
54(9):69–77, 2011.

[Gao and Zhu, 1999] XS Gao and C Zhu. Building dynamic
mathematical models with Geometry Expert, III, A geome-
try deductive database. In Proceedings of Asian Technology
Conference in Mathematics, pages 153–162, 1999.

[Hanna, 1995] Gila Hanna. Challenges to the importance
of proof. For the Learning of mathematics, pages 42–49,
1995.

[Janičić, 2006] Predrag Janičić. GCLC — A tool for con-
structive Euclidean geometry and more than that. In Mathe-
matical Software-ICMS 2006, pages 58–73. Springer, 2006.

[Jiang and Zhang, 2012] Jianguo Jiang and Jingzhong Zhang.
A review and prospect of readable machine proofs for geom-
etry theorems. Journal of Systems Science and Complexity,
25(4):802–820, 2012.

[Kutzler and Stifter, 1986] B. Kutzler and S. Stifter. On the
application of Buchberger’s algorithm to automated geom-
etry theorem proving. JSC, 2(4):389–397, December 1986.

[Liu, 2011] Wenchuanm Liu. Classical elementary geometry
problems (in chinese), 2011.

[Matsuda and Vanlehn, 2004] Matsuda and Vanlehn.
GRAMY: A geometry theorem prover capable of con-
struction. JAR: Journal of Automated Reasoning, 32,
2004.

[Microsoft Research,] Microsoft Research. Getting started
with Z3: A guide. URL: http://rise4fun.com/Z3/tutorial/
guide.

[Narboux, 2007] Julien Narboux. A graphical user interface
for formal proofs in geometry. Journal of Automated Rea-
soning, 39(2):161–180, 2007.

[Schoenfeld, 1994] Alan H Schoenfeld. What do we know
about mathematics curricula? The Journal of Mathematical
Behavior, 13(1):55–80, 1994.

[Shen, 2006] Wenxuan Shen. Compendium Proof Methods
for Elementary Geometry (in Chinese). Harbin Institute of
Technology Press, Harbin, 2 edition, 2006.

[Wu, 1986] W.-T. Wu. Basic principles of mechanical theo-
rem proving in geometry. Journal of Automated Reasoning,
2:221–252, 1986.

[Zhou, 2004] Chunli Zhou. Elementary Geometry in Middle
School Math Competition (in Chinese). China Supplies
Press, Beijing, 1 edition, 2004.

1199

