
Cost-Optimal and Net-Benefit Planning —
A Parameterised Complexity View∗

Meysam Aghighi and Christer Bäckström
Linköping University, Linköping, Sweden

meysam.aghighi@liu.se christer.backstrom@liu.se

Abstract
Cost-optimal planning (COP) uses action costs and
asks for a minimum-cost plan. It is sometimes as-
sumed that there is no harm in using actions with
zero cost or rational cost. Classical complexity
analysis does not contradict this assumption; plan-
ning is PSPACE-complete regardless of whether ac-
tion costs are positive or non-negative, integer or
rational. We thus apply parameterised complexity
analysis to shed more light on this issue. Our main
results are the following. COP is W[2]-complete
for positive integer costs, i.e. it is no harder than
finding a minimum-length plan, but it is para-NP-
hard if the costs are non-negative integers or posi-
tive rationals. This is a very strong indication that
the latter cases are substantially harder. Net-benefit
planning (NBP) additionally assigns goal utilities
and asks for a plan with maximum difference be-
tween its utility and its cost. NBP is para-NP-hard
even when action costs and utilities are positive in-
tegers, suggesting that it is harder than COP. In
addition, we also analyse a large number of sub-
classes, using both the PUBS restrictions and re-
stricting the number of preconditions and effects.

1 Introduction
It is very common in planning and search to assign costs to
actions (or operators) and ask for a solution which minimises
the sum of these. Considering the prevalence and importance
of this problem in the literature, surprisingly little attention
is paid to motivate and discuss the choice of numeric do-
main for these costs. The following are only some examples
to illustrate the diversity in the literature: Katz and Domsh-
lak [2008] and Helmert et al. [2014] use non-negative reals;
Bäckström and Jonsson [2013] and Yang et al. [2008] use
non-negative integers; Cooper et al. [2011] use positive inte-
gers; Coles et al. [2008] specify non-negative costs, but no
type; while Thayer et al. [2012] do not specify the costs at

∗Aghighi is partially supported by the National Graduate School
in Computer Science (CUGS), Sweden. Bäckström is partially sup-
ported by the Swedish Research Council (VR) under grant 621-
2014-4086.

all, not even whether negative costs are allowed. Further-
more, only two of these publications give a motivation for the
choice: accounting for only a subset of the transitions in the
state space [Helmert et al., 2014] and simulating several goal
states by zero-cost edges to a single goal state [Yang et al.,
2008]. While the choice may be dictated by models of ap-
plications in many cases, the publications listed above focus
primarily on theoretical investigations or empirical studies of
benchmark examples. It may seem as if the choice of domain
is often either not considered very important or is so little un-
derstood that an arbitrary choice is made.

Real values can be motivated in theoretical studies, since
it makes the results general and there is a powerful collec-
tion of mathematical results to use. However, specific results
for reals are seldom, if ever, used. In implementations and in
complexity theory we are restricted to finite representations,
so the initial costs are necessarily rational numbers. Further-
more, the mathematical operations used are normally such
that irrational numbers cannot arise, even in theory. Hence,
we study rational numbers instead of reals.

From a perspective of classical complexity analysis, one
might argue that the choice of domain is not important; cost-
optimal planning is PSPACE-complete regardless of whether
we use integers or rational numbers or whether we allow zero
cost or only positive values. However, this does not corre-
late well with practical experience, which often indicates that
cost-optimisation does not perform very well. One problem is
that zero-cost actions can result in very long plans with very
low cost [Richter and Westphal, 2010]. Also big differences
in action costs can cause similar problems [Cushing et al.,
2010]. Contrasting these findings with the observations on
domain choice above indicates that we still have a consider-
able gap of knowledge regarding cost-optimal planning and
search. In order to get a more refined picture of this issue, we
apply the tool of parameterised complexity analysis.

Parameterised complexity [Downey and Fellows, 1999]
has been previously applied to plan-length optimisation
[Bäckström et al., 2012; Kronegger et al., 2013], but almost
no such results exist for cost-optimal planning. We analyse
three different cases that differ in the type of action costs:
positive integers, non-negative integers and positive rationals.
The first case is W[2]-complete, which means it is of the
same complexity as finding a plan of minimum length, while
both the other cases are para-NP-hard, a very strong evidence

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1487

that they are significantly harder than the first one. That is,
the choice of numeric domain is very important from an effi-
ciency point of view. Our results correlate well with practical
experience and they can, thus, help to explain the problems
encountered and to find ways around them. In addition, we
analyse a number of restricted cases based on the PUBS re-
strictions [Bäckström and Nebel, 1995] and on restricting the
number of preconditions and effects, (cf. Bylander [1994]).

We further consider the related problem of net-benefit plan-
ning [van den Briel et al., 2004]. We show that this problem is
para-NP-hard even if the action costs and utilities are positive
integers, which suggests that it is harder than cost-optimal
planning, although both problems are PSPACE-complete un-
der classical analysis. Aghighi and Jonsson [2014] analysed
a number of restricted cases of this problem, using classical
complexity analysis. We complement their picture by provid-
ing corresponding parameterised analyses.

The content of the paper is as follows. Parameterised com-
plexity and planning are introduced in Sections 2 and 3. Sec-
tion 4 is devoted to parameterised complexity analysis of
cost-optimal planning, for different assumptions about the
costs as well as for a number of restricted cases. Section 5
similarily analyses the net-benefit planning problem. The pa-
per ends with a discussion of connections with related work
and directions for future research.

2 Parameterised Complexity
Parameterised complexity theory allows for more fine-
grained complexity analyses than traditional complexity the-
ory, and it was invented with the purpose of delivering com-
plexity results that conform better with practical experience.

A parameterised problem is a language L ⊆ Σ∗ × Z0,
where Σ is a finite alphabet and Z0 is the non-negative in-
tegers. The instances of the problem are pairs on the form
〈I, k〉, where I is a string over Σ∗ and k is the parameter.
A parameterised problem is fixed-parameter tractable (fpt) if
there exists an algorithm that solves every instance 〈I, k〉 of
size n = |I| in time f(k) · nc where f is an arbitrary com-
putable function and c is a constant independent of both n and
k. FPT is the class of all fixed-parameter tractable decision
problems. In contrast to classical tractability, some exponen-
tiality is allowed, but confined to the parameter only, thus
better reflecting reality.

Parameterised complexity offers a completeness theory,
similar to the theory of NP-completeness. This theory is
based on a hierarchy of parameterised complexity classes

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆W[P],

known as the W hierarchy. The W[i] classes are defined
by the WEIGHTED SATISFIABILITY PROBLEM for restricted
circuits, where W[P] is the case of arbitrary circuits. Hard-
ness for parameterised classes is proven in the usual way, but
using fpt reductions instead of ordinary polynomial-time re-
ductions. An fpt reduction from a parameterised language
L ⊆ Σ∗ × Z0 to another parameterised language L′ ⊆
Π∗ × Z0 is a mapping R : Σ∗ × Z0 → Π∗ × Z0 such that:
(1) 〈I, k〉 ∈ L if and only if 〈I′, k′〉 = R(I, k) ∈ L′; (2) there
is a computable function f and a constant c such that R can

be computed in time f(k) · nc, where n = |I|; and (3) there
is a computable function g such that k′ ≤ g(k).

Not much is known about the relationship between the pa-
rameterised complexity classes and the standard ones, ex-
cept that P ⊆ FPT. There is otherwise no simple relation-
ship between classes; for instance, there are NP-complete
problems that are W[P]-complete and there are PSPACE-
complete problems that are in FPT. There are also param-
eterised classes outside the W hierarchy. Of particular inter-
est to us is the class para-NP, which consists of all parame-
terised problems that can be solved in non-deterministic time
f(k) · nc, where f is an arbitrary computable function and c
is a constant independent of both n and k. It is known that
W[P] ⊆ para-NP, but not whether this inclusion is strict.

The ith slice of a parameterised problem L is defined as
Li = {〈I, k〉 ∈ L | k = i}, which is not parameterised.

We will need the following generalisation of Corollary 2.16
in Flum and Grohe [2006]1.

Corollary 1. (to Theorem 2.14 in Flum and Grohe [2006]).
Any non-trivial2 parameterised problem L with at least one
NP-hard slice is para-NP-hard.

For a detailed account of parameterised complexity, see
Downey and Fellows [1999] or Flum and Grohe [2006].

We will not formally define different problems for clas-
sical and parameterised analysis. Given an instance 〈I, k〉,
a classical analysis measures time as a function t(n) where
n = |〈I, k〉| = |I| + log k, while a parameterised analysis
uses a multi-variable function t(n, k) where n = |I|.

3 Planning
We use the SAS+ planning framework [Bäckström and
Nebel, 1995]. Let V = {v1, . . . , vn} be a finite set of
variables, with an implicit order v1, . . . , vn, each with a fi-
nite domain D(vi). This defines the state space S(V) =
D(v1) × . . . × D(vn). A member s ∈ S(V) is called a (to-
tal) state and can be viewed as a total function that specifies
a value in D(vi) for each vi ∈ V . A partial state may leave
the value undefined for some (or all) variables, and is thus a
partial function. The value of a defined variable vi in a (total
or partial) state s is denoted s[vi]. If s is a partial state, then
vars(s) is the set of variables with a defined value in s.

A planning instance P = 〈V,A, I,G〉 has a set of vari-
ables V , a set of actions A, a total initial state I and a par-
tial goal state G. Each action a ∈ A has a precondition
pre(a) and an effect eff(a), both partial states. Let a ∈ A
and s ∈ S(V). Then a is valid in s if pre(a)[v] = s[v] for all
v ∈ vars(pre(a)), and the result of a in s is a state t ∈ S(V)
such that for all v ∈ V , t[v] = eff(a)[v] if v ∈ vars(eff(a))
and t[v] = s[v] otherwise. Let s0, s` ∈ S(V) and let
ω = a1, . . . , a` be a sequence of actions. Then ω is a plan
from s0 to s` if either (1) ω = 〈〉 and ` = 0 or (2) there are
states s1, . . . , s`−1 ∈ S(V) such that for all i (1 ≤ i ≤ `), ai
is valid in si−1 and si is the result of ai in si−1. Furthermore,

1Corollary 2.16 is derived from Theorem 2.14, which has mem-
bership restrictions that are not used in the relevant part of the proof.
The same generalisation is tacitly used by Kronegger et al. [2013].

2L ⊆ Σ∗ × Z0 is non-trivial if ∅ 6= {I | 〈I, k〉 ∈ L} 6= Σ∗.

1488

ω is a plan (i.e. a solution) for P if it is a plan from I to some
state t such that t[v] = G[v] for all v ∈ vars(G).

We will consider combinations of the following four re-
strictions on instances [Bäckström and Nebel, 1995].

P (post-unique): For all v ∈ V and x ∈ D(v),
eff(a)[v] = x for at most one a ∈ A.

U (unary): For each a ∈ A, |vars(eff(a))| = 1.
B (binary): |D(v)| = 2 for all v ∈ V .
S (single-valued): For all a, b ∈ A and v ∈ V ,

if v ∈ vars(pre(a)) ∩ vars(pre(b)) and v 6∈
vars(eff(a)) ∪ vars(eff(b))
then pre(a)[v] = pre(b)[v].

The class SAS+-B corresponds to STRIPS with negative
preconditions. We assume binary domains {0, 1}, where 1 is
positive. We use the notation of Bylander [1994], e.g. B2

1+
denotes the restriction to actions a where pre(a) defines at
most 2 variables and eff(a) defines at most one variable that
must also be positive. A ∗ denotes an unbounded value.

Finding the minimum length of a plan is a well-studied
problem in the literature, and our primary interest in it is
to transfer complexity results to other problems. In order
to discuss restrictions concisely, we instantiate the problem
with some subclass C ⊆ SAS+ of planning instances, e.g.
C = SAS+-UB is both unary and binary.

LENGTH-OPTIMAL PLANNING
(
LOP(C)

)
Instance: A SAS+ instance P = 〈V,A, I,G〉 in C.
Parameter: A non-negative integer k.
Question: Does P have a plan ω of length |ω| ≤ k?

In cost-optimal planning we additionaly specify a cost c(a)
for each action a and ask for the minimum cost for a plan.
The cost of a plan ω = a1, . . . , an is c(ω) =

∑n
i=1 c(ai). We

additionally specify a domain D for the costs.

COST-OPTIMAL PLANNING
(
COP(C,D)

)
Instance: A tuple P = 〈V,A, I,G, c〉 such that
〈V,A, I,G〉 is in C and c : A → D is a cost
function.
Parameter: A non-negative integer k.
Question: Does P have a plan ω of cost c(ω) ≤ k?

The following result is straightforward, but included for
completeness since we are not aware of any explicit result in
the literature covering all cases, i.e. Z+, Z0, Q+ and Q0.

Theorem 2. Problem COP(SAS+,Q0) is in PSPACE and
problem COP(SAS+,Z+) is PSPACE-hard.

Proof sketch. Cycles in the state space cannot improve the
plan cost. Guess a cycle-free plan, one action at a time, and
check the cost incrementally. This is in NPSPACE=PSPACE.
Hardness by reduction from LOP(SAS+), which is PSPACE-
complete [Bylander, 1994], using unit action cost.

4 Complexity of Cost-optimal Planning
In this section we analyse the parameterised complexity of
cost-optimal planning, first for positive integer costs and then
for non-negative integer and positive rational costs. The re-
sults are summarized in Figure 1.

4.1 Positive Integers
We start with hardness for some restricted SAS+ classes.

Theorem 3. Problem COP(SAS+-R,Z+) is W[1]-hard for
R ∈ {UBS, B0

3 , B
1
1} and W[2]-hard for R ∈ {BS, B0

∗+}.

Proof. LOP(C) fpt reduces trivially to COP(C,Z+) with unit
costs. The result follows since LOP(C) is W[1]-complete for
R ∈ {UBS, B0

3 , B
1
1} and W[2]-complete forR ∈ {BS, B0

∗+}
[Bäckström et al., 2012; Bäckström et al., 2013].

Having established these hardness bounds, we turn to
membership, first proving that COP(SAS+,Z+) is in W[2].

The following construction maps an instance P with pos-
itive integer action costs into an instance P′ without action
costs. Each action a in P with cost c(a) is replaced with a
chain of actions a1, . . . , ac(a). The lock variable vlock and
the uai variables guarantee that these actions must occur in se-
quence and not be interleaved with any other actions. Hence,
the sequence a1, . . . , ac(a) has the same precondition and ef-
fect as a, but length c(a) instead of cost c(a). We write
a : P

c⇒ E to define an action a with precondition P , ef-
fect E and cost c, omitting c when the cost is irrelevant. We
also write v = x in P (or E) for P [v] = x (or E[v] = x).

Construction 4. Let C be a class of SAS+ instances and
let 〈P, k〉 be an instance of COP(C,Z+), where P =
〈V,A, I,G, c〉. Construct a LOP(C) instance 〈P′, k′〉, where
k′ = k and P′ = 〈V ′, A′, I ′, G′〉 is defined as:

• V ′ = V ∪ {vlock} ∪ {uai | a ∈ A and 1 ≤ i ≤ c(a)},
where D(vlock) = {0, 1} and
D(uai) = {0, 1} for all a ∈ A and 1 ≤ i ≤ c(a).

• For each a ∈ A, if c(a) = 1, then A′ contains the action

– a1 : pre(a), vlock = 0⇒ eff(a)

and otherwise A′ contains the actions

– a1 : pre(a), vlock = 0⇒ ua1 = 1, vlock = 1,
– ai : uai−1 = 1⇒ uai−1 = 0, uai = 1, (1 < i < c(a)),
– ac(a) : uac(a)−1= 1⇒ eff(a), uac(a)−1= 0, vlock= 0.

• I ′[v] = I[v] for all v ∈ V and otherwise I ′[v] = 0.

• G′[v] = G[v] for all v ∈ V and otherwise G′[v] = 0.

We now use this construction to prove that COP is in
W[2] if all action costs are positive integers and polynomi-
ally bounded in the instance size,

Theorem 5. Let p be an arbitrary polynomial. Then
COP(SAS+,Z+) is in W[2] if it is restricted to cost functions
c such that for every instance P = 〈V,A, I,G, c〉 it holds that
c(a) ≤ p(|P|) for all a ∈ A.

Proof. Let 〈P, k〉 be an instance of COP(SAS+,Z+), where
P = 〈V,A, I,G, c〉, and let 〈P′, k′〉, where P′ =
〈V ′, A′, I ′, G′〉, be the corresponding LOP(SAS+) instance
according to Construction 4. Obviously, P has a plan of cost
k if and only if P′ has a plan of length k′ = k. This is an fpt
reduction from COP(SAS+,Z+) to LOP(SAS+) since k′ = k
and we assume that c(a) ≤ p(|P|) for all a ∈ A. It follows
that COP(C,Z+) is in W[2] since LOP(SAS+) is in W[2]
[Bäckström et al., 2012].

1489

COP(C,Z+)
-

P U S B

PU PS PB US UB BS

PUS PUB PBS UBS

PUBS

in P

in FPT

W[1]-hard

W[2]-compl.

COP(C,Z0)
COP(C,Q+)

-

P U S B

PU PS PB US UB BS

PUS PUB PBS UBS

PUBS

para-NP-hard

para-NP-hard
in P

Figure 1: COP for positive integer action costs (left) and for non-negative integer and positive rational action costs (right).

The restriction to polynomial costs allows for a simple
proof, but is not necessary. It can be avoided by adapting the
model-checking technique used in Bäckström et al. [2012].

Membership in W[1] for SAS+-U is open, but all PUBS
classes that are not W[1]-hard are fixed-parameter tractable.

Theorem 6. COP(SAS+-P,Z+) is in FPT.

Proof. Modify the fpt algorithm for LOP(SAS+-P)
[Bäckström et al., 2012, Theorem 5] to check the plan
cost, instead of the length, against k. The complexity result
still holds since the cost can never be lower than the length in
this case.

4.2 Non-negative Integers and Positive Rationals
We now show that COP is considerably harder if we addition-
ally allow actions to have zero cost or positive rational cost.
We also need the PLAN SATISFIABILITY (PSAT) problem,
which only asks if there is a plan or not, with no parameter.

Theorem 7. Let C be an arbitrary subclass of SAS+. If
PSAT(C) is NP-hard, then COP(C,Z0) is para-NP-hard.

Proof. Let P be an arbitrary PSAT(SAS+) instance, where
P = 〈V,A, I,G〉. Define a corresponding COP(SAS+,Z0)0
instance 〈P′, k′〉, where k′ = 0, P′ = 〈V,A, I,G, c〉 and
c(a) = 0 for all a ∈ A. This is a polynomial-time reduction
from PSAT(C) to COP(C,Z0)0 for any subclass C ⊆ SAS+,
since it does not alter the instance except for adding ac-
tion costs. The result thus follows from Corollary 1 when
PSAT(C) is NP-hard.

Corollary 8. Problem COP(SAS+-R,Z0) is para-NP-hard
for R∈{UB,BS, B1

1+, B
2+
2 }.

Proof. Follows from Thm. 7 since PSAT(SAS+-R) is NP-
hard for R ∈ {UB,BS} [Bäckström and Nebel, 1995] and
for R ∈ {B1

1+, B
2+
2 } [Bylander, 1994].

Theorem 9. Let C be an arbitrary subclass of SAS+. If
LOP (C) is NP-hard, then COP(C,Q+) is para-NP-hard.

Proof. Let 〈P, k〉 be an arbitrary LOP(SAS+) instance,
where P = 〈V,A, I,G〉. Define a corresponding
COP(SAS+,Q+)1 instance 〈P′, k′〉, where k′ = 1, P′ =
〈V,A, I,G, c〉 and c(a) = 1/k for all a ∈ A. This is a
polynomial-time reduction from LOP(C) to COP(C,Q+)1

for any subclass C ⊆ SAS+, since it does not alter the in-
stance except for adding action costs. The result thus follows
from Corollary 1 when LOP(C) is NP-hard.

Corollary 10. Problem COP(SAS+-R,Q+) is para-NP-hard
for R∈{PUB,PBS,UBS, B0

2 , B
0
3+, B

1+
1+}.

Proof. Follows from Thm. 9 since LOP(SAS+-R) is NP-
hard for R ∈ {PUB,PBS,UBS} [Bäckström and Nebel,
1995] and for R ∈ {B0

2 , B
0
3+, B

1+
1+} [Bylander, 1994].

The following observation explains why we cannot escape
the difficulty by scaling positive rationals to positive integers.

Observation 11. A COP(SAS+,Q+) instance can be polyno-
mially reduced to a COP(SAS+,Z+) instance by multiplying
all costs and the parameter with a suitable value α. This is,
however, not an fpt reduction sinceαwill typically not depend
on the parameter (only), which contradicts condition (3) for
fpt reductions.

Such reductions can be fpt reductions if we add further
constraints, eg. by choosing α as the lowest common de-
nominator of the costs and additionally require that also α is
bounded by k. More properly, we could use one or more ad-
ditional parameters to bound the costs in various ways, but
that is out of the scope of this paper.

We do not prove any corresponding membership re-
sults, and it is not obvious that COP(SAS+,Z0) and
COP(SAS+,Q+) are even in para-NP, since the plan length
may be exponential in the number of variables. Some cases
remain open for non-negative integers, but the SAS+-PUS
case is easy even for non-negative rationals.

Theorem 12. Problem COP(SAS+-PUS,Q0) is in P.

Proof sketch. A length-optimal plan can be found in poly-
nomial time, using a determnistic fixpoint algorithm
[Bäckström, 1992]. This plan is the unique subset-minimal
plan and thus also cost optimal.

5 Complexity of Net-benefit Planning
The net-benefit problem is a so called oversubscription prob-
lem, where we do not expect to satisfy all of the goal. In
addition to action costs, each goal variable v has a utility
value U(v). Let s be a state. The utility U(v, s) in s of a
variable v ∈ vars(G) is U(v) if s[v] = G[v], and otherwise
U(v, s) = 0. The utility of s is U(s) =

∑
v∈vars(G) U(v, s).

1490

If ω is a plan from I to s, then the difference U(s) − c(ω)
is called the net benefit of ω. The objective of the net-benefit
problem is to find the maximal net benefit over all plans to any
state. The functions c and U are assumed polynomial-time.

NET-BENEFIT PLANNING
(
NBP(C,D)

)
Instance: A tuple P = 〈V,A, I,G, c, U〉 where
〈V,A, I,G〉 is in C, c : A → D is a cost func-
tion and U : vars(G)→ D is a utility function.
Parameter: A non-negative integer k.
Question: Is there a state s ∈ S(V) and a plan ω
from I to s such that U(s)− c(ω) ≥ k?

van den Briel et al. [2004] show that net-benefit planning is
PSPACE-complete for non-negative costs and utilities. They
do not specify if they consider integer or rational values, but
this should not matter for PSPACE-completeness. Keyder and
Geffner [2009] as well as Aghighi and Jonsson [2014] present
transformations from NBP to planning. However, neither of
these is an fpt reduction so the upper bounds for planning in
the previous section do not automatically carry over to NBP.

We prove in this section that the net benefit problem is
para-NP-hard even if the action costs and utilities are re-
stricted to positive integers. That is, in contrast to cost-
optimal planning, it is not obviously simpler to plan with
positive integers than with non-negative integers or positive
rationals. This holds also for very restricted classes.
Construction 13. Let 〈P, k〉 be a LOP(SAS+) instance,
where P = 〈V,A, I,G〉. Without losing generality, as-
sume that vars(G) = {v1, . . . , vm}. Define a correspond-
ing NBP(SAS+,Z+)1 instance 〈P′, k′〉, where k′ = 1 and
P′ = 〈V ′, A′, I ′, G′, c, U〉 is defined as:

• V ′ = V ∪ {w, u1, . . . , um}, where
D(w) = D(u1) = · · · = D(um) = {0, 1}.
• A′ = {a′ | a ∈ A} ∪ {bw, b1, . . . , bm}, where

– a′ : pre(a), w = 0
m⇒ eff(a), for all a ∈ A,

– bw : w = 0
1⇒ w = 1,

– b1 : v1 = G[v1], w = 1
k⇒ u1 = 1,

– bi : vi = G[vi], ui−1 = 1
k⇒ ui = 1, (2 ≤ i ≤ m).

• I ′[v] = I[v] for all v ∈ V and otherwise I ′[v] = 0.

• G′[um] = 1 and G′ is otherwise undefined.

• U(um) = 2km+ 2.

Theorem 14. Problems NBP(SAS+-PUB,Z+) and
NBP(SAS+-B2

1+,Z+) are para-NP-hard.

Proof. Construction 13 maps an instance 〈P, k〉 of
LOP(SAS+) to an instance 〈P′, k′〉 of NBP(SAS+,Z+)1.
Suppose P has a plan ω = a1, . . . , ak of length k. Then
ω′ = a′1, . . . , a

′
k, bw, b1, . . . , bm is a plan for P′, where

c(ω′) = km + 1 + mk = 2km + 1 and U(ω′) = 2km + 2,
i.e. the net benefit is 1 = k′. To the contrary, suppose P′
has a plan ω′ with net benefit of k′ = 1, or more, to some
state s. This is only possible if s[um] = 1, which requires
the actions β = bw, b1, . . . , bm, in that order. Hence, ω′ must
have a prefix α = a′1, . . . , a

′
` that is a plan from I to some

state s′ such that β is a plan from s′ to s and s′[v] = G[v]

for all v ∈ vars(G). This implies that the action sequence
a1, . . . , a` that corresponds to α is a plan for P. Furthermore,
c(ω′) = `m+1+mk = (`+k)m+1 and U(ω′) = 2km+2,
so ω′ can have a net benefit of 1 or more only if ` ≤ k. We
conclude that P has a plan of length k, or less, if and only if
P′ has a plan with net benefit k′ ≥ 1.

This construction is a polynomial-time reduction from
LOP(SAS+) to NBP(SAS+,Z+)1. Since SAS+-PUB is
closed under this reduction and it adds only one pre-
condition, the result follows from Corollary 1 since both
LOP(SAS+-PUB) is NP-hard [Bäckström and Nebel, 1995]
and LOP(SAS+-B1

1+) is NP-hard [Bylander, 1994].

Theorem 15. NBP(SAS+-PBS,Z+) is para-NP-hard.

Proof sketch. Analogous to the proof of Theorem 14 but
modified as follows. Replace each variable vi with two vari-
ables vai and vbi . These are always set simultaneously to the
same value, which is possible since the actions need not be
unary. We can now test the vai variables in the preconditions
of the a′ actions and the vbi variables in the preconditions of
the bj actions. We also replace variable w with two variables,
wf and wt, which always have opposite values, i.e. w = 0
if wf = 1 and w = 1 if wt = 1. This new instance satisfies
restriction S but not restriction U, and is otherwise equivalent
to the instance in Construction 13.

For SAS+-UBS we reduce from the MSC problem, which
is NP-complete. [Garey and Johnson, 1979, Problem SP5].

MINIMUM SET COVER (MSC)
Instance: A set S and a set C of subsets of S.
Parameter: A positive integer k.
Question: Does S have a cover of size k, i.e. a
subset C ′ ⊆ C such that ∪c∈C′ = S and |C ′| = k?

Theorem 16. NBP(SAS+-UBS,Z+) is para-NP-hard.

Proof. We first define a reduction from MINIMUM SET
COVER (MSC) to NBP(SAS+-UBS,Z+)1. Let 〈I, k〉 be
an MSC instance where I = 〈S,C〉, S = {x1, . . . , xn}
and C = {c1, . . . , cm}. Define the corresponding instance
〈P, k′〉 of NBP(SAS+-UBS,Z+)1, where k′ = 1 and P =
〈V,A, I,G, c, U〉 is defined as follows:

• V = {xi, vi | xi ∈ S} ∪ C, all with domain {0, 1}.
• A contains the following actions:

– eni : ∅ n⇒ ci = 1, for all ci ∈ C,

– setji : ci = 1
k⇒ xj = 1, for all ci ∈ C and xj ∈ ci,

– vfy1 : x1 = 1
k⇒ v1 = 1

vfyi : xi = 1, vi−1 = 1
k⇒ vi = 1, for all xi ∈ S.

• I[v] = 0 for all v ∈ V .

• G[vn] = 1 and G is otherwise undefined.

• U(vn) = 3kn+ 1.

Suppose I has a cover of size k. Then P has a plan ω
with k en actions, n set actions and all n vfy actions, i.e.
c(ω) = 3kn, so the net benefit is 1 = k′. Instead suppose
P has a plan with net benefit k′ ≥ 1. It must contain n set

1491

actions and the n vfy actions, with total cost 2kn. The plan
cost is at most 3kn so there are at most k en actions. Hence,
I has a cover of size k. This is a polynomial-time reduc-
tion from MSC to NBP(SAS+-UBS,Z+)1 since P ∈ SAS+-
UBS. Hence, NBP(SAS+-UBS,Z+)1 is NP-hard since MSC
is NP-complete. It follows from Corollary 1 that NBP(SAS+-
UBS,Z+) is para-NP-hard.

For the final cases we reduce from INDEPENDENT SET,
which is W[1]-complete [Downey and Fellows, 1999].

INDEPENDENT SET (IS)
Instance: A graph G = 〈V,E〉.
Parameter: A positive integer k.
Question: Is there a subset V ′ ⊆ V such that
{u, v} 6∈ E for all u, v ∈ V ′ and |V ′| = k?

Theorem 17. NBP(SAS+-PUBS,Z+) is W[1]-hard.

Proof. Proof by reduction from INDEPENDENT SET (IS).
Let 〈G, k〉 be an instance of IS, where G = 〈V,E〉. Con-
struct an instance 〈P, k′〉 of NBP(SAS+,Z+), where k′ = k
and P = 〈V ′, A, I,G, c, U〉 is defined as follows:
• V ′ = V , where D(v) = {0, 1} for all v ∈ V ′.
• For each v ∈ V , A contains the action
av : {u = 0 | {u, v} ∈ E} 1⇒ v = 1.
• For all v ∈ V , I[v] = 0, G[v] = 1 and U(v) = 2.
Obviouly, G has an independent set of size k if and only if

P has a plan with net benefit k′ = k. P is in SAS+-PUBS,
so this is an fpt reduction from IS to NBP(SAS+-PUBS,Z+).
The result follows since IS is W[1]-complete.

The NBP results coincide with COP(C,Q+) in Figure 1,
except that SAS+-PUBS and SAS+-PUS are W[1]-hard.

6 Discussion
A somewhat similar, yet different, theoretical analysis was
done by Helmert [2002], who studied the classical complex-
ity of planning for different cases of using numerical variables
and arithmetic actions, but without action costs. Practical ap-
proaches to combining numerical variables and action costs
exist, though, (cf. Ivankovic et al. [2014]).

Analyses of different cost domains are usually based on
practical experience, e.g. Richter and Westphal [2010] note
that their planner LAMA does not perform well with cost-
optimising heuristics. Indeed, in the International planning
comeptition (IPC) 2008, none of the cost-optimising plan-
ners performed as well as the baseline planner, which ignored
costs. It is not an isolated problem that cost-optimising plan-
ning seems not to deliver as expected [Cushing et al., 2010].
One reason is zero-cost actions. If the cheapest plans are very
long, with many zero-cost actions, then a cost-optimising
planner might time out, while a length-optimising planner
may find a good enough plan. This correlates very well with
our theoretical findings. A similar case arises for big spans
in action costs, resulting in long and cheap plans with many
cheap actions, called the ε-cost trap by Cushing et al. [2010].
Their argument scales the costs to the interval [0,1]. Our re-
sults raise the question whether this seemingly harmless scal-
ing might, in fact, contribute to the problem.

Cooper et al. [2011] may seem to avoid these problems,
since they only allow positive integer costs. However, they
transform the instance into a CSP instance and add virtual
zero-cost actions. This raises the question if the favourable
properties of positive integers are lost or not, and how to gen-
erally do such transformations? For instance, is it safe to sim-
ulate multiple goal states (cf. [Yang et al., 2008])?

Our results also suggest an obvious way to improve effi-
ciency. Non-negative integers can be mapped to positive inte-
gers by a linear transformation c′(a) = λ · c(a) + b, for some
positive integer constants λ and b. We get

c′(ω) =
∑
a∈ω

(λ · c(a) + b) = λ · c(ω) + b · |ω|.

This moves the problem from being para-NP-hard to being
W[2]-complete, at the expense of overestimating the optimal
solutions. This mapping enforces a balance between optimis-
ing the cost and the length, a balance which can be tuned
by the constants λ and b. However, this is already used in
practice to improve efficiency, eg. LAMA uses a heuristic
that puts equal weight to the length and the cost of the plan
[Richter and Westphal, 2010]. This is yet another correlation
between our theoretical results and practical experience.

Other cost-based heuristics also depend on our results. For
instance, Corollary 10 suggests that the h+ heuristic [Hoff-
mann, 2005] is very difficult to compute, unless restricted to
positive integers; it is usually approximated in practice since
it is NP-complete even for unit cost. An interesting example
is Betz and Helmert [2009], who allow non-negative integer
costs and prove that the h+ heurstic cannot be approximated
within a constant. The proof, however, uses a technique sim-
ilar to our Construction 4 to avoid using zero-cost actions,
even though it would have been much simpler with such ac-
tions. In retrospect, this was a good decision since our results
indicate that their result is stronger without zero costs.

In this paper, we analysed classes based on the PUBS re-
strictions and the number of preconditions and effects. An-
other way is to restrict the structure of the causal graphs
and/or the domain-transition graphs (DTGs). There are nu-
merous classical complexity results for cost-based planning
under such restrictions (cf. Katz and Domshlak [2008]).
Parameterised results are scarce, though. One exception is
Bäckström [2014] who shows that COP(C, Q0) is in FPT
for acyclic DTGs, using a combination of parameters on the
causal graph and the DTGs.

One reason why COP(SAS+,Z+) is easier than
NBP(SAS+,Z+) is most likely that the parameter im-
plicitly bounds also the plan length in the first case, but not
in the second case, where the parameter only bounds the
difference between the utility and the cost of a plan. One may
consider adding further parameters, for instance, the plan
length. This is similar to a common variant of NBP which
assigns a cost budget B and asks for a plan with maximum
utility under the constraint that the plan cost does not exceed
B [Mirkis and Domshlak, 2013]. This problem can be
viewed as a parameterised problem with two parameters, the
budget B and the desidered utility k, which could be easier.

1492

References
[Aghighi and Jonsson, 2014] Meysam Aghighi and Peter

Jonsson. Oversubscription planning: Complexity and
compilability. In Proc. 28th AAAI Conf. Artif. Intell.
(AAAI-14), Québec City, QC, Canada., pages 2221–2227,
2014.

[Bäckström and Jonsson, 2013] Christer Bäckström and Pe-
ter Jonsson. Bridging the gap between refinement and
heuristics in abstraction. In Proc. 23rd Int’l Joint Conf.
Artif. Intell. (IJCAI-13), Beijing, China, pages 2261–2267,
2013.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
put. Intell., 11:625–656, 1995.

[Bäckström et al., 2012] Christer Bäckström, Yue Chen, Pe-
ter Jonsson, Sebastian Ordyniak, and Stefan Szeider. The
complexity of planning revisited - a parameterized anal-
ysis. In Proc. 26th AAAI Conf. Artif. Intell. (AAAI-12),
Toronto, ON, Canada, pages 1735–1741, 2012.

[Bäckström et al., 2013] Christer Bäckström, Peter Jonsson,
Sebastian Ordyniak, and Stefan Szeider. Parameterized
complexity and kernel bounds for hard planning prob-
lems. In Proc. Algorithms and Complexity, 8th Int’l Conf.,
(CIAC-13), Barcelona, Spain,, pages 13–24, 2013.

[Bäckström, 1992] Christer Bäckström. Equivalence and
tractability results for SAS+ planning. In Proc. 3rd Int’l
Conf. Principles Knowledge Repr. Reasoning (KR-92),
Cambridge, MA, pages 126–137, 1992.

[Bäckström, 2014] Christer Bäckström. Parameterising the
complexity of planning by the number of paths in the
domain-transition graphs. In Proc. 21st Eur. Conf. Artif.
Intell. (ECAI-14), Prague, Czech Rep., pages 33–38, 2014.

[Betz and Helmert, 2009] Christoph Betz and Malte
Helmert. Planning with h + in theory and practice.
In Proc. 32nd Ann. German Conf. Artif. Intell (KI-09),
Paderborn, Germany,, pages 9–16, 2009.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artif. Intell.,
69(1-2):165–204, 1994.

[Coles et al., 2008] Andrew Coles, Maria Fox, Derek Long,
and Amanda Smith. Additive-disjunctive heuristics for op-
timal planning. In Proc. 18th Int’l Conf. Aut. Planning and
Scheduling (ICAPS-08), Sydney, Australia, pages 44–51,
2008.

[Cooper et al., 2011] Martin Cooper, Marie de Roquemau-
rel, and Pierre Régnier. A weighted CSP approach to cost-
optimal planning. AI Commun., 24(1):1–29, 2011.

[Cushing et al., 2010] William Cushing, J. Benton, and Sub-
barao Kambhampati. Cost based search considered harm-
ful. In Proc. 3rd Ann. Symp. Combinatorial Search (SoCS-
10), Stone Mountain, Atlanta, GA, USA, 2010. Long ver-
sion: CoRR abs/1103.3687, 2011.

[Downey and Fellows, 1999] Rodney Downey and Michael
Fellows. Parameterized Complexity. Springer, New York,
1999.

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Pa-
rameterized Complexity Theory. Springer, Berlin, 2006.

[Garey and Johnson, 1979] Michael Garey and David John-
son. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. J. ACM, 61(3):16:1–63, 2014.

[Helmert, 2002] Malte Helmert. Decidability and undecid-
ability results for planning with numerical state variables.
In Proc. 6th Int’l Conf. Artif. Intell. Planning Systems,
Toulouse, France, pages 44–53, 2002.

[Hoffmann, 2005] Jörg Hoffmann. Where ’ignoring delete
lists’ works: Local search topology in planning bench-
marks. J. Artif. Intell. Res., 24:685–758, 2005.

[Ivankovic et al., 2014] Franc Ivankovic, Patrik Haslum,
Sylvie Thiébaux, Vikas Shivashankar, and Dana S. Nau.
Optimal planning with global numerical state constraints.
In Proc. 24th Int’l Conf. Aut. Planning and Scheduling
(ICAPS-14), Portsmouth, NH, USA, pages 145–153, 2014.

[Katz and Domshlak, 2008] Michael Katz and Carmel
Domshlak. New islands of tractability of cost-optimal
planning. J. Artif. Intell. Res., 32:203–288, 2008.

[Keyder and Geffner, 2009] Emil Keyder and Hector
Geffner. Soft goals can be compiled away. J. Artif. Intell.
Res., 36:547–556, 2009.

[Kronegger et al., 2013] Martin Kronegger, Andreas Pfan-
dler, and Reinhard Pichler. Parameterized complexity of
optimal planning: A detailed map. In Proc. 23rd Int’l Joint
Conf. Artif. Intell. (IJCAI-13), Beijing, China, pages 954–
961, 2013.

[Mirkis and Domshlak, 2013] Vitaly Mirkis and Carmel
Domshlak. Abstractions for oversubscription planning.
In Proc. 23rd Int’l Conf. Aut. Planning and Scheduling
(ICAPS-13), Rome, Italy, pages 153–161, 2013.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. J. Artif. Intell. Res.,
39:127–177, 2010.

[Thayer et al., 2012] Jordan Tyler Thayer, Roni Stern, Ariel
Felner, and Wheeler Ruml. Faster bounded-cost search
using inadmissible estimates. In Proc. 22nd Int’l Conf.
Aut. Planning and Scheduling (ICAPS-12), Atibaia, São
Paulo, Brazil, pages 270–278, 2012.

[van den Briel et al., 2004] Menkes van den Briel,
Romeo Sanchez Nigenda, Minh Binh Do, and Sub-
barao Kambhampati. Effective approaches for partial
satisfaction (over-subscription) planning. In Proc. 19th
Nat’l Conf. Artif. Intell. (AAAI-04), San Jose, CA, USA,
pages 562–569, 2004.

[Yang et al., 2008] Fan Yang, Joseph Culberson, Robert
Holte, Uzi Zahavi, and Ariel Felner. A general theory
of additive state space abstractions. J. Artif. Intell. Res.,
32:631–662, 2008.

1493

