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Abstract
Monte-Carlo Tree Search (MCTS) algorithms such
as UCT are an attractive online framework for solv-
ing planning under uncertainty problems modeled
as a Markov Decision Process. However, MCTS
search trees are constructed in flat state and action
spaces, which can lead to poor policies for large
problems. In a separate research thread, domain
abstraction techniques compute symmetries to re-
duce the original MDP. This can lead to significant
savings in computation, but these have been pre-
dominantly implemented for offline planning. This
paper makes two contributions. First, we define the
ASAP (Abstraction of State-Action Pairs) frame-
work, which extends and unifies past work on do-
main abstractions by holistically aggregating both
states and state-action pairs – ASAP uncovers a
much larger number of symmetries in a given do-
main. Second, we propose ASAP-UCT, which im-
plements ASAP-style abstractions within a UCT
framework combining strengths of online planning
with domain abstractions. Experimental evaluation
on several benchmark domains shows up to 26%
improvement in the quality of policies obtained
over existing algorithms.

1 Introduction
The problem of sequential decision making, often modeled
as a Markov Decision Process (MDP), is a fundamental prob-
lem in the design of autonomous agents [Russell and Norvig,
2003]. Traditional MDP planning algorithms (value iteration
and variants) perform offline dynamic programming in flat
state spaces and scale poorly with the number of domain fea-
tures due to the curse of dimensionality. A well-known ap-
proach to reduce computation is through domain abstractions.
Existing offline abstraction techniques [Givan et al., 2003;
Ravindran and Barto, 2004] compute equivalence classes of
states such that all states in an equivalence class have the same
value. This projects the original MDP computation onto an
abstract MDP, which is typically of a much smaller size.

Recently, Monte-Carlo Tree Search (MCTS) algorithms
have become quite an attractive alternative to traditional ap-
proaches. MCTS algorithms, exemplified by the well-known

UCT algorithm [Kocsis and Szepesvári, 2006], intelligently
sample parts of the search tree in an online fashion. They
can be stopped anytime and usually return a good next ac-
tion. A UCT-based MDP solver [Keller and Eyerich, 2012]
won the last two probabilistic planning competitions [Sanner
and Yoon, 2011; Grzes et al., 2014]. Unfortunately, UCT
builds search trees in the original flat state space too, which
is wasteful if there are useful symmetries and abstractions in
the domain.

A notable exception is [Jiang et al., 2014], which intro-
duced the first algorithm to combine UCT with automati-
cally computed approximate state abstractions, and showed
its value through quality gains for a single deterministic do-
main. Our preliminary experiments with this method (which
we name AS-UCT) on probabilistic planning domains indi-
cate that it is not as effective in practice. This may be because
AS-UCT tries to compute state abstractions on the explored
part of the UCT tree and there likely isn’t enough information
in the sampled trees to compute meaningful state abstractions.

In this paper, we develop a different notion of abstrac-
tions, state-action pair (SAP) abstractions, where in addition
to computing equivalence classes of states, we also compute
equivalence classes of state-action pairs, such that Q-values
of state-action pairs in the same equivalence class are the
same. SAP abstractions generalize previous notions – ab-
stractions of both Givan and Ravindran. These are special
cases of SAP abstractions. Moreover, SAP abstractions find
symmetries even when there aren’t many available state ab-
stractions, which is commonly true for abstraction computa-
tions over undersampled UCT trees.

We implement SAP abstractions inside a UCT framework
and call the resulting algorithm ASAP-UCT – Abstraction of
State-Action Pairs in UCT. Experiments on several proba-
bilistic planning competition problems show that ASAP-UCT
significantly outperforms both AS-UCT and vanilla UCT ob-
taining upto 26% performance improvements. Overall, our
contributions are:

1. We develop the theory of state-action pair abstractions
and prove that it subsumes existing notions of abstrac-
tions in MDPs.

2. We implement and release1 ASAP-UCT, an algorithm
that exploits SAP abstractions in a UCT framework.

1Available at https://github.com/dair-iitd/asap-uct
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3. We experimentally demonstrate the effectiveness of
ASAP-UCT over baseline UCT and [Jiang et al., 2014]’s
AS-UCT.

2 Background and Related Work
An infinite horizon, discounted cost Markov Decision Pro-
cess(MDP) [Puterman, 1994] is modeled as a 5-tuple
(S,A, T , C, γ). An agent in a state s ∈ S executes an ac-
tion a ∈ A making a transition to s′ ∈ S with a probability
T (s, a, s′) incurring a cost C(s, a) with a discount factor of
γ (γ < 1). A policy π : S → A specifies an action to be
executed in a state s ∈ S. Given a starting state s0 ∈ S, the
expected discounted cost V π(s) associated with a policy π is
given by V π(s0) = E[

∑∞
t=0 C(s

t, at)γt|π(st) = at, t ≥ 0]
where expectation is taken over the transition probability
T (st, at, st+1) of going from state st to st+1 under action
at. The expected costQπ(s, a) denotes the discounted cost of
first taking action a in state s and then following π from then
on. The optimal policy π∗ minimizes the total expected cost
for every state s ∈ S, i.e. π∗(s) = argminπV

π(s). Q∗(s, a)
and V ∗(s) are shorthand notations for Qπ

∗
(s, a) and V π

∗
(s)

respectively, and V ∗(s) = mina∈AQ
∗(s, a). Presence of

goals can be dealt by having absorbing states for goals.
An MDP can be equivalently represented as an AND-

OR graph [Mausam and Kolobov, 2012] in which OR nodes
are MDP states and AND-nodes represent state-action pairs
whose outgoing edges are multiple probabilistic outcomes
of taking the action in that state. Value Iteration [Bellman,
1957] and other dynamic programming MDP algorithms can
be seen as message passing in the AND-OR graph where
AND and OR nodes iteratively update Q(s,a) and V(s) (re-
spectively) until convergence.

A finite-horizon MDP executes for a fixed number of steps
(horizon) and minimizes expected cost (or maximizes ex-
pected reward). States for this MDP are (s, t) pairs where s
is a world state and t is number of actions taken so far. Finite
horizon MDPs can be seen as a special case of infinite hori-
zon MDPs by having all the states at the horizon be absorbing
goal states and setting γ = 1.

2.1 Abstractions for Offline MDP Algorithms
In many MDP domains, several states behave identically, and
hence, can be abstracted out. Existing literature defines ab-
stractions via an equivalence relation E ⊆ S × S, such that if
(s, s′) ∈ E , then their state transitions are equivalent (for all
actions). All states in an equivalence class can be collapsed
into a single aggregate state in an abstract MDP, leading to
significant reductions in computation.

Various definitions for computing abstractions exist. Givan
et al. [2003]’s conditions deduce two states to have an equiv-
alence relation if they have the same applicable actions, local
transitions lead to equivalent states and immediate costs are
the same. Ravindran and Barto [2004] refine this by allowing
the applicable actions to be different as long as they can be
mapped to each other for this state pair. This can find more
state abstractions than Givan’s conditions. We call these set-
tings AS (Abstractions of States) and ASAM (Abstractions of
States with Action Mappings), respectively.

Our framework unifies and extends these previous notions
of abstractions – we go beyond just an equivalence relation E
over states, and compute equivalences of state-action pairs.
This additional notion of abstractions leads to a discovery of
many more symmetries and obtains significant computational
savings when applied to online algorithms.

2.2 Monte-Carlo Tree Search (MCTS)
Traditional offline MDP algorithms store the whole state
space in memory and scale poorly with number of do-
main features. Sampling-based MCTS algorithms offer an
attractive alternative. They solve finite-horizon MDPs in
an online manner by interleaving planning and execution
steps. A popular variant is UCT [Kocsis and Szepesvári,
2006], in which during the planning phase, starting from
the root state, an expectimin tree is constructed based on
sampled trajectories. At each iteration, the tree is ex-
panded by adding a leaf node. Since these MDPs are fi-
nite horizon a node is (state,depth) pair. UCT chooses an
action a in a state s at depth d based on the UCB rule,

argmina∈A

(
Q(s, d, a)−K ×

√
log(n(s,d))
n(s,d,a)

)
where K >

0. Here, n(s, d) denotes the number of trajectories that pass
through the node (s, d) and n(s, d, a) is the number of trajec-
tories that take action a in (s, d).

Evaluation of a leaf node is done via a random rollout, in
which actions are randomly chosen based on some default
rollout policy until a goal or some planning horizon P is
reached. This rollout results in an estimate of the Q-value
at the leaf node. Finally, this Q-value is backed up from
the leaf to the root. UCT operates in an anytime fashion –
whenever it needs to execute an action it stops planning and
picks the best action at the root node based on the current Q-
values. The planning phase is then repeated again from the
newly transitioned node. Due to the clever balancing of the
exploration-exploitation trade off, MCTS algorithms can be
quite effective and have been shown to have significantly bet-
ter performance in many domains of practical interest[Gelly
and Silver, 2011; Balla and Fern, 2009].

2.3 Abstractions for UCT
Hostetler et al. [2014] develop a theoretical framework for
defining a series of state abstractions in sampling-based algo-
rithms for MDP. But they do not provide any automated algo-
rithm to compute the abstractions themselves. Closest to our
work is [Jiang et al., 2014], which applies Givan’s definitions
of state abstractions within UCT. The key insight is that in-
stead of an offline abstraction algorithm, they test abstractions
only for the states enumerated by UCT. Their approach first
puts all partially explored nodes (not all of whose actions are
present in UCT tree) in a single abstract state per depth. Since
UCT solves finite-horizon MDPs, only the states at the same
depth will be considered equivalent. Then, at any given depth,
they test Givan’s conditions (transition and cost equality) on
pairs of states to identify ones that are in the same equivalence
class. This algorithm proceeds bottom-up starting from last
depth all the way to the root. Jiang et al. also consider two ap-
proximation parameters εT and εC which aggregate two states
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together if the corresponding transition probabilities and costs
are within εT and εC , respectively. Their paper experimented
on a single deterministic game playing domain and its general
applicability to planning was not tested. We advance Jiang’s
ideas by applying our novel SAP abstractions in UCT, and
show that they are more effective on a variety of domains.

3 ASAP framework
A preliminary treatment of our Abstractions of State-Action
Pairs (ASAP) framework appears in our previous work
[Anand et al., 2015]. The ASAP framework unifies and ex-
tends Givan’s and Ravindran’s definitions for computing ab-
stractions. To formally define the framework we introduce
some notation. Consider an MDP M = (S,A, T , C, γ).
We use P to denote the set of State-Action Pairs (SAPs) i.e.
P = S × A. We define an equivalence relation E over pairs
of states i.e. E ⊆ S × S. Let X denote the set of equiva-
lence classes under the relation E and let µE : S → X denote
the corresponding equivalence function mapping each state to
the corresponding equivalence class. Similarly, we define an
equivalence relationH over pairs of SAPs, i.e. H ⊆ P × P ).
Let U denote the set of equivalences classes under the rela-
tionH, and let µH : P → U denote the corresponding equiv-
alence function mapping state-action pairs to the correspond-
ing equivalence classes. Following previous work, we will
recursively define state equivalences using state-pair equiva-
lences and vice-versa.
Definition 1 (State Abstractions) Suppose we are given SAP
abstractions, and µH. Intuitively, for state equivalence to
hold, there should be a correspondence between applicable
actions in the two states such that the respective state-action
pair nodes are equivalent. Formally, let a, a′ ∈ A denote
two actions applicable in s and s′, respectively. We say
that two states s and s′ are equivalent to each other (i.e,
µE(s) = µE(s

′)) if for every action a applicable in s, there
is an action a′ applicable in s′ (and vice-versa) such that
µH(s, a) = µH(s

′, a′).
Definition 2 (SAP Abstractions) As in the case of state ab-
stractions, assume we are given state abstractions and the µE
function. Two state-action pairs (s, a), (s′, a′) ∈ P are said
to be equivalent i.e. µH(s, a) = µH(s

′, a′) iff:
• ∀x ∈ X ,

∑
st∈S I[µE(st) = x]T (s, a, st) =∑

s′t∈S
I[µE(s′t) = x]T (s′, a′, s′t) where I is indicator

function (Condition 1)
• C(s, a) = C(s′, a′) (Condition 2)
In other words, for state-action pair equivalence to hold, the

sum of transition probabilities, to each abstract state that these
state-action pair transition to, should match. Second condi-
tion requires the costs of applying corresponding actions to
be identical to each other.
Base Case: For goal-directed infinite horizon MDPs, all goal
states are in an equivalence class: ∀s, s′ ∈ G,µE(s) =
µE(s

′). For finite-horizon case, all goal states at a given depth
are equivalent. Moreover, all non-goal states at the end of the
horizon are also equivalent. Repeated application of these
definitions will compute larger sets of abstractions, until con-
vergence.

It is important to note that ASAP framework does not re-
duce the original MDP M into an abstract MDP as done in
earlier work. The reason is that the framework may abstract
two state-action pairs whose parent states are not equivalent.
It is not possible to represent this as an MDP, since MDP
does not explicitly input a set of SAPs. However, ASAP
framework can be seen as directly abstracting the equivalent
AND-OR graph Gr, in which there is an OR node for each
abstract state x ∈ X , and an AND node for each abstract SAP
u ∈ U . There is an edge from x to u in Gr if there is a state-
action pair (s, a) such that a is applicable in s, µE(s) = x
and µH(s, a) = u. The associated cost with this edge is
C(s, a) which is the same for every such (s, a) pair (follows
from Condition 2). Similarly, there is an edge from u to x if
there is a state-action-state triplet (s, a, st) such that applica-
tion of a in s results in st (with some non-zero probability),
µH(s, a) = u and µE(st) = x. The associated transition
probability is

∑
s′t∈S
I[µE(s′t) = x]T (s, a, s′t) (follows from

Condition 1).
Example: Figure 1 illustrates the AND-OR graph abstrac-
tions on a soccer domain. Here, four players wish to score a
goal. The central player (S0) can pass the ball left, right or
shoot at the goal straight. The top player (S1) can hit the ball
right to shoot the goal. Two players at the bottom (S2, S3)
can hit the ball left for a goal. It should be noted that right
action (S0,R) of central player (S0) leads to (S2) and (S3)
with uniform probabilities. The equivalent AND-OR graph
for this domain is the leftmost graph in the figure. Givan’s AS
conditions check for exact action equivalence. They will ob-
serve that S2 and S3 are redundant players and merge the two
states. Ravindran’s ASAM conditions will additionally look
for mappings of actions. They will deduce that S1’s right is
equivalent to S2’s left and will merge these two states (and
actions) too. They will also notice that S0’s left and right
are equivalent. Finally, our ASAP framework will addition-
ally recognize that S0’s straight is equivalent to S1’s right and
merge these two SAP nodes. Overall, ASAP will identify the
maximum symmetries in the problem.

ASAP framework is a strict generalization of past ap-
proaches. Here, it is important to state that our SAP abstrac-
tion definitions look similar to Ravindran’s ASAM, but there
is a key difference. They constrained SAPs to be equivalent
only if the parent states were equivalent too. They did not
directly use SAP abstractions in planning – they used those
merely as a subroutine to output state abstractions. Our defi-
nitions differ by computing SAP equivalences irrespective of
whether the parent states are equivalent or not, and thereby
reducing the AND-OR graph of the domain further.

Theorem 1. Both AS and ASAM are special cases of ASAP
framework. ASAP will find all abstractions computed by AS
and ASAM.

ASAP reduces to ASAM with an additional constraint that
µE(s) = µE(s

′) when computing SAP abstractions for pair
(s, a) and (s′, a′). AS is simply ASAP with a further con-
straint a = a′ in Conditions 1 and 2.

Finally, we can also prove correctness of our framework,
i.e., an optimal algorithm operating on our AND-OR graph
converges to the optimal value function.
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Figure 1: An example showing abstractions generated by various algorithms on a soccer domain. Givan’s AS, Ravindran’s
ASAM and our ASAP frameworks successively discover more and more symmetries.

Theorem 2. Optimal value functions V ∗Gr(x), Q
∗
Gr(u), com-

puted by Value Iteration on a reduced AND-OR graph Gr,
return optimal value functions V ∗M (s), Q∗M (s, a) for the orig-
inal MDP M . Formally, V ∗Gr(x) = V ∗M (s), and Q∗Gr(u) =
Q∗M (s, a), ∀s ∈ S, a ∈ A s.t. µE(s) = x, µH(s, a) = u.

4 ASAP-UCT
We now present ASAP-UCT, a UCT-based algorithm that
uses the power of abstractions computed via the ASAP frame-
work. Since UCT constructs a finite-horizon MDP tree (see
Section 2.2), states at different depths have to be treated dif-
ferently. Therefore, ASAP-UCT tests state equivalences only
for the states at the same depth. To compute abstractions over
UCT tree, we adapt and extend ideas presented by Jiang et al.
[2014].
How to Compute Abstractions: Algorithm 1 gives the pseu-
docode for computing abstractions using ASAP-UCT . The
algorithm takes as input a UCT Search Tree (ST) and outputs
an Abstracted Search Tree (AST). Starting from the leaves of
the UCT tree, it successively computes abstractions at each
level (depth) all the way up to the root. At each level, it
calls the functions for computing state and state-action pair
abstractions alternately. It is helpful to understand each depth
as consisting of a layer of state nodes and a layer of SAP
nodes above it. We use µdE (µdH) to denote the state (SAP)
equivalence function at depth d. Similarly, we use Sd to de-
note the set of states at depth d and P d to denote the set of
SAP nodes at depth d. To keep the notation simple, we over-
load the equivalence function (map) µdE to also represent the
actual equivalence relationship over state pairs (and similarly
for µdH).

Algorithm 2 gives the pseudocode for the computation of
state abstractions at a depth using conditions from the pre-
vious section. getPartiallyExplored(Sd) returns the subset of
states at depth d not all of whose applicable actions have been
explored. Apply(s) returns the set of all the actions applicable
in s. Following Jiang et al. [2014], we mark all the partially
explored nodes at each depth to be in the same equivalence
class. This is an approximation, but is necessary due to the
limited information about states available in UCT tree at any
given time. For the states all of whose applicable actions have
been explored, we put states (s, s′) in the same equivalence
class if conditions for state equivalence (Definition 1) are sat-
isfied.

Algorithm 3 gives the pseudocode for computing SAP ab-
stractions. Out(s,a) returns the set of all states sampled in the
UCT tree after application of a in s. TX and T ′X are arrays
storing the total transition probabilities to each abstract state
at next level for the two SAPs being compared, respectively.
Two SAP nodes (s, a) and (s′, a′) are put in same equivalence
class if conditions for state-action pair equivalence (Defini-
tion 2) are satisfied.

Algorithm 1 Computing Abstract Search Tree
ComputeAbstractSearchTree(SearchTree ST )
dmax← getMaxDepth(ST ), µdmax+1

H ← {}
for d := dmax → 1 do

µdE ← ComputeAS(Sd, µd+1
H );

µdH← ComputeASAP(P d, µdE );
end for
AST ← SearchTree with Computed Abstractions
Initialize Q-Values of abstract nodes
return AST

Algorithm 2 Abstraction of States

ComputeAS(States Sd, Eq-Map µd+1
H )

SdL ← getPartiallyExplored(Sd)
∀s, s′ ∈ SdL, µdE(s) = µdE(s

′) (base case)
SdI ← Sd \ SdL
for all s, s′ ∈ SdI do

mapping = True;
for all a ∈ Apply(s) do

If(@a′ ∈ Apply(s′): µd+1
H (s, a) = µd+1

H (s′, a′))
mapping = False;

end for
for all a′ ∈ Apply(s′) do

If(@a ∈ Apply(s): µd+1
H (s′, a′) = µd+1

H (s, a))
mapping = False;

end for
if(mapping) then µdE(s) = µdE(s

′)
end for
return µdE

Updating Q-Values: For all the nodes belonging to the same
equivalence class, we maintain a single estimate of the ex-
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pected cost to reach the goal both in the state as well as state-
action layers. In the beginning, Q-values for an abstract node
are initialized with the average of the expected cost of its con-
stituents as shown in Algorithm 1. During the backup phase,
any Q-value update for a node in the original tree is shared
with all the nodes belonging to the same equivalence class in
the abstract tree, effectively replicating the rollout sample for
every node. It should be noted that node expansion as well
as the random roll out after expansion in the UCT tree are
still done in the original flat (unabstracted) space. It is only
during the upward update of the Q-value computation where
abstractions are used.
When to Compute Abstractions: In order to compute ab-
stractions, we need to construct the sampled UCT tree upto a
certain level. But waiting until the full expansion of tree is not
helpful, since the tree would already be constructed and we
would not be able to use the abstractions. In our approach, we
start by allocating a decision time dt for the current step using
a dynamic time allocation strategy (described below). Similar
to Jiang et al. [2014], we then interleave the steps of tree ex-
pansion with abstraction computation. Abstractions are com-
puted after every dt/(l + 1) time units where l is a parame-
ter which can be tuned (we used l = 1 in our experiments).
Since future expansions might invalidate the currently com-
puted abstractions, every phase of abstraction computation is
done over the flat tree. Algorithm 4 provides the pseudocode
for the above procedure. ST denotes the search tree in the flat
space and AST denotes the search tree in the abstract space.

Algorithm 3 Abstraction of State-Action Pairs
ComputeASAP(States-Action Pairs P d, Eq-Map µdE )

for all p = (s, a), p′ = (s′, a′) ∈ P d do
∀x ∈ µdE , TX [x] = 0 and T ′X [x] = 0;
for all si ∈ Out(s, a) do
TX [µdE(si)]+ = T (s, a, si)

end for
for all s′i ∈ Out(s′, a′) do
T ′X [µdE(s

′
i)]+ = T (s′, a′, s′i)

end for
if(∀x ∈ µdE : TX(x) = T ′X(x) & C(s, a) = C(s′, a′))

then µdH(s, a) = µdH(s
′, a′)

end for
return µdH

Algorithm 4 ASAP-UCT Algorithm
ASAP-UCT(StartNode S0, NumAbstractions l)
ST,AST ← S0 //Single Node Search Tree
dt ← getDecisionTime()
while dt is not exhausted do

AST ← ExpandTreeAndUpdateQ(AST )
After every dt/(l + 1) time units
ST ← getFlatTree(AST )
AST ← ComputeAbstractSearchTree(ST )

end while
return argmina∈AQ∗(S0, a) //best action at S0

Adaptive Planning Time Allocation: We assume that the
agent is given an execution horizon (maximum number of de-
cisions to be taken) and a total process time. This setting has
been previously used in the literature for online planning with
UCT [Kolobov et al., 2012]. A key meta-reasoning prob-
lem is the allocation of available time across various decision
steps. Naı̈vely, we may decide to allocate equal time per deci-
sion. However, this can be wasteful in goal-directed settings
since the goal can be reached sooner than the execution hori-
zon. In such scenarios, the time allocated for remaining de-
cisions will be wasted. To counter this, we adapt prior work
on meta-reasoning algorithms for UCT [Baier and Winands,
2012; Baudiš and Gailly, 2012] to implement an adaptive time
allocation strategy. Our approach uses random roll-outs per-
formed during UCT to continually re-estimate the expected
number of steps to reach the goal (effective execution hori-
zon). This is then used to non uniformly divide the remaining
execution time across future decision steps. Since we would
like to allocate less time to later decisions when goal is closer,
we use a decreasing arithmetic progression to divide the avail-
able total running time.
Efficiently Implementing Abstraction Computation:
Computing SAP abstractions naı̈vely would require O(n2)
comparisons, n being the total number of SAP nodes at each
level (we would compare each SAP pair for equivalence).
This can become a bottleneck for large problems with large
number of states and applicable actions. We instead hash
each SAP using its total transition probability to set of next
abstract states as well the cost associated with the transition.
Only the pairs falling in the same hash bucket now need to
be compared bringing down the complexity to O(rk2) where
r is the number of buckets and k is the number of elements
in each bucket. This is crucial for scaling ASAP-UCT as
observed in our experiments.

5 Experimental Evaluation
Our experiments aim to study the comparative performance
of various abstraction approaches in UCT. In Section 5.2
we compare ASAP-UCT with vanilla UCT [Kocsis and
Szepesvári, 2006], AS-UCT [Jiang et al., 2014], and ASAM-
UCT (our novel combination of UCT and Ravindran and
Barto [2004]’s ASAM).

All our experiments are performed on a Quad-Core Intel
i-5 processor. For each parameter configuration we take an
average of 1000 trials. We use 100 as the execution horizon
for Sailing wind and Navigation domains and 40 for Game
of Life domain (as per IPPC instance), although reaching the
goal earlier will stop the execution. The planning horizon
for a decision is an input to each problem. All UCT roll-
outs use random actions. The exploration constant K for
the UCB equation is set as the negative of the magnitude of
current Q value at the node (following [Bonet and Geffner,
2012]). Also, in cases of abstraction computation approaches,
we need to set l, the number of times abstractions are com-
puted for each decision. Since, computing abstractions can be
expensive, l must be a small number. In our experiments we
find that the setting of l as 1 works well for all systems. How
to set this automatically is an important question for future
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Figure 2: ASAP-UCT outperforms all other algorithms on problems from three domains.

work. All algorithms use the adaptive time-allocation strat-
egy, which performs much better than equal time-allocation.

5.1 Domains
We experiment on three diverse domains, Sailing Wind [Koc-
sis and Szepesvári, 2006; Bonet and Geffner, 2012], Game of
Life [Sanner and Yoon, 2011], and Navigation [Sanner and
Yoon, 2011]. We briefly describe these below.
Sailing Wind: An agent in this domain is assigned the task
of sailing from one point to another on a grid. The agent
can move in any direction to an adjacent cell on the grid, as
long as it is not against the stochastic wind direction. The
cost at any time step is a function of the agent movement
and the wind direction. We report on two instances with grid
dimensions 20×20 and 100×100 (#states: 3200, 80000).
Game of Life: An oracle agent is given the objective to max-
imize the number of alive cells in a cellular automata envi-
ronment modeled as a grid. Live cells continue into the next
generation as long as there is no overpopulation or underpop-
ulation as measured by the number of adjacent cells. Simi-
larly, a dead cell can become alive in the next generation due
to a reproduction between adjacent cells. Additionally, an
agent can make exactly one cell live on to the next genera-
tion. The dynamics of the game are stochastic in nature, set
differently for different cells. The number of live cells de-
termines the reward at every time step. Our empirical results
are reported on two IPPC-2011 instances, of dimensions 3×3
and 4×4 (#states: 29, 216).
Navigation: A robot has to navigate from a point on one side
of the river approximated as a grid to a goal on the other side.
The robot can move in one of the four possible directions.
For each action, the robot arrives in a new cell with a non-
zero drowning probability and unit cost. If a robot drowns,
it will retry navigating from the start state. We report on two
IPPC instances of sizes 20×5 and 10×5 (#states: 100, 50).

5.2 ASAP-UCT vs. Other UCT Algorithms
We compare the four algorithms, vanilla UCT, AS-UCT,
ASAM-UCT and ASAP-UCT, in all three domains. For each

domain instance we vary the total time per trial and plot the
average cost obtained over 1000 trials. As the trial time in-
creases each algorithm should perform better since planning
time per step increases. Also, we expect the edge of abstrac-
tions over vanilla UCT to reduce given sufficient trial time.

Figures 2 shows the comparisons across these six prob-
lems in three domains. Note that time taken for a trial also
includes the time taken to compute the abstractions. In al-
most all settings ASAP-UCT vastly outperforms both UCT,
AS-UCT and ASAM-UCT. ASAP-UCT obtains dramatically
better solution qualities given very low trial times for Sail-
ing Wind and Game of Life, incurring up to 26% less cost
compared to UCT. Its overall benefit reduces as the total trial
time increases, but almost always it continues to stay better
or at par. We conducted one tailed student’s t-test and found
that ASAP-UCT is statistically significantly better than other
algorithms with a significance level of 0.01 (99% confidence
interval) in 41 out of 42 comparisons (six graphs, 7 points
each). The corresponding error bars are very small and hence,
not visible in the figures.

Discussion: We believe that the superior performance of
ASAP-UCT is because of its effectiveness in spite of noise
in sampled trees. AS and ASAM conditions are strict as they
look for all pairwise action equivalences before calling two
states equivalent. Such complete set of equivalences are hard
to find in UCT trees where some outcomes may be missing
due to sampling. ASAP-UCT, in contrast, can make good use
of any partial (SAP) equivalences found. ASAM’s perfor-
mance does not improve over AS probably because its gain
due to symmetries is undermined by increase in abstraction
computation time.

We also experimented with the Canadian Traveler Problem
(CTP) [Bonet and Geffner, 2012] and Sysadmin [Guestrin et
al., 2003], but found that no abstraction algorithm gives per-
formance gains over vanilla UCT. For CTP, we believe this
is due to lack of symmetries in the domain. This suggests
that some domains may not be that amenable to abstractions
which is not too surprising. For the Sysadmin domain, we are
able to find symmetries, however, due to exponential stochas-
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tic branching factor (in number of state variables), we are not
able to exploit them efficiently in UCT. Our empirical find-
ings validate this claim as time taken to compute abstractions
in this domain is as high as ≈ 50% of total time for a trial.
Handling such domains is a part of future work.
Effect of Approximation Parameters: In our experiments,
AS-UCT does not always perform better than UCT, rather, it
often underperforms. This is surprising and contradicts previ-
ous observations [Jiang et al., 2014], which were based upon
a single, deterministic domain of Othello. This could be due
to the fact that our experiments set the parameters εT and εC
(see Section 2.3) zero for abstraction frameworks. However,
we find that even after incorporating a range of approxima-
tion parameters in AS-UCT, ASAP-UCT without those pa-
rameters continues to perform significantly better.

6 Conclusion and Future Work
This paper develops a novel class of state-action pair (SAP)
abstractions, which generalizes and extends past work on ab-
stractions in MDPs. SAP abstractions find more symmetries
in a domain compared to existing approaches and convert an
input MDP into a reduced AND-OR graph. We present a new
algorithm, ASAP-UCT, which computes these abstractions
in an online UCT framework. ASAP-UCT obtains signifi-
cantly higher quality policies (up to 26% reduction in policy
costs) compared to previous approaches on three benchmark
domains.

We have released our implementation for a wider use by
the research community. In the future, we plan to extend
our implementation to handle really large problems that are
described in a factored or first-order representation such as
RDDL [Sanner, 2010]. We will also investigate the poten-
tial boosts in solution quality by integrating abstractions with
recent work in factored MCTS [Cui et al., 2015].

Acknowledgements
We are grateful to Blai Bonet and Hector Geffner for shar-
ing the base code of UCT. We thank Nan Jiang and Balara-
man Ravindran for helpful and interesting discussions. Ankit
Anand is supported by TCS Research Scholars Program.
Mausam is supported by a Google research award.

References
[Anand et al., 2015] Ankit Anand, Aditya Grover, Mausam,

and Parag Singla. A Novel Abstraction Framework for
Online Planning. In AAMAS, 2015.

[Baier and Winands, 2012] Hendrik Baier and Mark HM
Winands. Time Management for Monte-Carlo Tree Search
in Go. In Advances in Computer Games. Springer, 2012.

[Balla and Fern, 2009] Radha-Krishna Balla and Alan Fern.
UCT for Tactical Assault Planning in Real-Time Strategy
Games. In IJCAI, 2009.
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