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Abstract
Real world temporal planning often involves deal-
ing with uncertainty about the duration of actions.
In this paper, we describe a sound-and-complete
compilation technique for strong planning that re-
duces any planning instance with uncertainty in the
duration of actions to a plain temporal planning
problem without uncertainty.
We evaluate our technique by comparing it with a
recent technique for PDDL domains with temporal
uncertainty. The experimental results demonstrate
the practical applicability of our approach and show
complementary behavior with respect to previous
techniques. We also demonstrate the high expres-
siveness of the translation by applying it to a sig-
nificant fragment of the ANML language.

1 Introduction
For many real world planning problems there is uncertainty
about the duration of actions. For example, robots and rovers
have transit times that are uncertain due to terrain, obstacle
avoidance, and traction. There is also uncertainty in the du-
ration of manipulation and communication tasks. When there
are no time constraints, and plan duration is unimportant, this
uncertainty can often be ignored. However, if there are exoge-
nous events that affect action conditions, or time-constrained
goals, action durations and uncertainty must be considered.

In general, temporal conditional planning is very hard, par-
ticularly for actions with duration uncertainty [Younes and
Simmons, 2004; Mausam and Weld, 2008; Beaudry et al.,
2010]. In practice, most practical planners take one of two
much simpler approaches: 1) plan using expected action du-
rations, and rely on runtime replanning and plan flexibility to
deal with actions that take more or less time than expected,
or 2) plan using worst case action durations. The first of these
approaches is risky – there is no guarantee that the plan will
succeed or that runtime replanning can achieve the goals. The
second approach, while generally more conservative, can also
fail if there are time constraints or goals with lower bounds
(e.g. an action should not be completed, or a goal should not
be completed before some particular time).

Recently, [Cimatti et al., 2015] addressed these issues by
explicitly modeling duration range for actions, and devising a

planner that soundly reasons to produce robust plans. In that
work, the authors introduced the “Strong Planning Problem
with Temporal Uncertainty” (SPPTU) as the problem of find-
ing a sequence of action instances and fixed starting times,
such that for every possible duration of each action in the
plan, the plan is valid and leads to the goal. In this work, we
address the same problem, but consider a much richer lan-
guage for representing temporal planning domains with ac-
tion duration uncertainty. We use a variable-value language
allowing effects at arbitrary time points during an action and
durative conditions over arbitrary sub-intervals of actions. We
address the SPPTU by automatically translating a planning
instance with uncertainty on action durations into a plain tem-
poral planning problem with controllable action durations.
We exploit all the features in the planning language to cast the
temporal uncertainty in action durations into discrete uncer-
tainty over the problem variables. This compilation enables
the solution of SPPTU using existing techniques and tools
for temporal planning.

We also present an experimental evaluation of the compi-
lation technique showing that it can be practically applied on
very expressive domains.

Related Work. Temporal uncertainty is a well-understood
concept in scheduling and has been widely studied [Mor-
ris, 2006; Santana and Williams, 2012; Muise et al., 2013;
Cimatti et al., 2014]. The problem we address can be seen as
a generalization of Strong Controllability for Temporal Prob-
lems [Vidal and Fargier, 1999; Peintner et al., 2007] to plan-
ning rather than scheduling. Dealing with planning is harder
because the actions (and thus the time points associated with
them) in a plan are not known a-priori and must be discov-
ered; moreover, causal relationships are much more complex.

In temporal planning, duration uncertainty is a known
challenge [Bresina et al., 2002], but few temporal planners
address it explicitly. Some temporal planners [Frank and
Jónsson, 2003; Cesta et al., 2009] cope with this issue by
generating flexible temporal plans: instead of fixing the ex-
ecution time of each action, they return a (compactly repre-
sented) set of plans that must be scheduled at run-time by
the plan executor. This approach cannot guarantee plan ex-
ecutability and goal achievement at runtime, because there
is no formal modeling of the boundaries and contingencies
in which the system is going to operate. In addition, this re-
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quires that the executor be able to schedule activities at run-
time. Flexibility and controllability are complementary: con-
trollability provides guarantees with respect to the modeled
uncertainty, while flexibility allows the plan to be adjusted
during execution. In principle, we can use any temporal plan-
ner (e.g., VHPOP) that can generate flexible plans in combi-
nation with our compilation to generate a flexible strong plan.
IxTeT [Ghallab and Laruelle, 1994] was the first attempt to
apply the results in temporal reasoning under uncertainty to
planning, but the planner demanded the scheduling of a Sim-
ple Temporal Network with Uncertainty (STNU) [Vidal and
Fargier, 1999] by the plan executor. Here, we aim at generat-
ing plans that are guaranteed to work regardless of the tem-
poral uncertainty. IxTeT deals with dynamic controllability: it
generates a strategy for scheduling the actions depending on
observations. Although these plans can work in more situa-
tions, they are also complex to generate, understand, and exe-
cute. Strong plans are required for safety critical systems like
space applications, where guarantees are needed, and compu-
tational power is limited.

In contrast to [Beaudry et al., 2010] we are concerned with
qualitative uncertainty: we are not dealing with probability
distributions, but only with durations that are bounded in con-
vex intervals. We aim to guarantee goal achievement, while
Beaudry et al. maximize the probabilistic expectation.

There is a clear parallel between the problem we are solv-
ing and conformant planning [Ghallab et al., 2004]. In this
sense, our work is similar to [Palacios and Geffner, 2009] in
which the authors transform conformant planning into deter-
ministic planning, although the translation is very different.

The closest works to ours are Cimatti et al. (2013, 2015).
In the former, the authors present a logical characterization
of the SPPTU for timelines with temporal uncertainty, as
well as a first-order encoding of the problem having bounded
horizon. Cimatti et al. (2015) cast this in PDDL by extend-
ing state-space temporal planning. In this paper, we general-
ize both these frameworks – we do not impose any bounded
horizon for the problem and we consider a more expressive
language allowing disjunctive preconditions, effects at arbi-
trary time points during actions and durative conditions on
arbitrary sub-intervals. In Section 4 we provide a comparison
with the techniques proposed in [Cimatti et al., 2015].

2 Modeling Duration Uncertainty
In [Cimatti et al., 2015], the authors propose an extension
of PDDL 2.1 to model actions with uncontrollable duration.
In this paper we use a richer language that includes timed-
initial-literals (PDDL 2.2), durative goals (PDDL 3.0), and
multi-valued variables (PDDL 3.1). In addition, we extend the
language to allow conditions expressed over sub-intervals of
actions, and effects at arbitrary time points during an action.
These features turn out to be particularly useful for encoding
many problems of interest, and for encoding our translation.1
We first provide some brief background on PDDL 2.x and
then describe our extensions.

1To simplify the presentation, we exclude some features of
PDDL that are orthogonal to our approach of handling temporal un-
certainty, such as numeric variables and domain axioms.

In PDDL 2.2, a planning problem P is represented by a
tuple P =̇ 〈V, I, T,G,A〉 where:
• V is a set of propositions.
• I is the initial state: a complete set of assignments of value
T or F to all propositions in V .
• T is a set of timed-initial-literals, which are tuples 〈[t]f :=
v〉 with f ∈ V and t ∈ R+ is the wall-clock time at which
f will be assigned the Boolean value v.

• G ⊆ V is a goal state: a set of propositions that need to be
true when the plan finishes executing.

• A is a set of durative actions a, each of the form
a =̇ 〈da, Ca, Ea〉 where:
– da ∈ R+ is the action duration. Let sta and eta be the

start and end times of action a then da =̇ eta − sta.
– Ca is the set of conditions, each p ∈ Ca is of the form
〈(stp, etp) f = v〉 where stp and etp indicate the start
and end time points of the condition p and are restricted
to be equal to sta or eta. When stp = etp = sta or
stp = etp = eta then p is an instantaneous at-start
or at-end condition holding at the stp time point. When
stp = sa and etp = ea then p is an overall durative con-
dition holding in the open interval (stp, etp). f ∈ V is a
proposition with value v = T or v = F over the specified
time period.

– Ea is a set of instantaneous effects, each e ∈ Ea is of
the form 〈[te] f := v〉 where te =̇ sta or te =̇ eta is the
time at which the at-start or at-end effect e occurs.

We allow disjunctive action conditions p of the form
〈(stp, etp)

∨n
i=1 fi = vi〉 in which p is satisfied if at least

one disjunct is satisfied for every time point in (stp, etp).
A plan π of P is a set of tuples 〈ta, a〉, in which actions

a ∈ A are associated to wall-clock start times ta. π is valid if
it is executable in I and achieves all goals in G.

We extend the above features of PDDL 2.2 to include the
following features from PDDL 3.0 and 3.1:
• Multi-valued variables, introduced in PDDL 3.1, allow

variables f in V to have domains Dom(f) with arbitrary
values, instead of just T and F.
• Durative goals, which can be modeled as constraints in

PDDL 3.0, allow each goal g ∈ G to be associated with an
interval [stg, etg] specifying when the goal must be true.
We also allow the time constant etπ , which indicates that
the goal must be reached at the end of the plan.

Beyond PDDL. Additionally, the key features in our frame-
work that go beyond PDDL are: (1) actions can have uncon-
trollable durations, and (2) action conditions and effects are
not restricted to action start or end time points. Specifically:
1. Action duration da is replaced by an interval [dlba , d

ub
a ]

specifying lower- and upper-bound values on action dura-
tion: dlba ≤ da ≤ duba . We further divide the set of actions
A into two subsets:
• Controllable actionsAc, where the duration can be cho-

sen by the planner within the bounds [dlba , d
ub
a ].

• Uncontrollable actions Au, where the duration is not
under the planner’s control.

2. Instead of constraining the times stp and etp of each con-
dition p or te of effect e to be either sta or eta, we allow

1632



Figure 1: A graphical representation of the running example.

each of them to take an arbitrary value: sta+ δ or eta− δ,
with δ ∈ R+ (the temporal constraint stp ≤ etp should
still be satisfied). We require δ to be less than or equal to
the action duration to prevent effects before the start or
after the end of the action2.
Analogously to PDDL, If stp = etp the condition is in-
stantaneous and is required to hold at the single point stp,
otherwise, the condition is required to hold in the open in-
terval (stp, etp).
A (strong) plan πu for a planning problem with uncertainty

Pu is valid iff each instance of πu, obtained by fixing the
duration da for each uncontrollable action a ∈ πu to any
value within [dlba , d

ub
a ], is a valid plan.

Example. A rover, initially at location l1, needs to trans-
mit some science data from location l2 to an orbiter that is
only visible in the time window [14, 30]. The rover can move
from l1 to l2 using an action move (abbreviated µ) that has
uncontrollable duration between 10 and 15 time units. The
data transmission action transmit (abbreviated τ ) takes be-
tween 5 and 8 time units to complete. The goal of the rover is
to transmit the data to the orbiter. Because of the harsh day-
time temperatures at location l2 the rover cannot arrive at l2
until the sun goes behind the mountains at time 15. Figure 1
illustrates this scenario, which we encode as:

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}
I =̇ {pos = l1, visible = F, sent = F, hot = T}
T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G =̇ {〈[etπ, etπ] sent = T〉}
Ac =̇∅
Au =̇ {〈[10, 15], Cµ, Eµ〉, 〈[5, 8], Cτ , Eτ 〉}
Cµ =̇ {〈(stµ, stµ) pos = l1〉, 〈(etµ, etµ) hot = F〉}
Cτ =̇ {〈(stτ , etτ ) pos = l2〉, 〈(stτ , etτ ) visible = T〉}
Eµ =̇ {〈[etµ] pos := l2〉}
Eτ =̇ {〈[etτ ] sent := T〉}

Figure 2 graphically shows a valid plan:

πu =̇ {〈6,move(l1 → l2)〉, 〈22, transmit〉}

Note that all the actions in πu have uncontrollable duration.
2In our implementation, which handles the ANML modeling lan-

guage (see Section 4), we allow even more freedom in expressing
stp, etp, and te such as: (i) stp = sta + 0.3 × duration(a) (i.e.,
condition starts at 30% into the total action execution time) or (ii)
conditions and effects outside of the action duration.

move transmit

visible = F visible = T visible = F

hot = T hot = F

time
...

6 16 21 22 271514 30

Figure 2: Graphical execution of πu. Striped regions repre-
sent the uncertainty in the action duration.

Discussion. In general, finding a strong plan for a problem
with duration uncertainty is more complex than simply con-
sidering the maximum or the minimum duration for each ac-
tion. Consider our rover example and its strong plan shown
in Figure 2. The µ (i.e., move) action must terminate before
the transmit action can start and µ cannot terminate before
time 15 due to the temperature constraint. If we only con-
sider the lower-bound on the duration of µ (i.e., planning with
dlbµ = 10) one valid plan is: πlb=̇{〈11, µ〉, 〈22, τ〉}. However,
because of the uncertainty in the actual execution duration of
µ, it may actually take 14 time units to arrive at l2. Thus,
the rover would start transmitting at time 22 before it actu-
ally arrives at l2 at time 11 + 14 = 25. Thus, plan πlb is
invalid. Similarly, if we consider only the maximal duration
(i.e., planning with dubµ = 15), then one possible plan would
be: πub =̇ {〈1, µ〉, 〈22, τ〉}. However, during the actual exe-
cution of µ, it may again take only 11 time units (and not the
planned maximum 15 time units) to arrive at l2. This would
violate the constraint that it should arrive at l2 after t = 15 to
avoid the sun and thus πub is also not a valid plan. In some
special cases it is possible to consider only the maximal dura-
tion for an action but this optimization is not sound in general.

In contrast to ordinary temporal planning, it is not possi-
ble to compile away disjunctive conditions using the action
duplication technique [Gazen and Knoblock, 1997], because
the set of satisfied disjuncts in the presence of uncertainty
can depend on the contingent execution. For example, con-
sider an action a starting at time t, where two Boolean vari-
ables p1 and p2 are F. a has uncontrollable duration in [l, u],
an at-start effect e1 =̇ 〈[sta] p1 := T〉 and two at-end effects
e2=̇〈[eta]p1 := F〉 and e3=̇〈[eta]p2 := T〉. An at-start condi-
tion p1 ∨ p2 of another action b is satisfied anywhere between
the start of the action a and the next deletion of p2. Thus, b
can start anytime within d=̇(t+l, t+u]. However, if we com-
pile away this disjunctive condition by replacing b with two
actions b1 and b2: one with an at-start condition p1 and the
other with an at-start condition p2, then b1 is not executable
within d because there is no time point in d in which we can
guarantee that p1 = T (because a may take the minimum du-
ration l and thus the at-end effect e2 will occur at t+ l to set
p1 = F). Similarly, we cannot start b2 within d because we
also cannot guarantee that p2 = T at any time point within d
(because amay take the maximum duration u and thus e3 that
set p2 = T will not happen until t+u). Thus, compiling away
disjunctive conditions leads to incompleteness when there are
uncontrollable durative actions. For this reason it is important
to explicitly model disjunctive conditions in our language.
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3 Compilation Technique
In this section, we present our compilation technique, which
can be used to reduce any planning instance P having dura-
tion uncertainty into a temporal planning instanceP ′ in which
all actions have controllable durations. The translation guar-
antees that P is solvable if and only if P ′ is solvable. More-
over, given any plan for P ′ we can derive a plan for P . This
approach comes at the cost of duplicating some of the vari-
ables in the domain, but allows for the use of off-the-shelf
temporal planners.

The overall intuition behind the translation is the follow-
ing. Consider the transmit (τ ) action in our example, and
suppose it is scheduled to start at time k. Let v be the value
of sent at time k + 5; since transmit has an at-end effect
〈[etτ ] sent := T〉, we know that the value of the variable
sent during the interval (k+5, k+8] will be either v or T de-
pending on the duration of the action. After time k+8 we are
sure that the effect took place, and we are sure of the value of
sent until another effect is applied. Since we are not allowed
to observe anything at run-time in strong planning, we need
to consider this uncertainty in the value of sent and produce
a plan that works regardless. Since sent could appear as a
condition of another action (or as a goal condition, as in our
example) we must rewrite such conditions to be true only if
both T and v are values that satisfy the condition.

To achieve this, we create an additional variable sentσ (the
shadow variable of sent). This secondary variable stores the
alternative value of sent during uncertainty periods. When
there is no uncertainty in the value of sent, both sent and
sentσ will have the same value. In this way, all the conditions
involving sent can be rewritten in terms of sent and sentσ
to ensure they are satisfied by both the values.

In general, our translation works by rewriting a planning
instance P =̇ 〈V, I, T,G,A〉 into a new planning instance
P ′ =̇ 〈V ′, I ′, T ′, G′, A′〉 that does not contain actions with
uncontrollable duration.
Uncertain Variables. The first step is to identify the set of
variables L ⊆ V that appear as effects of uncontrollable ac-
tions and are executed at a time depending on the end of the
action.

L =̇ {f | a ∈ Au, 〈[t] f := v〉 ∈ Ea, t =̇ eta − δ}
Intuitively, this is the set of variables that can possibly have
uncertain value during plan execution. A variable that is mod-
ified only at times linked to the start of actions or by timed
initial literals, cannot be uncertain as neither the starting
time of actions nor the timed initial literals can be uncer-
tain in our model. In our running example, the set L becomes
{sent, pos}.

We now define the set V ′ as the original variables V plus a
shadow variable for each variable appearing in L.

V ′ =̇ V ∪ {fσ | f ∈ L}
We use the pair of variables f and fσ to represent uncertainty:
if f = fσ we know that there is no uncertainty in the value of
f , while if f 6= fσ we know that the actual value of f in the
original problem is either f or fσ .
Disjunctive Conditions. At the end of Section 2, we out-
lined the reason why existing approaches of compiling away

disjunctive conditions will not work with uncontrollable ac-
tion durations. In order to rewrite a disjunctive condition
p =̇ 〈(stp, etp)

∨n
i=1 fi = vi〉 we need to ensure that the

result is satisfied if and only if both the values of f and fσ for
each f ∈ L satisfy p. For this reason, we define an auxiliary
function χ(ψ) that takes a single disjunctive condition in P
and returns a set of disjunctive conditions in P ′.

χ(ψ)=̇


{〈f = v〉} if ψ =̇ 〈f = v〉, f 6∈ L
{〈f = v〉, 〈fσ = v〉} if ψ =̇ 〈f = v〉, f ∈ L
{r ∨ s | r ∈ χ(ψ1), s ∈ χ(ψ2)} if ψ =̇ ψ1 ∨ ψ2

For example, the condition of the τ action, pos = l2, is trans-
lated as the two conditions pos = l2 and posσ = l2. Analo-
gously, assuming that both f and g are in L, a given condition
(f = T) ∨ (g = F) in P is translated by function χ as the set
of conditions {(f = T) ∨ (g = F), (fσ = T) ∨ (g = F), (f =
T) ∨ (gσ = F), (fσ = T) ∨ (gσ = F)} in P ′.
Uncertain Temporal Intervals. We also need to identify the
temporal interval in which the value of a given variable can
be uncertain. Given an action a with uncertain duration da in
[l, u], let λ(t) and ν(t) be the earliest and latest possible times
at which an at-end effect at t =̇ eta − δ may happen. Thus:
λ(t) =̇ sta + l − δ and ν(t) =̇ sta + u − δ. Both functions
are equal to t if t =̇ sta + δ. For example, consider the effect
e1 =̇ 〈[etτ ] sent := T〉 of action τ . We know that the duration
of transmit is uncertain in [5, 8], therefore the effect can be
applied between λ(etτ ) =̇ stτ + 5 and ν(etτ ) =̇ stτ + 8 and
the sent variable has an uncertain value within that interval.
Uncontrollable Actions. For each uncontrollable action
a =̇ 〈[l, u], Ca, Ea〉) in Au in the original model we create a
new action a′ =̇ 〈[u, u], Ca′ , Ea′〉 in A′

c. Specifically, we first
fix the maximal duration u as the only allowed duration for a′
and then insert appropriate effects and conditions during the
action to capture the uncertainty.

The effects Ea′ are partitioned in two sets Ela′ and Eua′ to
capture possible values within the uncertain action execution
duration. The conditions Ca′ are also composed of two ele-
ments: the rewritten conditions CRa′ and the conditions added
to protect the new effects CEa′ (thus C ′ =̇ CRa′ ∪ CEa′ ).
Rewritten conditions CRa′ : are obtained by rewriting existing
action conditions by means of the χ function. The intervals
specifying the duration of the conditions are preserved; since
the action duration is set to its maximum, the intervals of the
conditions are “stretched” to match their maximal duration.

CRa′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

For example, the set CRτ for the τ action is: {〈(stτ , stτ +
8) pos = l2〉, 〈(stτ , stτ + 8) posσ = l2〉, 〈(stτ , stτ +
8) visible = T〉}. This requires variables visible, pos and
posσ to be true throughout the execution of τ .
Compiling action effects: The effects of the original action are
duplicated: both the affected variable f and its shadow fσ are
modified, but at different times. We first identify the earliest
and latest possible times at which an effect can happen due
to the duration uncertainty (see earlier discussion on λ(t) and
ν(t)). We then apply the effect on fσ at the earliest time point
λ(t), and at the latest time point ν(t) we re-align f and fσ by
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transmit

at l2, visible

sent← T

transmit′

at l2, visible, at l2σ
sentσ

sentσ ← T sent← T

Figure 3: Graphical view of the original transmit action in-
stance (top) and its compilation (bottom).

also applying the effect on the original variable f :

Ela′ =̇ {〈[λ(t)] fσ := v〉 | 〈[t] f := v〉 ∈ Ea}

Eua′ =̇ {〈[ν(t)] f := v〉 | 〈[t] f := v〉 ∈ Ea}
For example, the τ action has Elτ =̇ {〈[stτ +5] sentσ := T〉}
and Euτ =̇ {〈[stτ + 8] sent := T〉}.
Additional conditions CEa′ : let t =̇ eta − δ be the time of an
at-end effect that affects the value of f . In order to prevent
other actions from changing the value of f during the inter-
val (λ(t), ν(t)] where the value of f is uncertain, we add a
condition in CEa′ to maintain the value of fσ throughout the
uncertain duration (λ(t), ν(t)].

CEa′ =̇ {〈(λ(t), ν(t)) fσ = v〉, | 〈[t] f := v〉 ∈ Ea} ∪
{〈(ν(t), ν(t)) fσ = v〉 | 〈[t] f := v〉 ∈ Ea}

We are in fact using a left-open interval (λ(t), ν(t)] by spec-
ifying the same condition on the open interval (λ(t), ν(t))
and the single point [ν(t)]. Since the effect on fσ (belong-
ing to Ela′ ) is applied at time λ(t), the condition is sat-
isfied immediately after the effect and we want to avoid
concurrent modifications of either f or fσ until the uncer-
tainty interval ends at ν(t). For example, the τ action has
CEτ ′ =̇ {〈(stτ + 5, stτ + 8) sentσ = T〉}. The full compi-
lation of the τ action is depicted in Figure 3.
Controllable actions: are much simpler. For each
a =̇ 〈[l, u], Ca, Ea〉 ∈ Ac we introduce a replacements
action a′ =̇ 〈[l, u], Ca′ , Ea′〉 ∈ A′

c, in which: (1) each
condition in C is rewritten to check the values of both the
variables and their shadows, and (2) each effect is applied to
a variable and its shadow, if any.

Ca′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

Ea′ =̇ Ea ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ Ea}

Initial state I: is handled by initializing variables and their
corresponding shadow variables in the same way as in the
original problem.

I ′ =̇ I ∪ {fσ = v | f ∈ L, f = v ∈ I}

For example, the initial state of our running problem is the
original initial state plus {sentσ = F, posσ = l1}.
Timed Initial Literals: T ′ are set similarly to the effects.

T ′ =̇ T ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ T}

In our example, we do not have timed initial literals operating
on uncertain variables, thus T ′ =̇ T .

Goal conditions: G is augmented to consider both the origi-
nal variables and the shadow variables, without modifying the
application times as they are fixed and cannot be uncertain.

G′ =̇G ∪ {〈[t1, t2] fσ = v〉 | f ∈ L, 〈[t1, t2] f = v〉 ∈ G}

In our example, the set G′ becomes {〈[etπ, etπ] sent = T〉,
〈[etπ, etπ] sentσ = T〉}.
Discussion: This compilation is sound and complete, in the
sense that the original problem is solvable if and only if the
resulting problem is solvable3. Given any plan for the rewrit-
ten temporal planning problem, it is automatically a strong
plan for the original problem (with the obvious mapping from
the rewritten to the original actions).

The compilation produces a problem that: (i) has at most
twice the number of variables of the original problem, (ii)
at most twice the initial and timed assignments and (iii) ex-
actly the same number of actions. The only point in which the
compilation might produce exponentially large formulae is in
the application of the χ function, which is exponential in the
number of disjuncts constraining variables appearing in L.

4 Implementation and Experiments
We conducted two sets of experiments. In the first, we com-
pare our approach against the techniques proposed in [Cimatti
et al., 2015]. This is the only domain-independent planner
that we are aware of that can find strong plans for PDDL
2.1 planning problems with uncontrollable durations. For this
experiment, we use an extension to PDDL 2.1 that includes
actions with uncontrollable durations (but none of the other
extensions that we described in Section 2 such as precon-
ditions and effects at arbitrary times, multi-valued variables,
timed-initial-literals, or disjunctive preconditions). In the sec-
ond, we show the applicability of our technique on a very
expressive fragment of the ANML [Smith et al., 2008] lan-
guage extended with uncertainty in action durations. Except
for action duration uncertainty, ANML natively supports all
the features described in Section 2.

PDDL with duration uncertainty. Cimatti et al. (2015)
extended the COLIN planner [Coles et al., 2012] to solve
SPPTUs. They address the problem by substituting the STN
scheduler with a solver for strong controllability of STNUs.
This simple replacement yields a solver that is sound but in-
complete for SPPTU because of the ordering constraints that
are checked by the scheduler. Following this idea, Cimatti et
al. propose two techniques to overcome the incompleteness
based on the reordering of actions in the plan. “Last Achiever
Deordering” (LAD) is a sound-but-incomplete technique that
tries to limit the incompleteness by using a least-commitment
encoding of the STNU by considering, for each condition in
the plan, the last achiever of the condition, thus freeing the
plan from being a total order. “Disjunctive Reordering” (DR)
is a sound-and-complete technique obtained by considering,
at each step, all the possible valid action reorderings using a
disjunctive form of STNU.

3An extended version of this paper including the proof is avail-
able at http://es.fbk.eu/people/amicheli/resources/ijcai2015.
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Figure 4: Experimental results. Cumulative time plot (left) of the solving time for the PDDL benchmarks. Scatter plot (center)
of the running time in seconds for the compilation approach (solved using the COLIN planner) against the DR approach. Results
for the ANML benchmarks (right table).

We compare against this approach by first compiling away
temporal uncertainties and then using both the COLIN and
POPF planners to solve the compiled instances4. We com-
pared our sound and complete technique against both the
complete DR and the incomplete LAD approaches presented
by Cimatti et al.. We used a timeout of 600 seconds, with
8 GB of memory and the full benchmark set of 563 problems
described in [Cimatti et al., 2015].

The left plot of Figure 4 reports the cumulative time of
the three techniques and the “Virtual Best” solver, obtained
by picking the best solving technique for each instance. The
central scatter-plot compares our technique (instantiated with
COLIN) with the DR approach. The left plot shows that the
compilation technique cannot solve as many instances as DR
or LAD. However, we note that the “Virtual Best” solver
solves many more problems than both DR and LAD. This
shows that the techniques are complementary: problem in-
stances that cannot be solved by LAD or DR are solved
quickly by our compilation, and vice-versa. This situation is
also visible in the scatter plot: there is a clear subdivision of
the problem instances solved by these two different planners.

Our investigation indicates that the main factor that hin-
ders the performance of our approach is the “clip-action” con-
struction [Fox et al., 2004] needed to reduce our compilation
to PDDL 2.1. Our compilation generates actions with condi-
tions and effects that occur at intermediate times. Compiling
this to PDDL 2.1 requires three PDDL 2.1 actions for each
action in Au: a container action, and two actions inside the
container action that are clipped together. This deepens the
search and lengthens the plans for COLIN and POPF.

ANML with duration uncertainty. As described in Sec-
tion 2 and 3, our framework handles many useful features be-

4Our approach allows the use of any PDDL2.1 planner that can
handle required concurrency. Unfortunately, many temporal plan-
ners such as LPG and TemporalFastDownward do not support this,
and therefore cannot find solutions to the problems generated by our
compilation.

yond PDDL 2.1. Some of these can be represented in higher
levels of PDDL (e.g., multi-valued variables), some cannot
(e.g., arbitrary timed action conditions and effects). While
comparing against current state-of-the-art in PDDL2.1 shows
the feasibility of our approach, it restricts us to a small subset
of features that can be handled by our compilation. Moreover,
as discussed above, the limitations of PDDL 2.1 adversely
impacts the performance of our approach.

To show the full expressive potential of our approach,
we used the Action Notation Modeling Language (ANML)
[Smith et al., 2008], which can natively model all those con-
straints. ANML is a variable-value language that allows high-
level modeling, complex conditions and effects, HTN de-
composition and timeline-like temporal constraints. Our only
addition to ANML is the capability to model uncertain ac-
tion durations: duration :in [l, u]where l and u are
constant values specifying the lower and upper bounds on the
duration of a. We name our ANML extension: ANuML.

We implemented our compilation approach in an auto-
matic translator that accepts an ANuML planning instance
and produces plain ANML. We then use the FAPE [Dvo-
rak et al., 2014] planner to produce a plan for the compiled
ANML problem instance. To the best of our knowledge no
other approach is able to solve the problems we are dealing
with in ANML. We considered two domains adapted from
the FAPE distribution, namely “rover” and “handover”. The
former models a remote rover for scientific operations, sim-
ilar to our running example, while the latter models a situa-
tion in which two robots must synchronize to exchange items.
Additionally, we model a “match” domain derived from the
“matchcellar” domain used in IPC 2011. For each domain,
we tested with three different configurations: different initial
states, goals, and variable domains.

The right table in Figure 4 compares the time needed for
FAPE to produce a plan ignoring the temporal uncertainty
(i.e. considering the environment to be completely coopera-
tive) with the time needed to solve the compiled problem.

Although the performance of the encoding depends on the
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planning instance, the results show that the slowdown is ac-
ceptable for the tested instances. An exception is “handover
3”, in which the translation shows a significant slowdown.
We remark that this is not a comparison between two equiv-
alent techniques, as the two columns correspond to results
in solving very different problems: plain temporal planning
vs. strong planning with temporal uncertainty. Instead, this
is an indication of the slowdown introduced by the transla-
tion compared to the same problem without uncertainty. Even
though the results are preliminary, we can infer that our ap-
proach is more than a theoretical exercise and can be practi-
cally applied for expressive temporal planning domains mod-
eled natively in ANML.

5 Future Work
While the preliminary results are promising, we are consider-
ing several possible extensions.
Model simplification: it is sometimes possible to simplify a
strong planning problem with temporal uncertainty by con-
sidering the maximal or minimal duration of an action having
uncertain duration. As we discussed in Section 2, this “worst-
case” approach is in general unsound; nonetheless, it is pos-
sible to recognize some special cases in which it is sound and
complete. This simplification can be done upfront and could
be beneficial for both our compilation and the approaches
in [Cimatti et al., 2015].
Increase expressiveness: Even though the formalization we
presented is quite expressive and general, the ANML lan-
guage has many features that are not covered. A prominent
example is the support of conditional effects, which cannot
be expressed in our language but are possible in both ANML
and PDDL. We note that, analogously to disjunctive precon-
ditions, the common compilation of conditional effects is un-
sound in the presence of temporal uncertainty, because it
transforms a possibly uncontrollable effect into a controllable
decision for the planner.
Improve performance: Finally, we would like to study ways
to overcome the disappointing performance of the compila-
tion into PDDL by hybridizing the “native” DR and LAD
techniques with our approach to exploit their complementar-
ity. Another possibility is to modify a temporal planner so
that it understands the clip-action construct and avoids use-
less search when dealing with our translations.
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