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Abstract

We consider planning problems for stochastic games
with objectives specified by a branching-time logic,
called probabilistic computation tree logic (PCTL).
This problem has been shown to be undecidable if
strategies with perfect recall, i.e., history-dependent,
are considered. In this paper, we show that, if re-
stricted to co-safe properties, a subset of PCTL
properties capable to specify a wide range of prop-
erties in practice including reachability ones, the
problem turns to be decidable, even when the class
of general strategies is considered. We also give
an algorithm for solving robust stochastic planning,
where a winning strategy is tolerant to some per-
turbations of probabilities in the model. Our result
indicates that satisfiability of co-safe PCTL is de-
cidable as well.

1 Introduction

Markov Decision Processes (MDPs) are powerful models for
systems involving both decision-making and probabilistic dy-
namics [Puterman, 1994]. In an MDP, states can be parti-
tioned into controller states and probabilistic states. At a
controller state, a decision has to be made to choose a suc-
cessor, while at a probabilistic state, the successor will be
sampled with prescribed probability distribution. One pop-
ular research area of MDPs in Artificial Intelligence (Al) is
probabilistic planning [Mausam and Kolobov, 2012]: Given
an objective, can controller states choose successors in such
a way that the objective is fulfilled. Most of previous work
restricted to reachability properties, for which memoryless
deterministic strategies suffice, namely, given a set of goal
states and a threshold, can we find a map from controller
states to their successors such that the probability of reach-
ing the goal states is greater than the threshold? See for in-
stance [Xu and Mannor, 2011; Mausam and Kolobov, 2012;
Pineda et al., 2013]. Robust planning for reachability
properties has also been studied [Nilim and Ghaoui, 2005;
Delage and Mannor, 2007] to deal with MDPs where transi-
tions probabilities are not known precisely.

In practice, however, we often encounter sophisticated ob-
jectives beyond reachability properties, hence making previous
work not applicable. To see this, let us consider a gambling
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game between a gambler G with an initial credit ¢ > 0 and
a machine M with two buttons: an optimistic one and a pes-
simistic one. By pressing the optimistic button, with proba-
bility %, M will award G 10 credits, while with probability

%, M will take 8 credits from G. If the pessimistic button is
chosen, M will award G 2 credits or take 1 credit from G with
probability % and %, respectively. The gambler can repeat the
game as many times as he wishes unless he loses all credits.
In case the number of credits is less than 8, then only the
pessimistic button is available. Suppose ¢ = 10 initially. We
would like to know (*)"whether G has a strategy such that:
1) with probability greater than 0.2 that G will have no less
than 20 credits, and 2) in the next n rounds, with probability
equal to or less than 0.3 that at each game the probability
of losing all credits eventually is greater than 0.5.” Such a
requirement can be specified by the Probabilistic Computation
Tree Logic [Hansson and Jonsson, 1994] (PCTL) as follows:

[O(e = 20)]50.2 A [OS"[0(c = 0)]s0.5]<0.3- (D

Intuitively, ¢ someting and [(Dsomething mean “something
will happen eventually” and “something will always hold”,
respectively. The probability operator [some event]~o.o de-
notes that the probability of some event happening is greater
than 0.2. The formal syntax and semantics of PCTL can
be found in Section 2.2. Clearly, the requirement in Eq. (1)
cannot be represented as a reachability property.

In this paper we study stochastic games with branching time
winning objectives given by PCTL formulas, which have been
studied extensively in the model checking community [Baier
et al., 2004; Kucera and Strazovsky, 2008; Brazdil et al., 2006;
Baier et al., 2012]. Different from reachability properties, win-
ning strategies of PCTL objectives may require memory and
randomization [Baier et al., 2004], hence makes the problem
much harder to be solved. In [Baier et al., 2004], it was shown
that the problem of deciding whether there exists a memoryless
deterministic winning strategy for a PCTL objective is NP-
complete. An algorithm in EXPTIME was given in [Kucera
and Strazovsky, 2008] to solve the same problem except that
randomized strategies were taken into account. When strate-
gies with prefect recall are considered, the problem turns to be
highly undecidable [Bréazdil er al., 20061, no matter whether
strategies are deterministic or randomized. These results are
summarized in Table 1 and 2.

The main contribution of the current paper is shown in the
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Table 1: Complexity results for different classes of strategies
when PCTL properties are considered

Memoryless | Perfect recall
Deterministic | NP-complete | Undecidable
Randomized EXPTIME | Undecidable

Table 2: Complexity results for different fragments of proper-
ties when randomized strategies with perfect recall are consid-
ered. The middle column is our result in this paper.

Reachability | Co-safe PCTL |  PCTL
Decidable ‘ Undecidable

NP-complete ‘

middle column of Table 2. To be specific, we focus on co-
safe PCTL [Katoen et al., 2014], a subset of PCTL which
includes a wide range of practical properties, in particular
reachability ones and the one in Eq. (1). For this set of proper-
ties, memoryless deterministic strategies do not suffice, unlike
the case for reachability. We show that stochastic games with
co-safe PCTL objectives are decidable, even when the most
general strategies, i.e. randomized strategies with perfect re-
call, are considered. Other contributions of this paper include:

e We show that robust stochastic games [Kucera and Stra-
zovsky, 2008] with co-safe PCTL objectives are also
decidable, where a winning strategy is tolerant to a cer-
tain amount of perturbation.

e We prove that satisfiability of co-safe PCTL properties
is decidable as well. This partially solves the PCTL
satisfiability problem, which has been open for quite a
long time [Brazdil er al., 2008; Bertrand et al., 2012].

Related Work Stochastic planning with co-safe objectives
has been studied in [Lacerda er al., 2014]. However, the prop-
erties under consideration are in linear-time and incomparable
with co-safe properties in branching-time [Baier and Katoen,
2008]. In [Teichteil-Konigsbuch, 20121, planning problems
with path constraints specified by PCTL were proposed. Dif-
ferent from our work, [Teichteil-Konigsbuch, 2012] restricted
to memoryless strategies.

Related work also includes research on pATL and pATL*
and their model checking issues [Chen and Lu, 2007; Huang
et al., 2012; Huang and Luo, 2013]. However, we mention
that for stochastic games pATL* and pATL still cannot express
properties like the one in Eq. (1). Recall that a pATL formula
in form of ({A))~9(¢) means that players in A can enforce a
strategy such that ¢ is satisfied with probability greater than
g no matter what other players do. In case there is only one
player, it simply means that the player has a strategy such
that ¢ will be satisfied with probability greater than q. At the
first glance, it seems that probabilistic planning problems can
be encoded by pATL. However, the semantics of pATL does
not bind a unique strategy for players appearing in scopes
of different qualifiers in form of {{A))~%(-). For instance, a
natural choice for expressing the requirement in Eq. (1) is a
pATL formula ®; A ®3, where &; = (A4;))>%20(c > 20)

and [
Dy = ((A)SOPOS"((A3) 720 (e = 0))

with Ay = Ay = A3 = {G}. Note G appears for three
times in ®; A ®,. In order to satisfy this formula, G can use
different strategies when at A, A,, and Asz. For instance,
suppose ¢ = 10 initially, by choosing the optimistic button, G
can satisfy ¢ (¢ > 20) with probability %, i.e., ®q is satisfied.
On the other hand, by a simple calculation, if the pessimistic
button is always chosen, then ®, will be satisfied for any
n > 0. Therefore, the whole formula is satisfied by choosing
different strategies for GG in A; and Ao, A3. However, this
is different from our requirement (*) given before, where we
would like to find a single strategy which satisfies the two
requirements at the same time.

Organization of the Paper Section 2 introduces some pre-
liminary notations. Co-safe PCTL is formally defined in
Section 3. We show the decidability of stochastic games with
co-safe PCTL objectives in Section 4, where strategies are
deterministic. Section 5 generalizes results in Section 4 to
randomized strategies, where robust planning problems are
also addressed. We conclude the paper in Section 6.

2 Preliminaries

We introduce some preliminary notations. Let N be the set of
nature numbers and NT contain only positive ones. Let R be
the set of real numbers, while QQ contains only rationals. For
a countable set S, let P(.S) denote its powerset. A distribu-
tion is a function p : S — [0, 1] satisfying > ¢ u(s) = 1.
Let Dist(S) denote the set of distributions over S. We shall
use s,7,t,...and p,v, ... to range over S and Dist(.S), re-
spectively. Let S* and S denote the set of finite and infinite
sequences, respectively, over the set S. The set of all (finite
and infinite) sequences over S is given by S° = S*US¥. Let
|| denote the length of 7 € S*. For i € N, let [¢] denote the
(i4-1)-th element of 7 provided ¢ < ||, and | = 7[|7|—1] de-
note the last element of 7 provided 7 € S*. The concatenation
of 7 and 75, denoted 7 - 7o, is the sequence obtained by ap-
pending 7o to the end of 7y, provided 7 is finite. A sequence
71 is a prefix of mo, denoted 7m; < o, if there exists m € S
(possibly empty, i.e., 7 € S°) such that 71 -7 = 7o If 7 & S°,
then 7 is a proper prefix of 7y, denoted m; < my. The set
II C 5% is prefix-closed iff for all m; € Il and 5 € S*,
mo =X 1 implies 7o € I

2.1 Probabilistic Models

In this subsection we recall some probabilistic models widely
used in Al community. We shall first introduce the definition
of Markov chain as below:

Definition 1. A Markov chain (MC)D = (S,5,P, AP, L) is
a tuple where S is a countable set of states; § € S is the initial
state; P : S x S — ([0,1]NQ) is a transition matrix such that
> tes P(s,t) = 1 foreach s € S; AP is a finite set of atomic
propositions; and L : S — P(AP) is a labelling function.

A path 7 € S8 through an MC D is a (finite or infi-
nite) sequence of states. The cylinder set C; of 7 € S*
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is defined as: Cr = {7/ € §¥ | # < #'}. The o-
algebra F of D is the smallest o-algebra containing all cylin-
der sets C.. By standard probability theory [Halmos, 1974;
Rudin, 2006], there exists a unique probability measure Pr
on F such that: Pr(C;) = 1if # = 5, and Pr(C,) =
Mogicn P(Siy8i41) if m = s0... 5, With § = sgand n > 0;
otherwise Pr(C) = 0. We are restricted to rational probabili-
ties in this paper, which is standard and essential to guarantee
our decidability results.

While being fully probabilistic, MCs cannot handle systems
involving decision-making. For these cases, Markov Decision
Processes (MDPs) shall be introduced.

Definition 2. A Markov Decision Process (MDP) is a tuple
M= (S,(S0,8n),5,E,P, AP, L), where 5, AP, L are as
in Definition 1 and S is a finite set of states; (S, Sn) is a
partition of S with S containing probabilistic states and
So all controller states; £ C Sp x S is a set of transitions;
P:So xS+ ([0,1]NQ) is a probability function such that
> tes P(s,t) = 1 foreach s € Si.

In Definition 2, we explicitly distinguish between probabilis-
tic states and controller states which is typical in the setting
of stochastic games, see for instance [Brizdil et al., 2006].
A player at controller states has full flexibility to choose its
successors, while at probabilistic states, successor states have
to be chosen with probabilities given by the function P, hence
a player at S has limited flexibility. We mention that the
distinguishing S and S is only to ease the presentation.
Actually, our definition of MDP is of no essential difference
from the standard definition, as they can be transformed into
each other directly. In the sequel we write P(s, ) to denote
the distribution such that P(s,-)(¢t) = P(s,t) foreach ¢t € S.

Due to existence of controller states, the notion of strategies
has to be introduced in order to resolve all non-deterministic
choices at controller states.

Definition 3. Let M be an MDP as in Definition 2. A strategy
o of M is a function such that for any = € S8* with € Sn,
o(m) € Dist(S), where o(m)(s) > 0 implies (1, s) € & for
each s € S.

Intuitively, a strategy takes a history execution as an input,
represented as a finite path 7, and decides for state 7| the
probabilities with which it should choose all its successors.
Sometimes, the output of a strategy given a finite path will be
referred as the decisions of the strategy.

Given an MDP M and a strategy o of M, we can always
induce an MC, denoted M,,, for which a unique probability
measure can be defined. As the inputs of a strategy, i.e., all
history executions, are of infinitely many, the state space of
the resultant MC may be infinite even if M is finite, which
explains why in Definition 1 we are not restricted to MCs of
finite states.

Depending on the information available when decisions
are made, strategies can be classified into different categories
according to criteria in Table 1: (;) Perfect recall v.s. Mem-
oryless: Strategies whose decisions are based on the full
history are with perfect recall. In contrast, a memoryless
strategy o makes decisions only based on the current state.
Hence, all memoryless strategies can be written as a function

o : Sg — Dist(S), and each MC induced by a memory-
less strategy has the same state space as the original MDP.
(i¢) Randomized v.s. Deterministic: Strategies defined in Def-
inition 3 are randomized, as decisions of strategies are dis-
tributions over successor states. In contrast, a deterministic
strategy o always chooses a successor with probability 1. The
combinations of the above criteria result in four classes of
strategies: Randomized with Perfect recall (RP), Randomized
Memoryless (RM), Deterministic with Perfect recall (DP), and
Deterministic Memoryless (DM).

2.2 Probabilistic CTL

Probabilistic Computation Tree Logic (PCTL for short, [Hans-
son and Jonsson, 1994]) is a branching-time logic for specify-
ing properties of probabilistic systems. Its syntax is defined
by the grammar:

P = CI,|‘I)1/\@2 ‘ ‘bl\/q)g ‘ - | [@}Mq

X® | &1US" Dy | & WS" D,

@

where @ € AP, <1 € {<,>,<, >} is a binary comparison
operator on the reals, ¢ € [0,1], and n € NT U {oo}. We
will simply write U and W for US™ and WS™ in the se-
quel. Let F := a A —a denote false and T := —F denote
true. As usual, O<"® := TUS"®, O0S"® := dWS"F, and
(P = P3) := (—P; V P3). We will refer to @ and ¢ as
state and path formulas, respectively. The satisfaction relation
s = ® is defined in the standard manner for the Boolean
connectives. For the probabilistic operator, it is defined by:
s |= [@loaq iff Pr{m € S¥(s) | 7 |= ¢} > ¢, where S¥(s)
denotes the set of infinite paths starting from s. For an MC D,
we write D |= @ iff its initial state satisfies @, i.e., § = ®. The
satisfaction relation for 7 € S¥ and ¢ is defined by: 7 = X

iff 7[1] £ @, 7 |= ®,US"®, iff
30 < j < nwlf] = @2 AV0 < k < jrlk] = @1, and

T ®WS"®y iff 1 = B1US" By VY0 < i < nurli] = .
The until U and weak until W modalities are dual:
[<I>1U<I>2]>q =

=

(1 A —P2)W(—Py A =P2)]<1-g,

2
(@1 A =Po)U(=Py A =P2)]<1—g-

Eq. (2) also holds if we: i) replace > and < with > and
<, and/or ii) replace U and W with bounded until US"™ and
bounded weak until WS", respectively. By applying duality
laws, every PCTL formula can be transformed into an equiv-
alent PCTL formula in positive normal form. A formula is
in positive normal form, if negation only occurs adjacent to
atomic propositions. In the sequel, we assume PCTL formulas
to be in positive normal form.

2.3 Probabilistic Trees

In this subsection we introduce the notion of probabilistic
trees [Katoen et al., 2014], which are closely related to MCs,
as each MC can be equivalently represented as a probabilistic
tree. Let A, B, ... range over P(AP), where {a} is abbrevi-
ated by a. Let € be the empty sequence.
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Definition 4. A probabilistic tree (PT) over a set of states S is
atupleT = (W, L, P)wheree ¢ W, and (W U{e}) C S*is
prefix-closed and there exists one (and only one) m1 € W such
that |m| = 1; L : W — P(AP) is a node labelling function;
P : W — Dist(W) is an edge labelling function, which is a
partial function satisfying P(m)(7') > 0iff 7’ =mw-s € W
for some s € S.

The node 7 with |r| = 1 is referred to as the root', while
all nodes 7 such that Vr’ € W.r A =’ are referred to as the
leaves. APTT = (W, L, P) is total iff for each m; € W
there exists mo € W such that m; < mo. T'is finite-depth if
there exists n € N such that || < n for each 7 € W. The
least such n is called the depth of T'. Let T and T* denote
the sets of all total PTs and finite-depth PTs respectively.

Below defines a prefix relation on PTs [Katoen et al., 20141,
where [ denotes restriction.

Definition 5. Let T; = (W;, L;, P;) for i=1,2 with T; € T*
and Ty € T®. Tj is a prefix of Ts, denoted Ty = Ts, iff
W1 Q W2 andL2 r W1 = L1 andPQ [ (W1 X Wl) = Pl.
Let Prejy, (T) denote the set of all prefixes of T € T.

It is not hard to see each MC D can be unfolded into a total
PT, denote T'(D). Conversely, any PT can be seen as an MC
with infinite many states. Therefore, the satisfaction relation
between PCTL formulas and total PTs can be defined directly.
Such satisfaction relation can also be lifted to finite-depth PTs
in T* in a natural way: Let ® be a PCTL formula and T} € T*.
T, satisfies @, denoted T = @, iff Ty |= @ for any Tp € T¥
such that T € Preg,(T%). Intuitively, the finite-depth PT
Ty suffices to conclude that ® is satisfied regardless of the
remaining execution. We say that ® always has finite-depth
witnesses iff for any MC D such that D = ®, there exists
Ty € Prefin, (T(D)) such that T} = .

3 Safety and Co-safety Properties

The distinction of safety and liveness properties is pivotal
for verifying reactive systems. As Lamport introduced in
1977 [Lamport, 1977; Alford et al., 1985], safety properties
assert that something “bad” never happens, while liveness
properties require that something “good” will happen even-
tually. For stochastic properties, PCTL formulas have been
classified into safety and liveness in [Katoen er al., 2014].
In this paper, we are mainly interested in co-safe PCTL, i.e.,
formulas whose negations are safe PCTL.

Definition 6. The safe and co-safe fragments of PCTL, de-
noted PCTLg and PCTL,, respectively, are defined by the
following grammar, where n € N, ¢, ¢1,... and &, P4, ...
range over formulas in PCTLg and PCTL_s, respectively.

pu=F[Tla|-a|g1Aga|d1V 2| [Xp>q |

(01 Wa]>q | [@1UPs]<q | [p1WS"doliaq | [P1US"P2]aq
BumF[T|a|—a| B Ads| Dy VD | [XO]oy |
[1Weho] <q | [D1UD2]5g | [RIWS" Po]iaq | [$1US" P2)iaq

We note that for bounded until and weak until, > can be
any operator in {<, >, <, >}. Since ~[X¢|>q = [X@|<qg =

"For technical reasons, ¢ is excluded from the tree.

[X=¢]s1—4, together with Eq. (2), it is easy to check that
the negation of each formula in PCTL, has an equivalent
representation in PCTL_, and vice versa. Also note the mem-
bership of PCTL, and PCTL_, can be determined pure syn-
tactically. For instance, F and T are both safe and co-safe;
B¢]>q = [¢WF]>, is safe, provided ¢ € PCTL,, while
[0®]>q = [TUD], is co-safe, provided ® € PCTL,,. In
this way, PCTL_, subsumes reachability properties with strict
lower bounds. Note the formula in Eq. (1) also belongs to
PCTL.;, provided that we have atomic propositions such as
¢ > 20 and ¢ = 0. Below is a theorem from [Katoen et al.,
2014] showing that the definitions of PCTL, and PCTL.;
are both sound and complete.

Theorem 1 ([Katoen et al., 2014, Thm. 4 and 5]). All for-
mulas in PCTL,; (PCTL.s resp.) are safe (co-safe resp.),
while each safe (co-safe resp.) property expressible in PCTL
has an equivalent formula in PCTL,; (PCTL resp.).

Expressiveness of co-safe PCTL. We mention that many
patterned properties classified in [Grunske, 2008] can be ex-
pressed in PCTL,,. For instance,

e Probabilistic Invariance. The probability of no er-
ror occurring in the next n steps is at least 0.99:
[OS"(no error)]>0.99-

e Probabilistic Existence. If an error occurs, it will be
solved eventually with probability greater than 0.95:
error =[O solved]so.95.

e Probabilistic Until. With probability greater than 0.95,
the alarm should be on until the problem is solved:
[alarmOnU (alarmOff A solved)]so.95-

e Probabilistic Response. With probability greater than
0.99, during the lifetime (m) of a robot, whenever it is
out of battery (A), it will be fully recharged (B) in the
next n steps: [OS™(A = [0S"B]>1)]>0.99-

Particularly, since PCTL,, is closed under conjunction,
multi-objective properties [Wakuta and Togawa, 1998; Re-
fanidis and Vlahavas, 2003; Wiering and De Jong, 2007;
Khouadjia et al., 2013; Wray et al., 2015] can be directly
expressed in PCTL,, by properly choosing atomic propo-
sitions. If given more than one objective, we can put them
together in conjunction and find a strategy fulfilling all of them
at the same time.

Remark 1. According to Definition 6, [ solved]~q.95 is co-
safe, while [O solved]>o.95 is not. Such a subtle difference
between > and > is of theoretic importance, as the probability
of reaching “solved” may converge to 0.95 in infinite steps,
but the probability of reaching “solved” is strictly less than
0.95 in any finite steps. However, as shown in [Chatterjee
and Hengzinger, 2008], in a finite MDP where all transition
probabilities are rational, reachability probabilities can be
computed precisely in finite steps. Therefore, in practice, the
algorithms we shall introduce later can also be applied to
properties with non-strict bounds, i.e., those definable by the
PCTL.s grammar in Definition 6 with additional operators
(X®]>q, [p1 W2y, and [21UPs]>,.
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4 Stochastic Games with Perfect Recall

In this section we introduce stochastic games [Baier ef al.,
2004; Kucera and Strazovsky, 2008; Brazdil et al., 2006]
formally. If general PCTL objectives are considered, stochas-
tic games with perfect recall turn out to be highly undecid-
able [Brazdil et al., 2006] even for finite models. Therefore,
we mainly focus on games whose objectives are restricted to
PCTL.s. Even though DP C RP, these two sets of strate-
gies are usually studied separately, as winning strategies with
or without randomization make differences for PCTL ob-
jectives [Baier ef al., 2004]. We show in this section that
stochastic games with PCTL_, objectives are decidable even
if strategies in DP are considered. Below defines stochastic
games formally:

Definition 7. Let M be an MDP as in Definition 2 and ® €
PCTL.s. Let XX range over the set {RP, RM, DP, DM}. The
stochastic game over M has a winning strategy in XX for the
given objective P iff there exists a XX-strategy o such that
M, E ®. A XX stochastic game answers whether or not a
winning strategy in XX exists for a given objective.

We shall fix an MDP M throughout the remaining part of
this paper. As we mentioned, DP stochastic games are unde-
cidable in general for objectives specified by PCTL. This is
mainly due to the fact that some objectives only have winning
strategies using infinite memories. By restricting to PCTL
objectives, however, finite memories suffice as shown in the
following lemma [Katoen er al., 2014].

Lemma 1. Formulas in PCTL,s have finite-depth witnesses.

Lemma 1 ensures that a winning strategy only requires finite
memories for objectives in PCTL.,. However, it does not give
us an upper bound for the size of the memory. Fortunately,
such bounds can be established. For this, we first introduce
some notations. In the following, we assume all probabilities
are expressed as irreducible fractions.

Definition 8. Let m be the number of transitions of M; d the
largest denominator among all transition probabilities appear-
ing in M; 6 the least common multiple of all denominators;
p the largest numerator of all transition probabilities; and
y=d*™ .0 -p.

It was shown in [Chatterjee and Henzinger, 2008] that max-
imal and minimal reachability probabilities can be computed
precisely in at most O(~?) iterations. We show in the follow-
ing lemma that such bound also holds for the size of memory
used by a winning strategy, if exists, in a DP stochastic game.

Lemma 2. Given an objective ® € PCTL_,, whenever the
DP stochastic game has a winning strategy o, there exists
Ty € Presi,(M,) with depth O(|®| - v?) such that Ty = ®,
where |®| denotes the length of ®.

Proof. The proof is by structural induction on ®. Let
depth(®) denote the least depth of finite-depth witnesses of @
in M. We only show proofs of several non-trivial cases:

¢ & = [®,Uds]s,. Then we show that depth(®) =
depth(®1) + ¢ + depth(®s), where ¢ € O(v?). Es-
sentially, the result in [Chatterjee and Henzinger, 2008]
ensures that reachability probabilities in an MC D can

be computed precisely by considering a prefix of T'(D)
of depth ¢ € O(4?). By induction hypothesis, a tree of
depth depth(®4) suffices to witness all states satisfying
®;. According to [Chatterjee and Henzinger, 20081, by
extending all prefixes for c steps, we make sure all strate-
gies which can reach states satisfying ®5 with probability
> g can be found. To ensure that all states satisfying ®»
will be found, further extensions up to depth(®Ps) would
be enough by induction hypothesis.

e & = [p1Wps|<q. By duality law, & = [(¢1 A
ﬁ(bg)U(ﬁQﬁl N ﬁ¢2)]>1,q. We show that depth(@) =
depth(—¢2) + ¢ + depth(—¢1 A —¢s). Note ¢ and
—¢9 are co-safe formulas. Therefore, prefixes of depth
depth(—¢9) suffice to find all states satisfying —¢o by
induction hypothesis. Consequently, all states satisfying
@1 A\ g9 can be found, which is a subset of states sat-
isfying —¢>. The remaining proof is then similar as the
above case.

This completes the proof. O

Due to Lemma 2, the decidability of DP stochastic games
with PCTL,, objectives is easy to establish.

Theorem 2. DP stochastic games with PCTL.s objectives
are decidable and in 3-EXPTIME.

Proof. Let M and ® € PCTL,, be given. First, we unfold M
to a PT up to a certain step. Let M* denote the resultant model
at the i-th step of unfolding. In M, it suffices to enumerate all
possible DM strategies, which are finitely many. We continue
unfolding M until either a winning strategy is found, or for
each state s € S and path formula ¢ in @, the change of the
probability of s satisfying ¢ is less than % [Chatterjee and
Henzinger, 2008], comparing to the previous valuation. As
® € PCTL,;, the termination of this process is guaranteed by
Lemma 2.

The above procedure will cause a triply exponential blow-
up: Since we may need to unfold M up to an exponential
number i of steps and hence may result in an MDP M* doubly
exponentially larger than the original model. Furthermore, the
number of DM strategies of M* is exponentially many with
respect to the size of M*. Therefore, the whole algorithm is in
3-EXPTIME. O

It is not surprising that the problem is of high complex-
ity, since even DM stochastic games are NP-complete, and
DP stochastic games with linear time objectives are elemen-
tary [Baier et al., 2004].

5 Stochastic Games with Perfect Recall and
Randomization

In this section we focus on RP stochastic games with PCTL
objectives. Unfortunately, Theorem 2 does not hold if RP
strategies are considered. This is because randomized strate-
gies can assign arbitrary probabilities to successor states,
hence parameters d, 6, and p in Definition 8 cannot be defined
directly. On the other hand, robustness of strategies has been

1686



argued by many authors to be a natural requirement in prob-
abilistic systems, see for instance [Nilim and Ghaoui, 2005;
Kucera and Strazovsky, 2008]. In the remaining of this section
we will define robustness of strategies along the line of [Kucera
and Strazovsky, 2008] and then show that it is decidable to
determine whether or not a robust winning strategy exists. Fi-
nally, we show that as special cases of robust RP stochastic
games (when tolerance is equal to 0), RP stochastic games
are decidable too. As we shall show, this also implies that
satisfiability of PCTL_; is decidable.

We follow definitions in [Kucera and Strazovsky, 2008] and
define strategy robustness for RP stochastic games.

Definition 9. Let 0,0’ be two RP strategies of a stochastic
game with respect to an objective ® € PCTL ;. We say that

1. ¢’ is a §-perturbation of o if for all 1 € S* with
me Sgandt € S: a) |o(m)(t) — o' (7)(t)] < 6 and
b) o(m)(t) = 0iff o' (m)(t) = 0, where § € (0,1) N Q;

2. o is a 6-robust winning strategy iff for any RP strategy

o', whenever o' is a 6-perturbation of o, it is a winning
strategy of the stochastic game too.

Intuitively, a strategy ¢’ is a d-perturbation of o iff at each
step the probability of o’ choosing a state is within [¢g—J, ¢+,
where ¢ is the probability of ¢ choosing the same state. More-
over, for technical reasons, an extra condition is imposed,
which essentially guarantees that all states chosen by o with
positive probabilities should also be chosen by ¢’ with positive
probabilities. This condition is necessary to preserve qualita-
tive structures, i.e., topologies of MCs [Courcoubetis and Yan-
nakakis, 1995] induced by strategies which are §-perturbations
of each other.

In the sequel we focus on robust RP stochastic games with
PCTL,; objectives: Givena ¢ € (0,1) N Q and an objective
® € PCTL_, decide whether or not a §-robust RP winning
strategy exists for the stochastic game. We show that robust
RP stochastic games can be solved by using the algorithm
in [Kucera and Strazovsky, 2008], denoted MRGame, as an
oracle. MRGame solves RM stochastic games with PCTL ob-
jectives by reducing them to the decidable problem — first order
theory of reals (R, +, *, <) [Tarski, 1951]. For similar reasons
as in Section 4, MRGame cannot be extended to deal with RP
strategies directly. Below is a theorem showing another main
result of this paper:

Theorem 3. Fora given § € (0,1) N Q, robust RP stochastic
games with PCTL., objectives are decidable.

So far, we require § > 0. In the sequel we discuss the
special case when § = 0, i.e., RP stochastic games. It is
easy to see that arguments used in Theorem 3 do not apply
when 6 = 0, as in principle a strategy can assign arbitrarily
small probabilities to some states. However, we can prove a
lemma showing that if there is a winning strategy for an RP
stochastic game, then we can always find a winning strategy
where the largest denominator of all probabilities assigned by
the strategy to all states is bounded.

Lemma 3. Let & € PCTL, be an objective. There is an RP
winning strategy for ®, iff there exists D € N and a winning

strategy o such that for any m € S* with mj.€ Sgandt € S,
o(m)(t) = &, where k € [0, D) is an integer.

Proof. The sufficiency is trivial. To prove the necessity part,
let o be a winning strategy for ® and 77 € Preg,(T(M,))
such that T} |= ®. For each node 7 in T}, we denote Pr,:C1 (¢)
the probability of 7 satisfying ¢ in 77, where ¢ is a path
formula in ®. Let d, be the greatest denominator of all
Pr" () including all bounds in ® and ody the greatest out-
degree of states in M. For k € N and ¢ € [0, 1], we denote
lg]x = %, where k' is the greatest integer such that % < q.
Let o/ be a strategy such that o/(7)(t) = |o(7)(¢)|p and
o' (m)(dummy) = 1 =3, .g0'(m)(t), where D is any in-
teger greater than 2 - ody - d, and dummy denotes a dead-
lock state. The reason to introduce dummy is that by letting
o'(m)(t) = |o(m)(t)] p for each 7 and ¢, the sum of proba-
bilities assigned by ¢’ to all successors may be less than 1.
Therefore, we have to add an extra transition to the dummy
state with the remaining probability to make sure that o’ gives
rise to a distribution at each step. Let T} be the prefix of M,
of the same depth as 7. It shall be easy to see that for each
node 7 and path formula ¢ in @,

odm 1
D “2.d,
As d,, is the greatest denominator of all Pr, () including all

bounds in ®, T} = @ implies 7] = @, hence o’ is also a
winning strategy. O

| Pr () — Prii (¢)] <

Let D € N7 be a positive integer. We call a strategy o a
D-strategy if all probabilities assigned by o to states are in
form % with k € [0, D] being an integer. Given a D and 4, it
is easy to see that the number of D-strategies of M’ in DM is
finite. Below is a theorem showing that RP stochastic games
with PCTL_, objectives are decidable, which can be proved
in a similar way as Theorem 3.

Theorem 4. RP stochastic games with PCTL_ s objectives
are decidable.

As a byproduct of Theorem 4, the satisfiability of PCTL,
is decidable.

Theorem 5. Let ® be a formula in PCTL,. The following
problem is decidable: Checking whether ® is satisfiable, i.e.,
whether there exists an MG D such that D = .

To the best of our knowledge, until now, the problem of
deciding whether or not a given PCTL formula is satisfiable
is still open and only partial results are known [Brazdil et al.,
2008; Bertrand et al., 2012].

6 Conclusion and Future Work

We have considered stochastic games with branching-time
objectives, where strategies are deterministic or randomized,
and always with perfect recall. While undecidable in general,
we showed that the problem can be solved if restricted to
PCTL,; objectives, which cover many interesting properties
in practice as we have shown. Robust stochastic games were
also studied. Our result indicates that satisfiability of PCTL
is decidable.

There are several directions for future work, e.g., the com-
plexity of these problems and other fragments of PCTL which
make stochastic games with perfect recall decidable.

1687



Acknowledgments

The authors are supported by Australian Research Council
under Grant DP130102764, the National Natural Science
Foundation of China (Grant Nos. 61428208, 61472473 and
61361136002), AMSS-UTS Joint Research Laboratory for
Quantum Computation, Chinese Academy of Sciences, and
the CAS/SAFEA International Partnership Program for Cre-
ative Research Team.

References

[Alford et al., 1985] M. W. Alford, J. P. Ansart, G. Hommel, L. Lam-
port, B. Liskov, G. P. Mullery, and F. B. Schneider. Distributed
Systems: Methods and Tools for Specification, volume 190 of
LNCS. Springer, 1985.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter Katoen.
Principles of Model Checking. MIT Press, 2008.

[Baier et al., 2004] Christel Baier, Marcus GroBer, Martin Leucker,
Benedikt Bollig, and Frank Ciesinski. Controller synthesis for
probabilistic systems. In 7CS, volume 155 of IFIP, pages 493-506.
Springer, 2004.

[Baier et al., 2012] Christel Baier, Tomas Brazdil, Marcus GroBer,
and Antonin Kucera. Stochastic game logic. Acta Inf., 49(4):203—
224, 2012.

[Bertrand er al., 2012] Nathalie Bertrand, John Fearnley, and Sven
Schewe. Bounded satisfiability for PCTL. In CSL, volume 16 of
LIPIcs, pages 92—106. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012.

[Brazdil et al., 2006] Tomés Brézdil, Vaclav Brozek, Vojtech Forejt,
and Antonin Kucera. Stochastic games with branching-time win-
ning objectives. In LICS, pages 349-358. IEEE, 2006.

[Brazdil et al., 2008] Tomés Brazdil, Vojtech Forejt, Jan Kretinsky,
and Antonin Kucera. The satisfiability problem for probabilistic
CTL. In LICS, pages 391-402. IEEE Computer Society, 2008.

[Chatterjee and Henzinger, 2008] Krishnendu Chatterjee  and
Thomas A. Henzinger. Value iteration. In Orna Grumberg
and Helmut Veith, editors, 25 Years of Model Checking, pages
107-138. Springer, 2008.

[Chen and Lu, 2007] Taolue Chen and Jian Lu. Probabilistic
alternating-time temporal logic and model checking algorithm. In
FSKD, pages 35-39. IEEE, 2007.

[Courcoubetis and Yannakakis, 1995] Costas Courcoubetis and Mi-
halis Yannakakis. The complexity of probabilistic verification. J.
ACM, 42(4):857-907, 1995.

[Delage and Mannor, 2007] Erick Delage and Shie Mannor. Per-
centile optimization in uncertain Markov decision processes with
application to efficient exploration. In /CML, volume 227, pages
225-232. ACM, 2007.

[Grunske, 2008] Lars Grunske. Specification patterns for probabilis-
tic quality properties. In ICSE, pages 31-40. ACM, 2008.

[Halmos, 1974] Paul Richard Halmos. Measure theory, volume
1950. Springer, 1974.

[Hansson and Jonsson, 1994] Hans Hansson and Bengt Jonsson. A
logic for reasoning about time and reliability. Formal Aspects of
Computing, 6:102-111, 1994.

[Huang and Luo, 2013] Xiaowei Huang and Cheng Luo. A logic of
probabilistic knowledge and strategy. In AAMAS, pages 845-852.
IFAAMAS, 2013.

1688

[Huang et al., 2012] Xiaowei Huang, Kaile Su, and Chenyi Zhang.
Probabilistic alternating-time temporal logic of incomplete infor-
mation and synchronous perfect recall. In AAAI. AAAI Press,
2012.

[Katoen et al., 2014] J.-P. Katoen, Lei Song, and Lijun Zhang. Prob-
ably safe or live. In CSL-LICS, pages 55:1-10. ACM, 2014.

[Khouadjia et al., 2013] Mostepha Redouane Khouadjia, Marc
Schoenauer, Vincent Vidal, Johann Dréo, and Pierre Savéant.
Pareto-based multiobjective Al planning. In IJCAI IICAI/AAAL,
2013.

[Kucera and Strazovsky, 2008] Antonin Kucera and Oldrich Stra-
zovsky. On the controller synthesis for finite-state Markov deci-
sion processes. Fundam. Inform., 82(1-2):141-153, 2008.

[Lacerda et al., 2014] Bruno Lacerda, David Parker, and Nick
Hawes. Optimal and dynamic planning for Markov decision pro-
cesses with co-safe LTL specifications. In IROS, pages 1511-1516.
IEEE, 2014.

[Lamport, 1977] L. Lamport. Proving the correctness of multipro-
cess programs. /[EEE TSE, 3(2):125-143, 1977.

[Mausam and Kolobov, 2012] Mausam and Andrey Kolobov. Plan-
ning with Markov Decision Processes: An Al Perspective. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.

[Nilim and Ghaoui, 2005] Arnab Nilim and Laurent El Ghaoui. Ro-
bust control of Markov decision processes with uncertain transi-
tion matrices. Operations Research, 53(5):780-798, 2005.

[Pineda er al., 2013] Luis Enrique Pineda, Yi Lu, Shlomo Zilber-
stein, and Claudia V. Goldman. Fault-tolerant planning under
uncertainty. In IJCAIL IICAI/AAAL 2013.

[Puterman, 1994] Martin L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1st edition, 1994.

[Refanidis and Vlahavas, 2003] Ioannis Refanidis and Ioannis Vla-
havas. Multiobjective heuristic state-space planning. Artificial
Intelligence, 145(1):1-32, 2003.

[Rudin, 2006] Walter Rudin. Real and complex analysis. Tata
McGraw-Hill Education, 2006.

[Tarski, 1951] Alfred Tarski. A decision method for elementary
algebra and geometry. Bulletin of the American Mathematical
Society, 59, 1951.

[Teichteil-Konigsbuch, 2012] Florent Teichteil-Kénigsbuch. Path-
constrained Markov decision processes: bridging the gap between
probabilistic model-checking and decision-theoretic planning. In
ECAI, volume 242 of Frontiers in Artificial Intelligence and Ap-
plications, pages 744—749. 10S Press, 2012.

[Wakuta and Togawa, 1998] K Wakuta and K Togawa. Solution
procedures for multi-objective Markov decision processes. Opti-
mization, 43(1):29—46, 1998.

[Wiering and De Jong, 2007] Marco A Wiering and Edwin D
De Jong. Computing optimal stationary policies for multi-
objective Markov decision processes. In ADPRL, pages 158—165.
IEEE, 2007.

[Wray er al., 2015] Kyle Hollins Wray, Shlomo Zilberstein, and
Abdel-Illah Mouaddib. Multi-objective MDPs with conditional
lexicographic reward preferences. In AAAI, pages 3418-3424.
AAAI Press, 2015.

[Xu and Mannor, 2011] Huan Xu and Shie Mannor. Probabilistic
goal Markov decision processes. In IJCAI, pages 2046-2052.
IICAI/AAAL 2011.





