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Abstract
We study the problem of inducing logic programs
in a probabilistic setting, in which both the example
descriptions and their classification can be proba-
bilistic. The setting is incorporated in the proba-
bilistic rule learner ProbFOIL+, which combines
principles of the rule learner FOIL with ProbLog,
a probabilistic Prolog. We illustrate the approach
by applying it to the knowledge base of NELL, the
Never-Ending Language Learner.

1 Introduction
Motivated by the interest in probabilistic logic learning
[De Raedt et al., 2008; De Raedt and Kimmig, 2013], and sta-
tistical relational learning (SRL) [Getoor and Taskar, 2007],
we revisit the classical rule learning problem, but focus on
a probabilistic instead of the classical deterministic setting
pursued in inductive logic programming (ILP). Compared to
inductive logic programming and traditional rule learners, we
study an upgraded setting in which Prolog is replaced by a
probabilistic Prolog, called ProbLog, and in which the rules,
background theory and examples are all probabilistic rather
than deterministic. The upgraded setting has the property that
when all probabilities are set to 0 and 1, it corresponds to the
standard ILP problem, as addressed by FOIL [Quinlan, 1990]
and Progol [Muggleton, 1995].

In probabilistic rule learning, the task is to learn rules from
examples that have both a probabilistic description and a
probabilistic classification. In terms of ILP, this means that
all atoms in the example description and target atom have
a probability. The learned rules are used for predicting the
probability of the target predicate (the output) given the prob-
abilities in the description of the example (the inputs). This
prediction task differs from standard rule-learning and ILP
in that the hypotheses generated by ILP systems require the
inputs to be deterministic and usually the prediction as well
(although some rule-learners output the confidence of their
prediction). In SRL systems, on the other hand, it is possi-
ble to provide probabilistic inputs and make a probabilistic
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prediction for a specific example. However, SRL systems do
not learn rules or structure from probabilistic examples and
they also do not upgrade the traditional rule learning or ILP
setting, see Section 5 for more details.

The probabilistic rule learning setting is useful in any situ-
ation in which both the example descriptions and their classi-
fication are probabilistic (or uncertain). This arises naturally
when example descriptions are produced through perception.
For instance, in vision or autonomous agents, the example
description can be the image description or the belief state,
which is often produced using components that have been
learned themselves to detect certain objects, relationships or
measurements and which typically also indicate the reliability
of the description. Similarly, when crawling and parsing the
web, one obtains descriptions or parses of the involved texts
that are uncertain themselves. Yet in all these situations it
can be beneficial to learn rules that capture interrelationships
between the predicates and that allow to predict in a reliable
way particular target predicates. We shall illustrate this in the
context of NELL, the Never-Ending Language Learner [Carl-
son et al., 2010]. Probabilistic rule learning applies also nat-
urally to probabilistic databases, which consist by definition
of probabilistic facts. As two final examples, let us mention
the work by [Chen et al., 2008], who argue that probabilistic
examples arise naturally when performing scientific experi-
ments as the outcome of experiments may be uncertain, and
a medical scenario in which doctors may describe all they
know about a particular patient in terms of (subjective) prob-
abilities. As such they might provide, in addition to some de-
terministic descriptions, statements about their belief in the
outcome of an expensive test on a patient as well as their be-
lief that the patient will survive the next five years.

We contribute an integrated approach to learning proba-
bilistic relational rules from probabilistic examples and back-
ground knowledge. It is incorporated in the ProbFOIL+ sys-
tem and builds on ProbLog [De Raedt et al., 2007], a simple
probabilistic Prolog, and FOIL [Quinlan, 1990], and employs
well-known principles and heuristics of rule learning [Lavrac
et al., 2012]. The key contributions of ProbFOIL+ are 1)
that it upgrades a traditional inductive logic programming
system towards a probabilistic setting, in which the exam-
ple descriptions, targets and learned rules are all probabilis-
tic, 2) that the predicted probability for a target instance is the
probability with which the instance is true (the degree of be-
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lief), 3) that it tightly integrates the rule and weight learning
in a one-step process, rather than learning these separately,
and 4) that it efficiently computes the probability of candi-
date clauses, without resorting to an expensive optimization
approach, which is enabled by combining the traditional se-
quential covering approach with a local optimization step to
compute the weights. ProbFOIL+ differs significantly from
existing SRL approaches as we shall argue in Section 5.

This paper is organized as follows. We define the prob-
abilistic rule learning problem in Section 2. Section 3 de-
scribes ProbFOIL+1, our algorithm for learning probabilistic
rules from probabilistic data. In Section 4 our approach is
evaluated with a case study on NELL, the Never-Ending Lan-
guage Learner [Carlson et al., 2010]. An overview of related
work can be found in Section 5, and conclusions in Section 6.

2 Background and Problem Specification
We first introduce basic concepts of logic programming (Pro-
log). An atom p(t1, · · · , tn) consists of a predicate p/n of ar-
ity n and terms t1, · · · , tn. A term is a (lowercase) constant,
an (uppercase) variable, or a functor. A literal is an atom or
its negation. A clause is a conjunction of literals. A definite
clause contains exactly one non-negated atom, and is denoted
h ← b1, · · · , bn. The head h and the body b1, · · · , bn con-
sists of atoms h, bi. A substitution θ = {V1/t1, · · · , Vm/tm}
maps variables Vi to terms ti. Applying θ to an atom a, de-
noted aθ, replaces all occurrences of Vi in a by ti. A ground-
ing substitution removes all logical variables.

ProbLog is a probabilistic Prolog that allows one to
work with probabilistic facts and background knowledge
[De Raedt et al., 2007]. A ProbLog program consists of
a set of definite clauses D and a set of probabilistic facts
pi :: ci, which are facts ci labeled with the probability
pi that their ground instances ciθ are true. Given a fi-
nite set of grounding substitutions {θj1, . . . θjij} for each
probabilistic fact pj :: cj , consider the set of ground
facts LT = {c1θ11, . . . , c1θ1i1 , · · · , cnθn1, . . . , cnθnin}. A
ProbLog program T = {p1 :: c1, ..., pn :: cn} defines a prob-
ability distribution over subsets of facts L ⊆ LT as

P (L | T ) =
∏

ciθj∈L
pi
∏

ciθj∈LT \L
(1− pi).

In combination with the clauses D, ProbLog then defines the
success probability of a query q to be

Ps(T |= q) =
∑

L⊆LT
L∪D|=q

P (L | T ).

In other words, the probability of q is the probability that q
is entailed using the background knowledge together with a
random set of ground probabilistic facts.

Definition 1 (Probabilistic Rule Learning) Given:
1. a set of examples E, consisting of pairs (xi, pi), where
xi is a ground fact for the unknown target predicate t
and pi is a target probability;

1ProbFOIL+ and the datasets used in this paper in ProbFOIL+

format can be downloaded from https://dtai.cs.kuleuven.be/
software/probfoil/.

2. a background theory B containing information about
the examples in the form of a ProbLog program;

3. a loss function loss(H,B,E), measuring the loss of a
hypothesis (set of clauses) H w.r.t. B and E;

4. a space of possible clauses Lh specified using a declar-
ative bias;

Find: A hypothesis H ⊆ Lh such that H =
argminH loss(H,B,E).

This loss function aims at minimizing the standard error of
the predictions, that is, loss(H,B,E) =

∑
(xi,pi)∈E |Ps(B∪

H |= xi)−pi|. It is a simple choice with the benefit that well-
known concepts and notions from rule learning and classifica-
tion directly carry over to the probabilistic case. Furthermore,
this loss function is also used in Kearns and Schapire’s prob-
abilistic concept-learning framework [Kearns and Schapire,
1994], a generalization of Valiant’s probably approximate
correct learning framework to predicting the probability of
examples rather than their class. The above definition gen-
eralizes that framework further by assuming that also the de-
scriptions of the examples themselves are probabilistic, not
just their classes.

Notice that this problem setting generalizes both traditional
rule learning and ILP to a probabilistic setting. To see this,
consider that in the original FOIL system, the background
theory was specified as a set of ground facts {fj} and each
example was a true or false fact for the target predicate xi.
In the present setting, the background theory consists of a
set of probabilistic facts {pj :: fj} (possibly together with
a set of definite clauses) and the examples (xi, pi) are also
labelled with their target probability. It should be clear that
the original setting is obtained when all probabilities pj and
pi are 0 or 1. This is in line with the theory of probabilistic
logic learning [De Raedt, 2008]. The ILP setting obtained is
that of learning from entailment because examples are facts
that are entailed by the theory.

This problem setting was proposed initially in De Raedt
and Thon [2010], where also a preliminary rule-learner called
ProbFOIL was proposed and illustrated at work on two
toy examples. Both the setting and the rule learner pre-
sented in the current paper extend the work of De Raedt and
Thon [2010] as we account for probabilistic rules (of the form
x :: head ← body) instead of the deterministic ones (with
x = 1) in ProbFOIL, we determine the optimal weights x
(cf. Section 3), and include an experimental evaluation using
Bayesian networks and NELL, cf. Section 5.

3 ProbFOIL+

Algorithm Our ProbFOIL+ algorithm for learning proba-
bilistic clauses is shown as Algorithm 1. It directly general-
izes the mFOIL rule learner, and closely resembles the vanilla
rule-learning algorithm (cf. Mitchell [1997]) in that it follows
the typical sequential covering approach. The outer loop of
the algorithm starts from an empty set of clauses and repeat-
edly adds clauses to the hypothesis until no more improve-
ment is observed with respect to a global scoring function.
The clause to be added is obtained by the function LEARN-
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RULE, which greedily searches for the clause that maximizes
a local scoring function, using the refinement operator ρ.

Algorithm 1 The ProbFOIL+ learning algorithm.

1: function PROBFOIL+(target)
2: H := ∅
3: while true do
4: clause := LEARNRULE(H , target )
5: if GSCORE(H) < GSCORE(H ∪ {clause}) then
6: H := H ∪ {clause}
7: else return H
8: function LEARNRULE(H , target)
9: candidates := {x :: target ← true}

10: best := (x :: target ← true)
11: while candidates 6= ∅ do
12: next cand := ∅
13: for all x :: target ← body ∈ candidates do
14: for all refinement ∈ ρ(target ← body) do
15: if not REJECT(H , best , x :: target ← body) then
16: next cand := next cand ∪ {x :: target ← body∧
17: refinement}
18: if LSCORE (H , x :: target ← body ∧ refinement) >
19: LSCORE(H , best) then
20: best := (x :: target ← body ∧ refinement)

21: candidates := next cand
22: return best

While ProbLog and Prolog assume that the rules are def-
inite clauses, in ProbFOIL+ we use probabilistic rules of
the form x :: target ← body . This is short hand for
a ProbLog program with the deterministic rule target ←
body ∧ prob(id) and probabilistic fact x :: prob(id), where
id is an identifier that refers to this particular rule. Notice
that all facts for such rules are independent of one another,
and also that the probability x will have to be determined by
the rule learning algorithm. Each call to LSCORE returns the
best score that can be achieved for any value of x, and when
returning the best found rule in line 22, the value of x is fixed
to the probability that yields the highest local score.

Scoring Functions ProbFOIL+ uses (upgraded versions)
of standard scoring functions for rule learning, though oth-
ers can easily be adapted as well. As the global scoring
function, which determines the stopping criterion of the outer
loop, we use accuracyH = TPH+TNH

M where M is the
size of the dataset. The local scoring function is based
on the m-estimate, a variant of precision that is more ro-
bust against noise in the training data, which is defined as

m-estimateH =
TPH+m P

N+P

TPH+FPH+m , where m is a parameter of
the algorithm, and P and N indicates the number of positive
and negative examples in the dataset, respectively.

Both these metrics are based on the number of examples
correctly classified as positive (true positives, TP ) and the
number of examples incorrectly classified as positive (false
positives, FP ), which form the basis of the contingency ta-
bles for classification, and which we now upgrade for use
in a probabilistic setting. While in a deterministic setting,
each example ei has a 1/0 target classification, this now be-
comes a probability value pi. This means that every ex-
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Figure 1: True/false and pos./neg. parts of a single example
(left). Values for li, ui and pi where (a) it is still possible to
perfectly predict pi with the right value for x, or where pi will
always be (b) overestimated or (c) underestimated (right).

ample contributes pi to the positive part of the dataset and
1 − pi to the negative part of the dataset, which general-
izes the deterministic setting with pi = 1 for positive and
pi = 0 for negative examples. In general, we define the pos-
itive and negative parts of the dataset as P =

∑M
i=0 pi and

N =
∑M
i=0(1− pi) =M − P .

The same approach generalizes the predictions of a model
to the probabilistic setting where a hypothesis H will pre-
dict a value pH,i ∈ [0, 1] for example ei instead of 0 or 1.
In this way we can define a probabilistic version of the true
positive and false positive rates of the predictive model as
TPH =

∑M
i=0 tpH,i, where tpH,i = min(pi, pH,i) and

FPH =
∑M
i=0 fpH,i, where fpH,i = max(0, pH,i − pi). For

completeness we note that TNH = N − FPH and FNH =
P − TPH , as was the case in the deterministic setting.

Figure 1 illustrates these concepts. If a hypothesis H over-
estimates the target value of ei, that is, pH,i > pi then the
true positive part tpi will be maximal, that is, equal to pi.
The remaining part, pH,i− pi, is part of the false positives. If
H underestimates the target value of ei then the true positive
part is only pH,i and the remaining part, pi−pH,i contributes
to the false negative part of the prediction.

Calculating x Algorithm 1 builds a set of clauses incre-
mentally. Given a set of clauses H , it will search for the
clause c(x) = (x :: c) that maximizes the local scoring func-
tion, where x ∈ [0, 1] is a multiplier indicating the probabil-
ity that the body of c entails its head. The local score of the
clause c is obtained by selecting the best possible value for x,
that is, we want to find argmaxxM(x) with

M(x) =
TPH∪c(x) +m P

N+P

TPH∪c(x) + FPH∪c(x) +m

Next, we describe how to efficiently compute this value.
To find this optimal value, we need to be able to express the

contingency table ofH∪c(x) in function of x. As before, we
use pi to indicate the target value of example ei.

We see that pH∪c(x),i is a monotone function in x, that is,
for each example ei and each value of x, pH∪c(x),i ≥ pH,i
and for each x1 and x2, such that x1 ≤ x2, it holds that
pH∪c(x1),i ≤ pH∪c(x2),i. The minimum and maximum pre-
diction of H ∪ c(x) for the example ei is thus

li = pH∪c(0),i = pH,i ui = pH∪c(1),i.
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Figure 2: True and false positive rate for a single example
ei ∈ E3 where li < pi < ui.

Note that ui is the prediction that would be made by the orig-
inal ProbFOIL algorithm [De Raedt and Thon, 2010], which
learns deterministic rules.

For each example ei, we can decompose tpH∪c(x),i and
fpH∪c(x),i in

tpH∪c(x) = tpH,i + tpc(x),i fpH∪c(x),i = fpH + fpc(x),i,

where tpc(x),i and fpc(x),i indicate the additional contribution
of clause c(x) to the true and false positive rates.

Second, we divide the examples into three categories, as
depicted in Figure 1:

E1 : pi ≤ li, i.e., the clauses overestimate the target value for
this example, irrespective of the value of x. For such an
example tpc(x),i = 0 and fpc(x),i = x(ui − li).

E2 : pi ≥ ui, i.e., the clauses underestimate the target value
for this example, irrespective of the value of x. For such
an example tpc(x),i = x(ui − li) and fpc(x),i = 0.

E3 : li < pi < ui, i.e., there exists a value of x for which
the clause predicts the target value for this example per-
fectly. We call this value xi and it can be computed as

xi =
pi − li
ui − li

.

Figure 2 shows the values of tpc(x),i and fpc(x),i in func-
tion of x. The formulae for these functions are

tpc(x),i =

{
x(ui − li) if x ≤ xi,
pi − li if x > xi

and

fpc(x),i =

{
0 if x ≤ xi,
x(ui − li)− (pi − li) if x > xi

.

We can now determine the contribution to TPc(x) and
FPc(x) of the examples in each of these categories. For the
examples in E1, the contributions to TPc(x) and FPc(x) are

TP1(x) = 0 and FP1(x) = x

E1∑
i

(ui − li) = xU1.

For the examples in E2, the contribution to TPc(x) and
FPc(x) are

TP2(x) = x

E2∑
i

(ui − li) = xU2 and FP2(x) = 0.

For the examples in E3, the contributions to TPc(x) and
FPc(x) are

TP3(x) = x

E3∑
i:x≤xi

(ui−li)+
E3∑

i:x>xi

(pi−li) = xU≤xi

3 +P>xi
3 ,

FP3(x) = x

E3∑
i:x>xi

(ui−li)−
E3∑

i:x>xi

(pi−li) = xU>xi
3 −P>xi

3 .

By using the fact that TPH∪c(x) = TPH + TP1(x) +
TP2(x) + TP3(x) and FPH∪c(x) = FPH + FP1(x) +
FP2(x) + FP3(x) and by reordering terms we can reformu-
late the definition of the m-estimate as

M(x) =
TPH∪c(x) +m P

N+P

TPH∪c(x) + FPH∪c(x) +m

=
(U2 + U≤xi

3 )x+ TPH + P>xi
3 +m P

N+P

(U1 + U2 + U3)x+ TPH + FPH +m
. (1)

In the last step we replaced FP3(x)+TP3(x) = x
∑E3

i (ui−
li) = xU3.

By observing that U≤xi

3 and P>xi
3 are constant on the in-

terval between two consecutive values of xi, we see that this
function is a piecewise non-linear function where each seg-
ment is of the form

Ax+B

Cx+D

where A,B,C and D are constants. The derivative of such a
function is

dM(x)

dx
=

AD −BC
(CX +D)2

,

which is non-zero everywhere or zero everywhere. This
means that the maximum of M(x) will occur at one of
the endpoints of the segments, that is, in one of the points
xi. By incrementally computing the values of U≤xi

3 =∑E3

i:x≤xi
(pi − li) and P>xi

3 =
∑E3

i:x>xi
(pi − li) in Equation

1 for the xi in increasing order, we can efficiently find the
value of x that maximizes the local scoring function. More-
over, by computing one probability ui = pH∪c(1),i for each
example ei, we can obtain all probabilities for different x, as
pH∪c(x),i = li + x(ui − li).

Significance In order to avoid learning large hypotheses
with many clauses that only have limited contributions, we
use a significance test. This test was also used in the mFOIL
algorithm [Džeroski, 1993]. It is a variant of the likelihood
ratio statistic and is defined as

LhR(H, c) = 2(TPH,c + FPH,c)(
precH,c log

precH,c

prectrue
+ (1− precH,c) log

1−precH,c

1−prectrue

)
,

where

TPH ,c = TPH∪c − TPH , FPH ,c = FPH∪c − FPH
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precH ,c =
TPH,c

TPH,c + FPH,c
, prectrue =

P

P +N
.

This statistic is distributed according to χ2 with one degree
of freedom. Note that we use a relative likelihood, which is
based on the additional prediction made by adding clause c
to hypothesis H . As a result, later clauses will automatically
achieve a lower likelihood.

Local stopping criteria When we analyze the algorithm
above, we notice that in the outer loop, the number of pos-
itive predictions increases. This means that the values in the
first row of the contingency table can only increase (and the
values in the second row will decrease). More formally:

Property 1 For all hypotheses H1, H2: H1 ⊂ H2 →
TPH1

≤ TPH2
and FPH1

≤ FPH2
.

Additionally, in the inner loop, we start from the most gen-
eral clause (i.e., the one that always predicts 1), and we add
literals to reduce the coverage of negative examples. As a
result, the positive predictions will decrease.

Property 2 For all hypotheses H and clauses h ← l1, ..., ln
and literals l: TPH∪{h←l1,...,ln} ≤ TPH∪{h←l1,...,ln,l} and
FPH∪{h←l1,...,ln} ≤ FPH∪{h←l1,...,ln,l}

We can use these properties to determine when a refine-
ment can be rejected (line 15 of Algorithm 1). In order for
a clause to be a viable candidate it has to have a refinement
that 1) has a higher local score than the current best rule, 2)
has a significance that is high enough (according to a preset
threshold), and 3) has a better global score than the current
rule set without the additional clause.

Implementation Details As usual in ILP, ProbFOIL+ uses
a declarative bias based on modes [Muggleton, 1995]. These
specify syntactic restrictions on the clauses of interest and are
used by the refinement operator during the search process.

The LEARNRULE function of the ProbFOIL+ algorithm is
based on mFOIL [Džeroski, 1993] and uses a beam search
strategy in order to escape from local maxima. It uses rela-
tional path finding [Ong et al., 2005; Richards and Mooney,
1992] to generate clauses by considering the connections be-
tween the variables in the example literals, a proven technique
to direct the search in first-order rule learning.

ProbFOIL+ computes the probabilities pH,i using the
ProbLog2 system [Fierens et al., 2014].2 The ProbLog2 in-
ference engine computes the probability of queries in four
phases: it grounds out the relevant part of the probabilistic
program, converts this to a CNF form, performs knowledge
compilation into d-DNNF form and, finally, computes the
probability from the obtained d-DNNF structure. This pro-
cess is described in detail in [Fierens et al., 2014].

Due to the specific combinations and structure of
ProbFOIL+’s queries, we can apply multiple optimizations3:
Incremental grounding While the standard ProbLog2 would

2http://dtai.cs.kuleuven.be/problog/
3The remainder of the section can be skipped by the reader less

familiar with probabilistic programming

perform grounding for each query, ProbFOIL+ uses incre-
mental grounding techniques and builds on the grounding
from the previous iteration instead of starting from scratch.
This is possible as the rules are constructed and evaluated one
literal at-a-time.
Direct calculation of probabilities Because of the incremental
nature of ProbFOIL+’s evaluation, we can often directly com-
pute probabilities without having to resort to (costly) knowl-
edge compilation, for example when we add a literal whose
grounding does not share facts with the grounding of the rest
of the theory (for which we computed the probability in a pre-
vious iteration). This can also significantly reduce the size of
the theories that need to be compiled.
Propositional data When propositional data is used, all ex-
amples have the same structural component. This means we
can construct a d-DNNF for a single example and reuse it to
evaluate all other examples.
Range-restricted rules Since in a number of cases, it is desired
that the result in rules are range-restricted, i.e., that all vari-
ables appearing in the head of a clause also appear in its body,
ProbFOIL+ offers an option to output only range-restricted
rules.

4 Experiments
We answer two questions experimentally.

Q1: How do ProbFOIL and ProbFOIL+ compare to stan-
dard regression learners in the propositional case? This
question is motivated by the observation that – in the propo-
sitional case – the task can be viewed as that of predicting the
probability of the target example from a set of probabilistic at-
tributes, which can be solved by applying standard regression
tasks. Of course, one then obtains regression models, which
do not take the form of a set of logical rules that are easy to
interpret. While regression can in principle be applied to the
propositional case, it is hard to see which regression systems
would apply to the relational case. The reason is that essen-
tially all predicates are probabilistic (and hence, numeric),
a situation that is – to the best of the authors’ knowledge –
unprecedented in relational learning. Standard relational re-
gression algorithms are able to predict numeric values start-
ing from a relational description, a set of true and false ground
facts. The goal of this experiment is not to suggest that prob-
abilistic rule learning can contribute to regression, it is rather
that regression provides a reasonable baseline that allows to
evaluate the performance of probabilistic rule-learning.

Dataset We will generate data from Bayesian networks,
both for dependent and independent attributes, and partial and
full observability. The target variable will be the variable one
wants to predict, this will always be a node that does not have
children in the network. The evidence or descriptor variables
will be a subset of the other variables.We use BNGenerator4

to randomly generate a Bayesian network structure. The con-
ditional probability tables (CPT) and marginal distributions
are left unspecified. The generated network has 45 nodes, 70
edges, a maximal degree of 6 and an induced width of 5.

4http://www.pmr.poli.usp.br/ltd/Software/BNGenerator/
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Table 1: Mean absolute error on the Bayesian network with CPTs ∼ Beta(α, β), averaged over all target attributes.

independent dependent dependent
full observability partial observability

α, β 1.0000 0.0100 0.001 1.0000 0.0100 0.001 1.0000 0.0100 0.001
ZeroR 0.023 0.085 0.093 0.023 0.085 0.093 0.023 0.085 0.093

LinearRegression 4.4× 10−3 0.022 0.023 2.6× 10−3 0.021 0.020 4.8× 10−3 0.026 0.032
MultilayerPerceptron 9× 10−4 7.2× 10−3 6.7× 10−3 4× 10−4 5.7× 10−3 3.9× 10−3 1.2× 10−3 9.7× 10−3 0.020

M5P 1.5× 10−3 8.8× 10−3 8.7× 10−3 7× 10−4 6.5× 10−3 5.4× 10−3 1.6× 10−3 0.022 0.027
M5P -R -M 4.0 5.8× 10−3 0.025 0.028 5.2× 10−3 0.023 0.025 6.2× 10−3 0.033 0.040

SMOreg 4.4× 10−3 0.022 0.023 2.6× 10−3 0.021 0.020 4.5× 10−3 0.022 0.029
ProbFOIL 0.077 5.2× 10−3 9.4× 10−8 0.015 1.9× 10−3 9.4× 10−8 0.020 0.012 0.015

ProbFOIL+ 2.3× 10−3 2.9× 10−4 9.4× 10−8 3.9× 10−3 5.3× 10−4 2.8× 10−7 9.5× 10−3 0.011 0.013

Subsequently, different instances of the Bayesian network
are generated by sampling its CPTs from a beta distribution
Beta(α, β). Lower values for α and β make the network
more “deterministic” and less “probabilistic”. To generate
training and test examples for a single network instance, we
uniformly sample marginal probabilities for the root nodes.
These values, together with the inferred probability of the
target, make up a single example. Each combination of tar-
get attribute and beta distribution is a different learning prob-
lem. For each of these, we trained ProbFOIL, ProbFOIL+

and standard regression learners from the Weka suite on 500
training examples. The learned models are evaluated on 500
test examples using the mean absolute error, which is 1 mi-
nus the accuracy in the rule learning setting. We consider also
three settings, whose results are shown in Table 1:

1. Independent Attributes. In this simplest setting, the ob-
served attributes are all root nodes of the Bayesian net-
work, i.e., a node with no parent nodes in the graph.

2. Dependent Attributes, Full Observability. In this setting,
the observed nodes are no longer the root nodes. Conse-
quently, their probabilities are not independent anymore.
There is, however, an observed node on every path from
a root node to a target node, allowing for full observ-
ability and the possibility of rediscovering the model the
data was drawn from.

3. Dependent Attributes, Partial Observability. By drop-
ping full observability, we can no longer learn the per-
fect model.

Answer to Q1: In almost all cases ProbFOIL+ performs on
par or outperforms the standard regression learners, which
demonstrates its advantage for propositional probabilistic
rule learning. Furthermore, in all cases, similar or better
results are obtained by ProbFOIL+ when compared to Prob-
FOIL, illustrating the added value of learning probabilistic
rules with weights.

Q2: How does ProbFOIL+ perform for relational prob-
abilistic rule learning in the context of a probabilistic
knowledge base? The task to extract information from
unstructured or semi-structured documents has recently at-
tracted an increased amount of attention in the context of Ma-
chine Reading. Here we focus on NELL5, to which several

5See http://rtw.ml.cmu.edu

Table 2: Number of facts per predicate (NELL sports dataset)
for predicates used in the learned rules (Table 3).

athleteledsportsteam(athlete,team) 246
athleteplaysforteam(athlete,team) 808

athleteplaysinleague(athlete,league) 1197
athleteplayssport(athlete,sport) 1899
teamalsoknownas(team,team) 273

teamplaysagainstteam(team,team) 2848
teamplayssport(team,sport) 340

teamplaysinleague(team,league) 1229

rule learning approaches have already been applied, as dis-
cussed in Section 5.

Dataset In order to test probabilistic rule learning for
NELL, we extracted the facts for all predicates related
to the sports domain from iteration 850 of the NELL
knowledge base6. A similar dataset was used in the con-
text of meta-interpretive learning [Muggleton and Lin,
2013]. Our dataset contains 10567 facts. The number of
facts per predicate (and their types) are listed in Table 2.
Each fact has a probability value attached (e.g., 0.934 ::
athleteplaysforteam(thurman thomas, buffalo bills)).
Part of the negative examples are the negative contribution of
the positive examples (1− probability). The additional neg-
ative examples are generated by taking random combinations
of constants present in the dataset (while respecting the type
information). To reduce the search space during rule learn-
ing, we impose the constraint that each literal can introduce
at most one new variable as well as range-restrictedness.

To evaluate ProbFOIL+ in the context of NELL, we
learned rules for each binary predicate7 with more than 500
facts. In order to have a reasonable number of examples per
fold, we used 3-fold cross-validation. To create the folds,
for each target predicate, the facts were randomly split into
3 parts. Each fold consists of all non-target predicates and a
part of the target predicates. Due to space limitations, we only
report the rules for three of the predicates that are learned on

6From http://rtw.ml.cmu.edu/rtw/resources. Iteration 850 was
the last available iteration at the time of experimentation.

7Note that for the presented algorithm, the target predicates are
not restricted to binary only. This just happens to be the case in the
dataset we use.
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Table 3: Learned relational rules for the different predicates (fold 1).

0.9375::athleteplaysforteam(A,B) ← athleteledsportsteam(A,B).
0.9675::athleteplaysforteam(A,B) ← athleteledsportsteam(A,V1), teamplaysagainstteam(B,V1).
0.9375::athleteplaysforteam(A,B) ← athleteplayssport(A,V1), teamplayssport(B,V1).
0.5109::athleteplaysforteam(A,B) ← athleteplaysinleague(A,V1), teamplaysinleague(B,V1).
0.9070::athleteplayssport(A,B) ← athleteledsportsteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),

teamplayssport(V2,B).
0.9070::athleteplayssport(A,B) ← athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),

teamplayssport(V2,B),teamalsoknownas(V1,V2).
0.9070::athleteplayssport(A,B) ← athleteplaysforteam(A,V1), teamplayssport(V1,B).
0.9286::athleteplaysinleague(A,B) ← athleteledsportsteam(A,V1), teamplaysinleague(V1,B).
0.7868::athleteplaysinleague(A,B) ← athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplaysinleague(V1,B).
0.9384::athleteplaysinleague(A,B) ← athleteplayssport(A,V2), athleteplayssport(V1,V2), teamplaysinleague(V1,B).
0.9024::athleteplaysinleague(A,B) ← athleteplaysforteam(A,V1), teamplaysinleague(V1,B).

Table 4: Precision for different experimental setups and parameters (A: m = 1, p = 0.99, B: m = 1000, p = 0.90).

Setting athleteplaysforteam athleteplayssport teamplaysinleague athleteplaysinleague teamplaysagainstteam
train/test/rule A B A B A B A B A B
1: det/det/det 74.00 69.36 94.14 93.47 96.29 82.15 80.95 74.14 73.40 73.86
2: det/prob/det 73.51 69.57 97.53 94.85 96.70 87.83 90.83 77.73 73.70 73.35
3: det/prob/prob 74.67 69.82 95.86 94.74 96.35 82.57 82.26 75.29 73.84 74.34
4: det/prob/prob 77.25 73.87 96.53 96.04 98.00 90.59 84.91 79.36 77.26 77.83
5: det/prob/prob 74.76 69.97 95.85 94.69 96.44 82.51 81.99 75.07 73.90 74.16
6: prob/prob/det 75.83 73.11 93.40 93.76 94.44 93.67 79.41 79.42 80.87 80.60
7: prob/prob/prob 78.31 73.72 95.62 95.10 98.84 91.86 96.94 79.49 85.78 81.81

the first fold. Similar rules were obtained on the other predi-
cates and folds.

Experimental set-up. Our experimental set-up is moti-
vated as follows. As baselines for probabilistic rule learn-
ing, we chose several special cases of ProbFOIL+, possibly
combined with other techniques. Each of these special cases
closely corresponds to an approach that exists in the litera-
ture, and hence, can be used as a baseline. This provides a
more controlled experimental setting than a comparison with
other ILP or SRL systems. Furthermore, a comparison with
other ILP or SRL systems would be problematic as we are not
aware of other systems that can cope with both probabilis-
tic descriptions and probabilistic classifications. In addition,
when considering, for instance, Markov Logic, it would be
unclear how to turn the probabilities of atoms in the example
descriptions into weights for use by Markov Logic.

Setting 1 is the fully deterministic case. If ProbFOIL+

uses fully deterministic examples, this directly corresponds to
mFOIL and thus is representative of the pure ILP approach.
To this end, as usual in NELL, we interpret each example with
a probability higher than 0.75 as a positive one, and each ex-
ample with a lower probability as a negative one. Setting 2
uses the same learning algorithm and data as in Setting 1 but
uses the learned rules with probabilistic inputs to produce a
probabilistic classification. Setting 3 is a variant of Setting
1 in which we first learn the rules in a purely deterministic
way (as in Settings 1 and 2), and then assign a weight to each
learned rule. The weight is the precision of the rule estimated
using the probabilities of the target in the training set. This

closely corresponds to what some rule and decision tree learn-
ers do, namely estimating the probability of class membership
in the conclusion part of the rule or in the leaves of the deci-
sion tree. These weighted rules can then be used for proba-
bilistic class prediction. Note that in this setting only the class
probability of the example is taken into account, not the prob-
abilities of the descriptors. Setting 4 extends the previous set-
ting in that it also takes into account the probabilistic example
descriptions for computing the weights. While in Setting 3,
when the body of a fully deterministic rule is true, one would
always predict a probability of 1, in Setting 4 the predicted
probability is the probability with which the body of the rule
is true in the example. In Setting 5 we first learn determin-
istic rules and then train the weights with LFE using a least-
squares approach. LFE is a learning technique for parameter
estimation that naturally works with probabilistic inputs and
probabilistic outputs, cf. [Gutmann et al., 2008]. This setting
closely mimics two step approaches such as those of Schoen-
mackers et al. [2010], N-FOIL [Lao et al., 2011], and Ragha-
van et al. [2012] in that one first learns deterministic rules and
in a second step learns their weights or probabilities, see also
Section 5 for a discussion of these appraoches. Setting 6 uses
probabilistic examples in both training and test set, but uses
ProbFOIL, the deterministic version of ProbFOIL+. Setting
7 then corresponds to the full ProbFOIL+ setting.

Similar to previous related work (e.g., Carlson et
al. [2010], Schoenmackers et al. [2010], Raghavan and
Mooney [2013]) we used precision as our primary evaluation
measure. It measures the fraction of the probabilistic infer-
ences that are deemed correct. Measuring the true recall is
impossible in this context, since it would require all correct
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facts for a given target predicate. For example, it is possible
that correct facts are inferred using the obtained rules, which
are not (yet) present in the knowledge base, and consequently
are not reflected in the recall score.

For all predicates, the m-estimate’s m value was set to 1
and the beam width to 5. The value of p for rule significance
was set to 0.99. Furthermore, to avoid a bias towards the
majority class, the examples are balanced, i.e., a part of the
negative examples is removed.

Discussion As is clear from Table 3, ProbFOIL+ learns in-
terpretable rules. Some of the rules are less meaningful than
others, which can be explained by the small number of con-
stants (in this case representing entities related to athletes and
teams) in the dataset. In all cases, ProbFOIL+ performs on
par or outperforms the baselines that use deterministic train-
ing data, and ProbFOIL. In order to avoid overfitting because
of over-specific rules, we also tested all settings with a high
m-value (1000), and a rule significance p of 0.9 (parameter
setting B). This also limits the capability of the algorithm
to fit to small variations that are actually improving the pre-
dictive power. However, one can observe that ProbFOIL+

is still able to perform similarly or better than the other set-
tings. With these settings, ProbFOIL+ learns more determin-
istic rules. This can also be seen from results obtained with
ProbFOIL (Setting 6), which are now more similar to the ones
obtained with ProbFOIL+. Furthermore, the obtained rule
sets achieve similar results on training and test set, indicating
the generalizability of the learned rules.

The evaluation for the machine reading setting is limited by
the available data, which should be taken into account when
interpreting these results. First of all, the distribution of the
probabilities in the NELL dataset is very skewed. Moreover,
the dataset also contains a number of predicates for which
only a small number of facts are available in knowledge base.
Finally, the confidence scores that are currently attached to
the facts in NELL are a combination of the probability out-
put by the learning algorithm and a manual evaluation. Even
under these circumstances, ProbFOIL+ performs better than
a purely deterministic or two-step approach.

Answer to Q2: ProbFOIL+ obtains promising results for
relational probabilistic rule learning. Its use can be valuable
for expanding a probabilistic knowledge base, as illustrated
in the context of NELL.

5 Related Work
There is a large body of related research, much of which orig-
inates from the machine reading domain or from statistical re-
lational learning. To the best of the authors’ knowledge, none
of these possess the combination of the four features listed at
the end of the introduction.

First, there are several works that aim at learning inference
rules from automatically extracted data and using the learned
rules to expand the knowledge base in NELL. Most of these
approaches (like N-FOIL [Lao et al., 2011], the approach to
learning Bayesian Logic Programs (BLPs) of Raghavan et
al. [2012], and Schoenmackers et al. [2010]) all proceed in
two steps (and hence do not satisfy feature 3). In the first

step, a deterministic rule-learner is applied to a deterministic
setting, and the weights are then determined in a second step
using a variety of techniques, while we jointly optimize the
rules and the parameters. The deterministic setting was also
a baseline chosen in our experiment on the NELL data.

Secondly, another major difference lies in the underly-
ing probabilistic logical framework that ranges from Markov
Logic [Schoenmackers et al., 2010] to BLPs [Raghavan et
al., 2012] and variations of stochastic logic programs (SLPs)
[Lao et al., 2011; Wang et al., 2014; Chen et al., 2008]).
Markov Logic and BLPs are based on knowledge based con-
struction and hence, correspond to graphical models, which
sets it apart from approaches such as ProbLog based on logi-
cal deduction. Furthermore, the semantics of the approaches
based on stochastic logic programs is quite different in that
in Halpern’s [1990] terminology, it is more a type 1 than
type 2 probabilistic logic. Type 1 logics are similar to gram-
mars, they determine the probability with which a sentence
(or atom) would be sampled from the model, rather than a de-
gree of belief in the truth-value of that sentence in the world
(thus these SLP approaches do not satisfy 2). Another dif-
ference with [Chen et al., 2008] is that they use an abductive
rather than an inductive approach.

Thirdly, some approaches learn both the global structure
and parameters of SRL models, and even do order the search
using a form of θ-subsumption. However, none of these ap-
proaches directly upgrades the traditional ILP rule-learning
setting. Instead they learn a full SRL model typically from
(partial) interpretations instead of from entailment, that is,
the examples are sets of ground facts rather than specific facts
with an associated target probability (and hence do not satisfy
1). The techniques (and the scoring functions) are quite dif-
ferent for this case. Typically, a mixture of EM and a search
for possible rules is used (e.g. Bellodi and Riguzzi [2012],
Sorower et al. [2011]) (which does not satisfy 4).

Finally, a number of other extensions of FOIL exists.
nFOIL [Landwehr et al., 2007] integrates FOIL with the
Naı̈ve Bayes learning scheme, such that Naı̈ve Bayes is used
to guide the search. kFOIL [Landwehr et al., 2010] is a
propositionalization technique that uses a combination of
FOIL’s rule-learning algorithm and kernel methods to derive
a set of features from a relational representation. To this end,
FOIL searches relevant clauses that can be used as features in
kernel methods. These approaches do not satisfy 1 and 3.

6 Conclusion

We have introduced a novel setting for probabilistic rule
learning, in which probabilistic rules are learned from prob-
abilistic examples. The ProbFOIL+ algorithm we developed
solves this problem by combining the principles of the rule
learner FOIL with the probabilistic Prolog called ProbLog.
The result is a natural probabilistic extension of ILP and rule
learning. We evaluated the approach against regression learn-
ers, and showed results on both propositional and relational
probabilistic rule learning. Furthermore, we explored its use
for knowledge base expansion in the context of NELL.
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