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Abstract
Existing techniques for inference in probabilistic
logic programs are sequential: they first compute
the relevant propositional formula for the query of
interest, then compile it into a tractable target rep-
resentation and finally, perform weighted model
counting on the resulting representation. We pro-
pose TP -compilation, a new inference technique
based on forward reasoning. TP -compilation pro-
ceeds incrementally in that it interleaves the knowl-
edge compilation step for weighted model counting
with forward reasoning on the logic program. This
leads to a novel anytime algorithm that provides
hard bounds on the inferred probabilities. Fur-
thermore, an empirical evaluation shows that TP -
compilation effectively handles larger instances of
complex real-world problems than current sequen-
tial approaches, both for exact and for anytime ap-
proximate inference.

1 Introduction
Research on combining probability and logic for use with re-
lational data has contributed many probabilistic logic pro-
gramming (PLP) languages and systems such as PRISM
[Sato, 1995], ICL [Poole, 2008], PITA [Riguzzi and Swift,
2011] and ProbLog [De Raedt et al., 2007; Fierens et al.,
2013]. Inference algorithms for PLP often rely on a three
step procedure: (1) transform the dependency structure of
the logic program and the queries into a propositional for-
mula, (2) compile this formula into a tractable target repre-
sentation, and (3) compute the weighted model count (WMC)
[Chavira and Darwiche, 2008] of the compiled formula. Step
(1) is shared by exact inference [Fierens et al., 2013] and ap-
proximation techniques based on compiling selected subfor-
mulas or sampling [Renkens et al., 2014; Poon and Domin-
gos, 2006]. It is well-known that this step is computation-
ally expensive or even prohibitive for highly cyclic logic pro-
grams, as additional propositions are needed to break every
cycle [Fierens et al., 2013]. This limits the applicability of the
sequential approach in real-world domains with cyclic depen-
dencies, such as gene interaction networks, social networks
and the web. The most common solution is to use an approx-
imate (simplified) logic program. Recently, the problem has

also been addressed using lazy clause generation [Aziz et al.,
2015], but only for exact inference.

The key contribution of this paper is TP -compilation, a
novel inference technique for probabilistic definite clause
programs that interleaves construction and compilation of the
propositional formula for WMC (steps (1) and (2)). Our sec-
ond contribution, and formal basis of TP -compilation, is the
TcP operator that generalizes the TP operator from logic
programming [Van Emden and Kowalski, 1976] to explicitly
construct the formula. At any point, the WMC of the current
formula provides a lower bound on the true probability, and
we thus realize an anytime algorithm.

As in the purely logical setting, forward reasoning with the
TcP operator allows one to answer multiple queries in par-
allel, which is not supported by earlier anytime PLP algo-
rithms based on backward reasoning [Poole, 1993; De Raedt
et al., 2007]. Furthermore, forward reasoning naturally han-
dles cyclic dependencies. This avoids the need for additional
propositions for breaking cycles and simplifies the compila-
tion step. Finally, our approach is amenable to online infer-
ence. That is, when clauses are added to or deleted from the
program, TP -compilation can update the already compiled
formulas, which can cause significant savings compared to
restarting inference from scratch. While forward reasoning
is common in sampling-based inference approaches in prob-
abilistic programming, e.g., [Milch et al., 2005; Goodman et
al., 2008; Gutmann et al., 2011], these do not provide guaran-
teed lower or upper bounds on the probability of the queries.

We obtain an efficient realization of the TcP opera-
tor by representing formulas as Sentential Decision Dia-
grams (SDD) [Darwiche, 2011], which efficiently support
incremental formula construction and WMC. While our ap-
proach can easily be extended to handle stratified negation,
for ease of presentation we focus on definite clause pro-
grams which cover real-world applications such as biolog-
ical and social networks and web-page classification tasks.
An empirical evaluation in these domains demonstrates that
TP -compilation outperforms state-of-the-art sequential ap-
proaches on these problems with respect to time, space and
quality of results.

The paper is organized as follows. We review the necessary
background in Section 2. Section 3 and 4 formally introduce
the TcP operator and corresponding algorithms. We discuss
experimental results in Section 5 and conclude in Section 6.
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2 Background
We review the basics of (probabilistic) logic programming.

2.1 Logical Inference
A definite clause program, or logic program for short, is
a finite set of definite clauses, also called rules. A defi-
nite clause is a universally quantified expression of the form
h :− b1, ..., bn where h and the bi are atoms and the comma
denotes conjunction. The atom h is called the head of the
clause and b1, ..., bn the body. A fact is a clause that has
true as its body and is written more compactly as h. If an
expression does not contain variables it is ground.

LetA be the set of all ground atoms that can be constructed
from the constants, functors and predicates in a logic pro-
gram P . A Herbrand interpretation of P is a truth value as-
signment to all a ∈ A, and is often written as the subset of
true atoms (with all others being false), or as a conjunc-
tion of atoms. A Herbrand interpretation satisfying all rules
in the program P is a Herbrand model. The model-theoretic
semantics of a logic program is given by its unique least Her-
brand model, that is, the set of all ground atoms a ∈ A that
are entailed by the logic program, written P |= a.

As running example we use a logic program that models a
graph (see Figure 1). The facts represent the edges between
two nodes in the graph (we ignore the probabilities at this
moment) and the rules define whether there is a path between
two nodes. Abbreviating predicate names by initials, the least
Herbrand model is given by {e(b, a), e(b, c), e(a, c), e(c, a),
p(b, a), p(b, c), p(a, c), p(c, a), p(a, a), p(c, c)}.

a b

c

0.4 :: edge(b, a). 0.5 :: edge(b, c).

0.8 :: edge(a, c). 0.7 :: edge(c, a).

path(X,Y ) : - edge(X,Y ).

path(X,Y ) : - edge(X,Z), path(Z, Y ).

Figure 1: A (probabilistic) logic program modeling a graph.

The task of logical inference is to determine whether a pro-
gram P entails a given atom, called query. The two most
common approaches to inference are backward reasoning
or SLD-resolution, which starts from the query and reasons
back towards the facts [Nilsson and Maluszynski, 1995], and
forward reasoning, which starts from the facts and derives
new knowledge using the immediate consequence operator
TP [Van Emden and Kowalski, 1976].

Definition 1 (TP operator) Let P be a ground logic pro-
gram. For a Herbrand interpretation I , the TP operator re-
turns

TP(I ) = {h | h : - b1, . . . , bn ∈ P and {b1, . . . , bn} ⊆ I }

The least fixpoint of this operator is the least Herbrand model
of P . Let T kP(∅) denote the result of k consecutive calls of
the TP operator, ∆I i be the difference between T i−1P (∅) and
T iP(∅), and T∞P (∅) the least fixpoint interpretation of TP .

The least fixpoint can be efficiently computed using a semi-
naive evaluation algorithm [Nilsson and Maluszynski, 1995].

On our example, this results in:

I 0 = ∅
∆I 1 = {e(b, a), e(b, c), e(a, c), e(c, a)}
∆I 2 = {p(b, a), p(b, c), p(a, c), p(c, a)}
∆I 3 = {p(a, a), p(c, c)}
∆I 4 = ∅

T∞P (∅) =
⋃
i ∆I i is the least Herbrand model as given above.

2.2 Probabilistic-Logical Inference
Most probabilistic logic programming languages (e.g. ICL,
PRISM, ProbLog) are based on Sato’s distribution seman-
tics [Sato, 1995]. In this paper, we use ProbLog as it is the
simplest of these languages.

A ProbLog program P consists of a setR of rules and a set
F of probabilistic facts; an example is given in Figure 1. As
common, we assume that no probabilistic fact unifies with a
rule head. A ProbLog program specifies a probability distri-
bution over its Herbrand interpretations, also called possible
worlds. Every grounding fθ of a probabilistic fact p :: f in-
dependently takes value true (with probability p) or false
(with probability 1− p). For ease of notation, we assume that
F is ground.

A total choice C ⊆ F assigns a truth value to every
(ground) probabilistic fact, and the corresponding logic pro-
gram C ∪ R has a unique least Herbrand model; the proba-
bility of this model is that of C. Interpretations that do not
correspond to any total choice have probability zero. The
probability of a query q is then the sum over all total choices
whose program entails q:

Pr(q) :=
∑

C⊆F :C∪R|=q

∏
fi∈C

pi ·
∏

fi∈F\C

(1− pi) . (1)

As enumerating all total choices entailing the query is infea-
sible, state-of-the-art ProbLog inference [Fierens et al., 2013]
reduces the problem to that of weighted model counting. For
a formula λ over propositional variables V and a weight func-
tion w(·) assigning a real number to every literal for an atom
in V , the weighted model count is defined as

WMC(λ) :=
∑

I⊆V :I|=λ

∏
a∈I

w(a) ·
∏

a∈V \I

w(¬a) . (2)

The reduction sets w(fi) = pi and w(¬fi) = 1 − pi for
probabilistic facts pi :: fi, and w(a) = w(¬a) = 1 else. For
a query q, it constructs a formula λ′ such that for every total
choice C ⊆ F , C ∪ {λ′} |= q ↔ C ∪R |= q. While λ′ may
use variables besides the probabilistic facts, their values have
to be uniquely defined for each total choice.

We briefly discuss the key steps of the sequential WMC-
based approach, and refer to Fierens et al. [2013] for full de-
tails. First, the relevant ground program, i.e., all and only
those ground clauses that contribute to some derivation of
a query, is obtained using backward reasoning. Next, the
ground program is converted into a propositional formula in
Conjunctive Normal Form (CNF), which is finally passed to
an off-the-shelf solver for weighted model counting.
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The resources needed for the conversion step, as well as the
size of the resulting CNF, greatly increase with the number
of cycles in the ground program, as additional variables and
clauses are introduced to capture the least Herbrand seman-
tics of every cycle. For example, the conversion algorithm
implemented in ProbLog returns, for the complete grounding
of a fully connected graph with only 10 nodes, a CNF with
26995 variables and 109899 clauses.

For exact inference, it is common to compile the CNF into
a target representation for which WMC is polynomial in the
size of the representation. Anytime (approximate) inference
constructs the full CNF first, and then incrementally compiles
a set of chosen subformulas [Renkens et al., 2014].

3 The TcP Operator
We develop the formal basis of our approach that interleaves
formula construction and compilation by means of forward
reasoning. The main advantages are that (a) the conversion to
propositional logic happens during rather than after reasoning
within the least Herbrand semantics, avoiding the expensive
introduction of additional variables and propositions, and (b)
at any time in the process, the current formulas provide hard
bounds on the probabilities.

Although forward reasoning naturally considers all conse-
quences of a program, using the relevant ground program al-
lows us to restrict the approach to the queries of interest. As
common in probabilistic logic programming, we assume the
finite support condition, i.e., the queries depend on a finite
number of ground probabilistic facts.

We use forward reasoning to build a formula λa for every
atom a ∈ A such that λa exactly describes the total choices
C ⊆ F for which C ∪ R |= a. Such λa can be used to
compute the probability of a via WMC, cf. Section 2.2, inde-
pendently of their syntactic representation.

Definition 2 (Parameterized interpretation) A parameter-
ized interpretation I of a ground probabilistic logic program
P with probabilistic facts F and atoms A is a set of tuples
(a, λa) with a ∈ A and λa a propositional formula over F .

For instance, in Figure 1, we can use λe(b,a) = e(b, a) as
e(b, a) is true in exactly those worlds whose total choice
includes that edge, and λp(b,c) = e(b, c) ∨ (e(b, a) ∧ e(a, c))
as p(b, c) is true in exactly those worlds whose total choice
includes at least the direct edge or the two-edge path.

A naive approach to construct the λa would be to com-
pute Ii = T∞R∪Ci

(∅) for every total choice Ci ⊆ F and to
set λa =

∨
i:a∈Ii

∧
f∈Ci

f , that is, the disjunction explicitly
listing all total choices contributing to the probability of a.
Clearly, this requires a number of fixpoint computations ex-
ponential in |F|, and furthermore, doing these computations
independently does not exploit the potentially large structural
overlap between them.

Therefore, we introduce the TcP operator. It generalizes
the TP operator to work on the parameterized interpretation
and builds, for all atoms in parallel on the fly, formulas that
are logically equivalent to the λa introduced above. For ease
of notation, we assume that every parameterized interpreta-

tion implicitly contains a tuple (true,>), and, just as in reg-
ular interpretations, we do not list atoms with λa ≡ ⊥. 1

Definition 3 (TcP operator) Let P be a ground probabilis-
tic logic program with probabilistic facts F and atomsA. Let
I be a parameterized interpretation with pairs (a, λa). Then,
the TcP operator is TcP(I) = {(a, λ′a) | a ∈ A} where

λ′a =

{
a if a ∈ F∨

(a :- b1,...,bn)∈P(λb1 ∧ · · · ∧ λbn) if a ∈ A \ F .

Intuitively, where the TP operator (repeatedly) adds an atom
a to the interpretation whenever the body of a rule defining a
is true, the TcP operator adds to the formula for a the de-
scription of the total choices for which the rule body is true.
In contrast to the TP operator, where a syntactic check suf-
fices to detect that the fixpoint is reached, the TcP operator
requires a semantic fixpoint check for each formula λa (which
we write as Ii ≡ TcP(Ii−1)).

Definition 4 (Fixpoint of TcP ) A parameterized interpreta-
tion I is a fixpoint of the TcP operator if and only if for all
a ∈ A, λa ≡ λ′a, where λa and λ′a are the formulas for a in
I and TcP(I), respectively.

It is easy to verify that for F = ∅, i.e., a ground logic pro-
gram P , the iterative execution of the TcP operator directly
mirrors that of the TP operator, representing atoms as (a,>).

We use λia to denote the formula associated with atom a
after i iterations of TcP starting from ∅. How to efficiently
represent the formulas λa is discussed in Section 4.

In our example, the first application of TcP sets λ1e(x,y) =

e(x, y) for (x, y) ∈ {(b, a), (a, c), (b, c), (c, a)}. These re-
main the same in all subsequent iterations. The second appli-
cation of TcP starts adding formulas for path atoms, which
we illustrate for just two atoms:

λ2p(b,c) = λ1e(b,c) ∨ (λ1e(b,a) ∧ λ
1
p(a,c)) ∨ (λ1e(b,c) ∧ λ

1
p(c,c))

= e(b, c) ∨ (e(b, a) ∧ ⊥) ∨ (e(a, c) ∧ ⊥) ≡ e(b, c)
λ2p(c,c) = (λ1e(c,a) ∧ λ

1
p(a,c)) = (e(c, a) ∧ ⊥) ≡ ⊥

That is, the second step considers paths of length at most 1
and adds (p(b, c), e(b, c)) to the parameterized interpretation,
but does not add a formula for p(c, c), as no total choices
making this atom true have been found yet. Similarly, the
third iteration adds information on paths of length at most 2:

λ3p(b,c) = λ2e(b,c) ∨ (λ2e(b,a) ∧ λ
2
p(a,c)) ∨ (λ2e(b,c) ∧ λ

2
p(c,c))

≡ e(b, c) ∨ (e(b, a) ∧ e(b, c))
λ3p(c,c) = (λ2e(c,a) ∧ λ

2
p(a,c)) = (e(c, a) ∧ e(a, c))

Intuitively, TcP keeps adding longer sequences of edges con-
necting the corresponding nodes to the path formulas, reach-
ing a fixpoint once all acyclic sequences have been added.

1Thus, the empty set implicitly represents the parameterized in-
terpretation {(true,>)} ∪ {(a,⊥)|a ∈ A} for a set of atoms A.
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Correctness We now show that for increasing i, TciP(∅)
reaches a least fixpoint where the λa are exactly the formulas
needed to compute the probability for each atom by WMC.

Theorem 1 For a ground probabilistic logic program P with
probabilistic facts F , rules R and atoms A, let λia be the
formula associated with atom a in TciP(∅). For every atom
a, total choice C ⊆ F and iteration i, we have:

C |= λia → C ∪R |= a

Proof by induction: i = 1: easily verified. i → i + 1: easily
verified for a ∈ F ; for a ∈ A \ F , let C |= λi+1

a , that is,
C |=

∨
(a :- b1,...,bn)∈P(λib1 ∧ · · · ∧ λ

i
bn

). Thus, there is a
a : - b1, . . . , bn ∈ P with C |= λibj for all 1 ≤ j ≤ n. By
assumption, C ∪R |= bj for all such j and thus C ∪R |= a.
�

Thus, after each iteration i, we have WMC(λia) ≤ Pr(a).

Theorem 2 For a ground probabilistic logic program P with
probabilistic facts F , rules R and atoms A, let λia be the
formula associated with atom a in TciP(∅). For every atom
a and total choice C ⊆ F , there is an i0 such that for every
iteration i ≥ i0, we have

C ∪R |= a ↔ C |= λia

Proof: ←: Theorem 1. →: C ∪ R |= a implies ∃i0∀i ≥
i0 : a ∈ T iC∪R(∅). We further show ∀j : a ∈ T jC∪R(∅) →
C |= λja by induction. j = 1: easily verified. j → j + 1:
easily verified for a ∈ F ; for other atoms, a ∈ T j+1

C∪R(∅)
implies there is a rule a : - b1, . . . , bn ∈ R such that ∀k :

bk ∈ T jC∪R(∅). By assumption, ∀k : C |= λjbk , and by
definition, C |= λj+1

a . �
Thus, for every atom a, the λia reach a fixpoint λ∞a exactly

describing the possible worlds entailing a, and the TcP oper-
ator therefore reaches a fixpoint where for all atoms Pr(a) =
WMC(λ∞a ).2 Using Bayes’ rule, we can also compute condi-
tional probabilities Pr(q|e) as WMC(λ∞q ∧ λ′e)/WMC(λ′e)
with λ′e = λ∞e for e = > and λ′e = ¬λ∞e for e = ⊥.

4 Algorithms
As in logical inference with TP , probabilistic inference iter-
atively calls the TcP operator until the fixpoint is reached.
This involves incremental formula construction (cf. Defini-
tion 3) and equivalence checking (cf. Definition 4). Then, for
each query q, the probability is computed as WMC(λq).

An efficient realization of our evaluation algorithm is ob-
tained by representing the formulas in the interpretation I by
means of a Sentential Decision Diagram (SDD) [Darwiche,
2011], as these efficiently support all required operations.
Hence, we can replace each λa in Definition 3 by its equiv-
alent SDD representation (denoted by Λa) and each of the
Boolean operations by the Apply-operator for SDDs which,
given ◦ ∈ {∨,∧} and two SDDs Λa and Λb, returns an SDD
equivalent with (Λa ◦ Λb).

2The finite support condition ensures this happens in finite time.

4.1 TP -Compilation
The TcP operator is, by definition, called on I. To allow for
different evaluation strategies, however, we propose a more
fine-grained algorithm where, in each iteration, the operator
is only called on one specific atom a, i.e., only the rules for
which a is the head are evaluated, denoted by TcP(a, Ii−1).
Each iteration i of TP -compilation consists of two steps;

1. Select an atom a ∈ A.
2. Compute Ii = TcP(a, Ii−1)

The result of Step 2 is that only the formula for atom a is
updated and, for each of the other atoms, the formula in Ii is
the same as in Ii−1. It is easy to verify that TP -compilation
reaches the fixpoint Tc∞P (∅) in case the selection procedure
frequently returns each of the atoms in P .

4.2 Anytime Inference
Until now, we mainly focused on exact inference. Our algo-
rithm is easily adapted for anytime inference as well.

Lower Bound
Following Theorem 1, we know that, after each iteration i,
WMC(λia) is a lower bound on the probability of atom a,
i.e. WMC(λia) ≤ Pr(a) = WMC(λ∞a ). To quickly increase
WMC(λia) and, at the same time, avoid a blow-up of the for-
mulas in I, the selection procedure we employ picks the atom
which maximizes the following heuristic value:

WMC(Λia)−WMC(Λi−1a )

φa · (SIZE(Λia)− SIZE(Λi−1a ))/SIZE(Λi−1a )

where SIZE(Λ) denotes the number of edges in SDD Λ and
φa adjusts for the importance of a in proving queries.

Concretely, Step 1 of TP -compilation calls TcP(a, Ii−1)
for each a ∈ A, computes the heuristic value and returns
the atom a′ for which this value is the highest. Then, Step 2
performs Ii = TcP(a′, Ii−1). Although there is overhead
involved in computing the heuristic value, as many formulas
are compiled without storing them, this strategy works well
in practice.

We take as value for φa the minimal depth of the atom a in
the SLD-tree for each of the queries of interest. This value is
a measure for the influence of the atom on the probability of
the queries. For our example, and the query p(b, c), the use
of φa would give priority to compile p(b, c) as it is on top of
the SLD-tree. Without φa, the heuristic would give priority
to compile p(a, c) as it has the highest probability.

Upper bound
To compute an upper bound, we select F ′ ⊂ F and treat
each f ∈ F ′ as a logical fact rather than a probabilistic fact,
that is, we conjoin each λa with

∧
f∈F ′ λf . In doing so, we

simplify the compilation step of our algorithm, because the
number of possible total choices decreases. Furthermore, at
a fixpoint, we have an upper bound on the probability of the
atoms, i.e., WMC(λ∞a |λF ′) ≥ Pr(a), because we overesti-
mate the probability of each fact in F ′.

Randomly selectingF ′ ⊂ F does not yield informative up-
per bounds (they are close to 1). As a heuristic, we compute
for each of the facts the minimal depth in the SLD-trees of
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the queries of interest and select for F ′ all facts whose depth
is smaller than some constant d. Hence, we avoid the query
to be deterministically true as for each of the proofs, i.e.,
traces in the SLD-tree, we consider at least one probabilistic
fact. This yields tighter upper bounds. For our example, and
the query path(b, c), both of the edges starting in node b are
at a depth of 1 in the SLD-tree. Hence, it suffices to com-
pile only them, and treat both other edges as logical facts, to
obtain an upper bound smaller than 1.

4.3 Online Inference
An advantage of forward reasoning is that it naturally sup-
ports online, or incremental, inference. In this setting, one
aims to reuse past computation results when making incre-
mental changes to the model, rather than restarting inference
from scratch. Our TcP operator allows for adding clauses to
and removing clauses from the program.

For logic programs, we know that employing the TP op-
erator on a subset of the fixpoint reaches the fixpoint, i.e.
∀I ⊆ T∞P (∅) : T∞P (I ) = T∞P (∅). Moreover, adding defi-
nite clauses leads to a superset of the fixpoint, i.e., T∞P (∅) ⊆
T∞P∪P ′(∅). Hence, it is safe to restart the TP operator from a
previous fixpoint after adding clauses. Due to the correspon-
dence established in Theorem 2, this also applies to TcP . For
our example, we could add 0.1 : : e(a, b) and the correspond-
ing ground rules. This leads to new paths, such as p(b, b), and
increases the probability of existing paths, such as p(a, c).

When removing clauses, atoms in the fixpoint may become
invalid. We therefore reset the computed fixpoints for all to-
tal choices where the removed clause could have been ap-
plied. This is done by conjoining each of the formulas in the
parametrized interpretation with the negation of the formula
for the head of the removed clause. Then, we restart the TcP
operator from the adjusted parametrized interpretation, to re-
compute the fixpoint for the total choices that were removed.
For our example, if we remove 0.5 : : e(b, c) and the rules con-
taining this edge, we are removing a possible path from b to c
and thus decreasing the probability of p(b, c).

5 Experimental Results
Our experiments address the following questions:

Q1 How does TP -compilation compare to exact sequential
WMC approaches?

Q2 When is online TP -compilation advantageous?

Q3 How does TP -compilation compare to anytime sequen-
tial approaches?

Q4 What is the impact of approximating the model?

We compute relevant ground programs as well as CNFs
(where applicable) following Fierens et al. [2013] and use
the SDD package developed at UCLA3. Experiments are run
on a 3.4 GHz machine with 16 GB of memory. Our imple-
mentation is available as part of the ProbLog package 4.

3http://reasoning.cs.ucla.edu/sdd/
4http://dtai.cs.kuleuven.be/problog/
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Figure 2: Exact inference on Alzheimer.
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Figure 3: Exact inference on Smokers.

Exact Inference
We use datasets of increasing size from two domains:

Smokers. Following Fierens et al. [2013], we generate
random power law graphs for the standard ‘Smokers’ social
network domain.

Alzheimer. We use series of connected subgraphs of the
Alzheimer network of De Raedt et al. [2007], starting from a
subsample connecting the two genes of interest ‘HGNC 582’
and ‘HGNC 983’, and adding nodes that are connected with
at least two other nodes in the graph.

The relevant ground program is computed for one specific
query as well as for multiple queries. For the Smokers do-
main, this is cancer(p) for a specific person p versus for
each person. For the Alzheimer domain, this is the connec-
tion between the two genes of interest versus all genes.

For the sequential approach, we perform WMC using ei-
ther SDDs, or d-DNNFs compiled with c2d5 [Darwiche,
2004]. For each domain size (#persons or #nodes) we con-
sider nine instances with a timeout of one hour per setting.
We report median running times and target representation
sizes, using the standard measure of #edges for the d-DNNFs
and 3 ·#edges for the SDDs. The results are depicted in Fig-
ure 2 and 3 and provide an answer for Q1.

In all cases, our TP -compilation (Tp-comp) scales to
larger domains than the sequential approach with both
SDD (cnf SDD) and d-DNNF (cnf d-DNNF) and produces
smaller compiled structures, which makes subsequent WMC

5http://reasoning.cs.ucla.edu/c2d/
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computations more efficient. The smaller structures are
mainly obtained because our approach does not require aux-
iliary variables to correctly handle the cycles in the program.
For Smokers, all queries depend on almost the full network
structure, and the relevant ground programs – and thus the
performance of TP -compilation – for one or all queries are
almost identical. The difference between the settings for the
sequential approaches is due to CNF conversion introducing
more variables in case of multiple queries.
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Figure 4: Online inference on Alzheimer (left) and Smokers (right).

Online Inference
We experiment on the Alzheimer domain discussed above,
and a variant on the smokers domain. The smokers network
has 150 persons and is the union of ten different random
power law graphs with 15 nodes each. We consider the multi-
ple queries setting only, and again report results for nine runs.

We compare our standard TP -compilation algorithm,
which compiles the networks for each of the domain sizes
from scratch, with the online algorithm discussed in Sec-
tion 4.3. The results are depicted in Figure 4 and provide
an answer to Q2.

For the Alzheimer domain, which is highly connected,
incrementally adding the nodes (Tcp-inc) has no real
benefit compared to recompiling the network from scratch
(Tp-comp) and, consequently, the cumulative time of the in-
cremental approach (Tcp-inc-total) is higher. For the
smokers domain, on the other hand, the incremental approach
is more efficient compared to recompiling the network, as it
only updates the subnetwork to which the most recent person
has been added.

Anytime Inference
We consider an approximated (Papr ) as well as the original
(Porg ) model of two domains:

Genes. Following Renkens et al. [2012; 2014], we use the
biological network of Ourfali et al. [2007] and its 500 con-
nection queries on gene pairs. The original Porg considers
connections of arbitrary length, whereas Papr restricts con-
nections to a maximum of five edges.

WebKB. We use the WebKB6 dataset restricted to the 100
most frequent words [Davis and Domingos, 2009] and with
random probabilities from

[
0.01, 0.1

]
. Following Renkens et

al. [2014], Papr is a random subsample of 150 pages. Porg

uses all pages from the Cornell database. This results in a
dataset with 63 queries for the class of a page.

We employ the anytime algorithm as discussed in Section
4.2 and alternate between computations for lower and upper
bound at fixed intervals. We compare against two sequential

6http://www.cs.cmu.edu/webkb/

Papr Porg

WPMS TP -comp WPMS TP -comp

G
en

es

Almost Exact 308 419 0 30
Tight Bound 135 81 0 207
Loose Bound 54 0 0 263
No Answer 3 0 500 0

W
eb

K
B Almost Exact 1 7 0 0

Tight Bound 2 34 0 19
Loose Bound 2 22 0 44
No Answer 58 0 63 0

Table 1: Anytime inference: Number of queries with difference be-
tween bounds < 0.01 (Almost Exact), in [0.01, 0.25) (Tight
Bound), in [0.25, 1.0) (Loose Bound), and 1.0 (No Answer).

Papr Porg

MCsat5000 MCsat10000 MCsat

G
en

es In Bounds 150 151 0
Out Bounds 350 349 0

N/A 0 0 500

Table 2: Anytime inference with MC-SAT: numbers of results
within and outside the bounds obtained by TP -compilation on Papr ,
using 5000 or 10000 samples per CNF variable.
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Figure 5: Anytime inference on Genes with Papr : number of
queries with bound difference below threshold at any time.

approaches. The first compiles subformulas of the CNF se-
lected by weighted partial MaxSAT (WPMS) [Renkens et al.,
2014], the second approximates the WMC of the formula by
sampling using the MC-SAT algorithm implemented in the
Alchemy package7.

Following Renkens et al. [2014], we run inference for each
query separately. The time budget is 5 minutes for Papr and
15 minutes for Porg (excluding the time to construct the rele-
vant ground program). For MC-SAT, we sample either 5,000
or 10,000 times per variable in the CNF, which yields ap-
proximately the same runtime as our approach. Results are
depicted in Tables 1, 2 and Figure 5 and allow us to answer
Q3 and Q4.

Table 1 shows that TP -compilation returns bounds for all
queries in all settings, whereas WPMS did not produce any
answer for Porg . The latter is due to reaching the time limit
before conversion to CNF was completed. For the approx-
imate model Papr on the Genes domain, both approaches
solve a majority of queries (almost) exactly. Figure 5 plots
the number of queries that reached a bound difference below
different thresholds against the running time, showing that
TP -compilation converges faster than WPMS. Finally, for the
Genes domain, Table 2 shows the number of queries where
the result of MC-SAT (using different numbers of samples

7http://alchemy.cs.washington.edu/
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per variable in the CNF) lies within or outside the bounds
computed by TP -compilation. For the original model, no
complete CNF is available within the time budget; for the
approximate model, more than two thirds of the results are
outside the guaranteed bounds obtained by our approach.

We further observed that for 53 queries on the Genes do-
main, the lower bound returned by our approach using the
original model is higher than the upper bound returned by
WPMS with the approximated model. This illustrates that
computing upper bounds on an approximate model does not
provide any guarantees with respect to the full model. On
the other hand, for 423 queries in the Genes domain, TP -
compilation obtained higher lower bounds with Papr than
with Porg , and lower bounds are guaranteed in both cases.

In summary, we conclude that approximating the model
can result in misleading upper bounds, but reaches better
lower bounds (Q4), and that TP -compilation outperforms the
sequential approaches for time, space and quality of result in
all experiments (Q3).

6 Conclusions
We have introduced TP -compilation, a novel anytime in-
ference approach for probabilistic logic programs that com-
bines the advantages of forward reasoning with state-of-the-
art techniques for weighted model counting. Our exten-
sive experimental evaluation demonstrates that the new tech-
nique outperforms existing exact and approximate techniques
on real-world applications such as biological and social net-
works and web-page classification.
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