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Abstract
Classic social choice theory assumes that votes are
independent (but possibly conditioned on an un-
derlying objective ground truth). This assumption
is unrealistic in settings where the voters are con-
nected via an underlying social network structure,
as social interactions lead to correlated votes. We
establish a general framework — based on random
utility theory — for ranked voting on a social net-
work with arbitrarily many alternatives (in contrast
to previous work, which is restricted to two alterna-
tives). We identify a family of voting rules which,
without knowledge of the social network structure,
are guaranteed to recover the ground truth with high
probability in large networks, with respect to a wide
range of models of correlation among input votes.

1 Introduction
Social choice theory (and computational social choice, in par-
ticular) typically views votes — represented as rankings of a
set of alternatives — as manifestations of subjective prefer-
ences. But an alternative viewpoint has been gaining steam
in recent years: The votes are seen as objective noisy esti-
mates of the true quality of alternatives. This viewpoint actu-
ally dates back to the early beginnings of social choice theory
in the 18th Century; its newfound popularity is due in part
to potential applications in human computation [Mao et al.,
2013] and multiagent systems [Jiang et al., 2014].

If we indeed assume that some alternatives are truly better
than others, and that voters are communicating possibly in-
accurate information about this ground truth, then the goal of
a voting rule — which aggregates the reported votes into a
single ranking — is indisputable: to uncover the truth. Cara-
giannis et al. [2013] formalize this abstract goal by asking for
voting rules that are accurate in the limit:1 The rule should
return a ranking that reflects the ground truth with high prob-
ability when the electorate is large, i.e., with probability that
goes to 1 as the number of submitted votes goes to infinity.
∗This work was partially supported by NSF grants CCF-1215883

and IIS-1350598, and by a Sloan Research Fellowship.
1This is known as consistency in statistics, but this term has long

been used in social choice theory to refer to a different property.

They pinpoint families of voting rules that exhibit robust-
ness: they are accurate in the limit with respect to a wide
range of noise models, which govern the way noisy votes are
generated, given the ground truth [Caragiannis et al., 2013;
2014].

While these results are promising, they rely on a crucial
modeling assumption: votes are independent. This assump-
tion is clearly satisfied in some settings — when votes are
submitted by computer Go programs [Jiang et al., 2014], say.
However, in many other settings — especially when the vot-
ers are people — votes are likely to be correlated through
social interactions. We refer to the structure of these interac-
tions as a social network, interpreted in the broadest possible
sense: any form of interaction qualifies for an edge. From this
broad viewpoint, the structure of the social network cannot be
known, and, hence, votes are correlated in an unpredictable
way. Inspired by the robustness approach of Caragiannis et
al. [2013; 2014], our goal is to

... model the generation of noisy rankings on a so-
cial network given a ground truth, and identify vot-
ing rules that are accurate in the limit with respect
to any network structure and (almost) any choice of
model parameters.

Our Model and Results. Our starting point is the recently-
introduced independent conversations model [Conitzer,
2013]. In this model, there are only two alternatives: one
is “correct” (stronger) and one is “incorrect” (weaker). Each
edge of the social network is an independent conversation be-
tween two voters, whose result (which is independent of the
results on other edges — hence the name of the model) is the
correct alternative with probability p > 1/2, and the incor-
rect alternative with probability 1 − p. Then, each voter ag-
gregates the results on the incident edges using the majority
rule, and submits the resulting alternative (i.e., the final vote)
to the voting rule. Note that if two voters are neighbors in
the network, their votes are not independent. The voting rule
only observes the final votes submitted by the voters (and not
the results of conversations on the edges), and must aggregate
these votes to find the correct alternative.

Conitzer acknowledges that his goal is to “give a simple
model that helps to illustrate which phenomena we are likely
to encounter as we move to more complex models” [Conitzer,
2013, p. 1483]. We are indeed interested in a more com-
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plex model, which supports multiple alternatives and rests on
richer probabilistic foundations. In our model, we assume
that each alternative a has a true quality µa. The result of
an independent conversation on an edge is a noisy quality es-
timate for each alternative a sampled from a Gaussian dis-
tribution with mean µa. Each voter assigns a weight to each
incident edge, and computes an aggregate quality estimate for
each alternative a by taking a weighted average of the noisy
quality estimates of a on the incident edges. The voter sub-
mits a ranking of the alternatives by their aggregate quality
estimates.

We analyze the performance of two disjoint families of
voting rules — PM-c rules and PD-c rules — proposed by
Caragiannis et al. [2013], which together include most pop-
ular voting rules, along with the performance of another vot-
ing rule — the modal ranking rule — which has been shown
to exhibit extreme robustness properties under independent
noisy votes [Caragiannis et al., 2014]. Under a mild con-
dition on the weights placed by the voters on their incident
edges, we show that all PM-c rules, an important subset of
PD-c rules, and the modal ranking rule are accurate in the
limit when all the Gaussian distributions have equal variance
(Section 5). However, when the Gaussians can have unequal
variance, many PD-c rules and the modal ranking rule are no
longer accurate in the limit, whereas all PM-c rules stay ac-
curate in the limit (Section 6). Therefore, PM-c rules exhibit
qualitatively more robustness than PD-c rules and the modal
ranking rule.

2 Related Work
Our paper is closely related to two papers by Conitzer [2012;
2013]. The independent conversations model of the lat-
ter paper was discussed above. Importantly, the challenge
Conitzer [2013] addresses is quite different from ours: he is
interested in finding the maximum likelihood estimator (MLE)
for the ground truth, i.e., he wants to know which of the two
alternatives is more likely to be correct, given the observed
(binary) votes. The answer strongly depends on social net-
work structure, and his main result is that, in fact, the prob-
lem is #P-hard. In an earlier, brief note, Conitzer [2012] is
also interested in the maximum likelihood approach to noisy
voting on a social network. While the model he introduces
also extends to the case of more than two alternatives, the as-
sumptions of the model are such that the (known) network
structure is essentially irrelevant, that is, the maximum likeli-
hood estimator is invariant to network structure.

While the above papers are, to our knowledge, the only pa-
pers that deal with the MLE approach to voting on a social
network, there is a substantial body of work on the MLE ap-
proach to voting more generally [Young, 1988; Conitzer and
Sandholm, 2005; Conitzer et al., 2009; Elkind et al., 2010;
Xia et al., 2010; Xia and Conitzer, 2011; Lu and Boutilier,
2011; Procaccia et al., 2012; Azari Soufiani et al., 2012;
2013; 2014]. However, all of these papers assume that votes
are drawn i.i.d. from a noise model.

A bit further afield, there is a large body of work that stud-
ies the diffusion of opinions, votes, technologies, or prod-
ucts (but not ranked estimates) in a social network. An espe-

cially pertinent example is the work of Mossel et al. [2014],
where at each time step voters adopt the most popular opinion
among their neighbors, and at some point opinions are aggre-
gated via the plurality rule. Other popular diffusion models
include the independent cascade model, the linear threshold
model, and the DeGroot model [DeGroot, 1974]; see the sur-
vey by Kleinberg [2007] for a fascinating overview.

3 Preliminaries
Let A denote a set of alternatives, where |A| = m. Let L(A)
denote the set of rankings (linear orders) over A. A vote σ
is a ranking in L(A), and a profile π is a collection of votes.
We use n to denote the number of votes. Let a �σ b denote
that alternative a is preferred to alternative b in ranking σ, and
let σ(a) denote the rank of a in σ. A voting rule is formally
a social welfare function (SWF) that maps every profile to a
ranking. Caragiannis et al. [2013] define two general families
of voting rules that capture most prominent voting rules.

• PM-c rules: For a profile π, the pairwise-majority (PM)
graph is a directed graph whose vertices are the alterna-
tives, and there exists an edge from a ∈ A to b ∈ A if a
strict majority of the voters prefer a to b. A voting rule f
is called pairwise-majority consistent (PM-c) if for ev-
ery profile π with a complete acyclic PM graph whose
vertices are ordered according to σ ∈ L(A), we have
f(π) = σ. Prominent voting rules such as the Kemeny
rule, the Slater rule, the ranked pairs method, Copeland’s
method, and Schulze’s method are PM-c rules.

• PD-c rules: In a profile π, alternative a is said
to position-dominate alternative b if for every k ∈
{1, . . . ,m−1}, (strictly) more voters rank a in the first k
positions than b. The position-dominance (PD) graph is
a directed graph whose vertices are the alternatives, and
there exists an edge from a to b if a position-dominates
b. A voting rule f is called position-dominance con-
sistent (PD-c) if for every profile π with a complete
acyclic PD graph whose vertices are ordered according
to σ ∈ L(A), we have f(π) = σ.
Positional scoring rules are a popular family of voting
rules that are PD-c. A positional scoring rule is given
by a score vector (α1, . . . , αm) where αi ≥ αi+1 for
1 ≤ i < m. Given a profile π, for each vote σ ∈ π
and each position k ∈ {1, . . . ,m}, the rule awards αk
points to the alternative placed at position k in vote σ,
and returns a ranking by sorting the alternatives accord-
ing to their total scores. Plurality, Borda count, and veto
are examples of well-known positional scoring rules. A
positional scoring rule is strict if the score vector satis-
fies αi > αi+1 for 1 ≤ i < m (Borda count is strict).
In addition to positional scoring rules, Bucklin’s rule is
also PD-c.

Caragiannis et al. [2014] introduce another voting rule —
the modal ranking rule — which is neither a PM-c rule nor
a PD-c rule. Given a profile, the modal ranking rule simply
returns the ranking that appears the largest number of times in
the profile. Our analysis focuses on the performance of PM-c
rules, PD-c rules, and the modal ranking rule.
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4 Our Model
As discussed in Section 1, we extend the independent con-
versations model [Conitzer, 2013], which is restricted to two
alternatives. In our extended model, there is a set of (arbi-
trarily many) alternatives A. We assume that the voters are
connected via an underlying social network structure, repre-
sented as an undirected graph G = (V,E) (here, V is the set
of voters). We use the notation e ↓ v to denote that edge e
is incident on voter v. Let E(v) = {e ∈ E | e ↓ v} denote
the set of edges incident on v, and let dv = |E(v)| denote the
degree of v in the network G. As we explain in Section 1, the
social network structure may be unknown to us. Our model
has four key components.

• Ground truth. We assume that each alternative a ∈ A
has a “true quality” denoted by µa. The ground truth
ranking of the alternatives σ∗ ranks the alternatives by
their true qualities. We assume that for some constant
∆ > 0, we have |µa − µb| ≤ ∆ for all distinct a, b ∈ A.

• Quality estimates. When voters v and v′ share an edge,
they have an independent discussion. We represent the
result of this discussion as a quality estimate for each
alternative. Specifically, we associate a random variable
Xe,a to each edge e for the quality estimate of each alter-
native a. Crucially, we assume that all {Xe,a}e∈E,a∈A
are mutually independent.

• Aggregation rules. We assume that voter v uses an ag-
gregation rule gv : Rdv → R to derive an aggregate
quality estimate Yv,a = g({Xe,a}e∈E(v)) for each alter-
native a ∈ A. In the tradition of random utility theory,
his submitted vote σv is a ranking of the alternatives by
their aggregate quality estimates.

• Voting rule. The only information we observe is the set
of rankings (votes) submitted by the voters. In particular,
we are unaware of the quality estimates sampled on the
edges (i.e., values ofXe,a), or the aggregate quality esti-
mates derived by the voters (i.e., values of Yv,a). More-
over, we assume that the distributions of the independent
conversations on the edges, the aggregation rules used
by the voters, the identities of the voters, and their social
network structure are also unknown to us. We use an
anonymous voting rule f : L(A)n → L(A) to aggregate
the submitted ranked votes into a final ranking of the al-
ternatives. Our goal is to be accurate in the limit, i.e.,
produce the ground truth ranking σ∗ with probability 1
as the number of voters n goes to infinity.

In the next two sections, we instantiate this general model
by considering specific distributions of the quality estimates
on the edges (Xe,a) and specific choices of the aggregation
rules used by the voters.

5 Equal Variance
Let us focus on the following model of independent conver-
sations and aggregation rules.

Quality estimates. Our choice is inspired by the clas-
sic Thurstone-Mosteller model [Thurstone, 1927; Mosteller,
1951], in which a quality estimate is derived by taking a

sample from a Gaussian distribution centered around the true
quality. This model is member of the more general class of
random utility models (see [Azari Soufiani et al., 2012] for
their use in social choice) in which the distribution need not
be Gaussian. In our setting, for each edge e ∈ E and alterna-
tive a ∈ A we assume Xe,a ∼ N (µa, ν

2), which is a Gaus-
sian distribution with mean µa, variance ν2, and probability
density function

p(x) =
1√

2πν2
e−

(x−µa)2

2ν2 .

Crucially, we assume that the variance of all the Gaussians is
equal, i.e., the noise present in the quality estimates is random
noise that is not dependent on the voters or on the alternatives.
This is not a weak assumption; we relax it in Section 6.

Aggregation rules. We assume that voters aggregate the
quality estimates of the alternatives on their incident edges by
computing a weighted mean. Specifically, assume that each
voter v places a weight wv(e) ∈ R≥0 on each incident edge
e = (v, v′) ∈ E(v), which represents how much the voter
weights or believes in the conversation with voter v′. With-
out loss of generality, let the weights be normalized such that∑
e∈E(v) wv(e) = 1 for all v ∈ V . Then, the aggregate qual-

ity estimate derived by voter v for alternative a is given by
Yv,a =

∑
e∈E(v) wv(e)Xe,a.

We aim to find voting rules that provide accuracy in the
limit for any social network structure G, and for a wide range
of choices of the unknown parameters: the true qualities of
the alternatives {µa}a∈A, the variance of the Gaussian dis-
tributions ν2, and the weights assigned by voters to their in-
cident edges {wv(e)}v∈V,e∈E(v). The main difficulty is that
the votes of two voters may be correlated when they share an
edge in the social network, but the network is unknown to the
voting rule. To this end, we first prove a result that shows that
under certain conditions, the correlation has negligible effect
on the final outcome. We later leverage this result to identify
anonymous voting rules that are accurate in the limit.
Lemma 1. Let Z1

v , Z
2
v ∈ [−ξ, ξ] be two bounded random

variables associated with each voter v ∈ V , where ξ > 0 is a
constant. For i, j ∈ {1, 2} and v, v′ ∈ V , assume Ziv and Zjv′
are independent unless v = v′ or (v, v′) ∈ E. If there exist
positive constants C, γ, δ, and ε such that for all v ∈ V ,

1. E[Z1
v ]− E[Z2

v ] ≥ γ, and
2. Pr[Z1

v ≤ Z2
v + δ] ≤ C/(dv)1+ε,

then limn→∞ Pr[
∑
v∈V Z

1
v >

∑
v∈V Z

2
v ] = 1.

Before we dive into the proof, note that if the random vari-
ables were independent, condition 1 and Hoeffding’s inequal-
ity would have implied the required result. For correlated
variables, the intuition is as follows. If dv is small, then Z1

v
and Z2

v are correlated with only a few other random variables.
If dv is large, then Z1

v > Z2
v holds with high probability any-

way. As we later see in Theorem 1, this is because voters with
large degrees produce accurate votes by assimilating a large
amount of independent information from incident edges.

Proof. Partition the set of voters V into two subsets:

V1 =
{
v ∈ V

∣∣∣ dv ≤ n 1+0.5·ε
1+ε

}
and V2 = V \ V1.
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Define ZjVi =
∑
v∈Vi Z

j
v and ZjV = ZjV1

+ ZjV2
for i, j ∈

{1, 2}. We wish to prove that Z1
V > Z2

V holds with high
probability. We focus on the relations between Z1

V1
and Z2

V1
,

and between Z1
V2

and Z2
V2

separately, and later combine the
two results to prove the required result.

Voters in V1. Observe that E[Z1
V1
− Z2

V1
] =

∑
v∈V1

E[Z1
v ] −

E[Z2
v ] ≥ |V1| ·γ. As previously mentioned, we cannot simply

use Hoeffding’s inequality because the indicator random vari-
ables are correlated. We instead use Chebyshev’s inequality.

Pr[Z1
V1
≤ Z2

V1
] ≤ Pr[|(Z1

V1
− Z2

V1
)− E[Z1

V1
− Z2

V1
]| ≥ |V1| · γ]

≤
Var
(
Z1

V1
− Z2

V1

)
|V1|2 · γ2

. (1)

Here, Var(·) denotes the variance of a random variable. To
derive an upper bound on Var

(
Z1
V1
− Z2

V1

)
, we use the fact

that for i, j ∈ {1, 2} and v, v′ ∈ V1, indicator random vari-
ables Ziv and Zjv′ are only correlated if v = v′ or v and v′

share an edge (i.e., (v, v′) ∈ E). Thus, the random vari-
ables corresponding to voter v can be correlated with the
random variables corresponding to at most 1 + dv voters.
Further, when they are correlated, their covariance satisfies

Cov(Ziv, Z
j
v′) ≤

√
Var(Ziv) · Var(Zjv′) ≤ ξ2, where the last

transition holds because the variance of a [−ξ, ξ]-bounded
random variable is at most ξ2 due to Popoviciu’s inequality.
Hence,

Var
(
Z1

V1
− Z2

V1

)
=

∑
i,j∈{1,2}

∑
v∈V1

∑
v′∈V1:

[v′=v]∨[(v,v′)∈E]

Cov(Zi
v, Z

j
v′)

≤ ξ2 ·
∑
v∈V1

4 · (1 + dv) ≤ 4 · ξ2 · |V1| ·
(

1 + n
1+0.5·ε

1+ε

)
,

where the last transition holds because dv ≤ n
1+0.5·ε

1+ε for all
v ∈ V1. Substituting this into Equation (1),

Pr
[
Z1
V1
≤ Z2

V1

]
≤ 4 · ξ2 · 1 + n

1+0.5·ε
1+ε

|V1| · γ2
(2)

Note that this probability could be high when |V1| is small.

Voters in V2. Fix v ∈ V2. Then, dv ≥ n
1+0.5·ε

1+ε by the defini-
tion of V2. Hence,

Pr[Z1
v ≤ Z2

v + δ] ≤ C

(dv)1+ε
≤ C

n1+0.5·ε , (3)

where the first transition follows from the second condition
assumed in the lemma. Now,

Pr[Z1
V2
≤ Z2

V2
+ |V2| · δ] ≤

∑
v∈V2

Pr[Z1
v ≤ Z2

v + δ]

≤ C · |V2|
n1+0.5·ε ≤

C

n0.5·ε
, (4)

where the first transition follows from the Pigeonhole princi-
ple, the second transition follows from Equation (3), and the
last transition holds because |V2| ≤ n. Note that this proba-
bility must go to 0 as n→∞, unlike Pr[Z1

V1
≤ Z2

V1
].

We now consider two cases to combine our results.

1. Suppose |V2| ≥ n·2ξ/(2ξ+δ). Then, |V1| ≤ n·δ/(2ξ+
δ). Observe that we always haveZ1

V1
−Z2

V1
≥ −|V1|·2ξ.

If it holds that Z1
V2
− Z2

V2
> |V2| · δ, then Z1

V > Z2
V

follows by adding the two inequalities and substituting
the bounds of |V1| and |V2|. Hence, Pr[Z1

V ≤ Z2
V ] ≤

Pr[Z1
V2
≤ Z2

V2
+ |V2| · δ], which goes to 0 as n goes to

infinity due to Equation (4).

2. Suppose |V2| ≤ n·2ξ/(2ξ+δ). Then, |V1| ≥ n·δ/(2ξ+
δ). Substituting this into Equation (2), we see that
Pr[Z1

V1
≤ Z2

V1
] approaches 0 as n goes to infinity. Equa-

tion (4) already shows that Pr[Z1
V2
≤ Z2

V2
] ≤ Pr[Z1

V2
≤

Z2
V2

+ |V2| · δ] approaches 0 as n goes to infinity. Hence,
Pr[Z1

V ≤ Z2
V ] ≤ Pr[Z1

V1
≤ Z2

V1
]+Pr[Z1

V2
≤ Z2

V2
] goes

to 0 as n goes to infinity.

Thus, in both cases we have the desired result. �

We now use Lemma 1 to derive our main result.

Theorem 1. If there exists a universal constant D ∈ N such
that

∑
e∈E(v)[wv(e)]

2 ≤ ∆2/(8 ν2 ln dv) for all voters v
with degree dv ≥ D, then all PM-c rules, the modal ranking
rule, and all strict positional scoring rules are accurate in the
limit irrespective of the choices of the unknown parameters:
the social network structure G, the true qualities {µa}a∈A,
the variance ν2, and the weights {wv(e)}v∈V,e∈E(v).

Before we prove the result, we remark that the bound on∑
e∈E(v)[wv(e)]

2 is a mild restriction. In our setting with

normalized weights
(∑

e∈E(v) wv(e) = 1
)

, the unweighted

mean has
∑
e∈E(v)[wv(e)]

2 = 1/dv which is much smaller
than our required bound. More generally, the condition is sat-
isfied if no voter v places an excessive weight — specifically,
a weight greater than ∆/(4ν

√
dv ln dv) — on any single in-

cident edge. Below, we present the proof for PM-c rules and
the modal ranking rule; the proof for strict positional scoring
rules appears in the full version of the paper.2

Proof of Theorem 1 (partial). Let us begin with PM-c rules.

PM-c Rules. Recall that PM-c rules are guaranteed to return
the ground truth ranking σ∗ if the pairwise majority graph is
consistent with σ∗. We wish to use Lemma 1 to show that for
every pair of alternatives a, b ∈ A such that a �σ∗ b, there
is an edge from a to b in the pairwise majority graph of the
profile consisting of the votes submitted by the voters with
probability 1 as n goes to infinity. Applying the union bound
over all pairs of alternatives implies that the entire pairwise
majority graph would be consistent with σ∗ with probability
1 as n goes to infinity.

Now, for voter v ∈ V and alternative a ∈ A, the aggre-
gate quality estimate Yv,a =

∑
e∈E(v) wv(e)Xe,a follows

the distribution N (µa, ν
2
∑
e∈E(v)[wv(e)]

2) because each
Xe,a ∼ N (µa, ν

2). Let (Wv)
2 =

∑
e∈E(v)[wv(e)]

2.
Fix alternatives a, b ∈ A such that a �σ∗ b (thus, µa >

µb). Note that Yv,a − Yv,b ∼ N (µa − µb, 2 ν2 (Wv)
2). Now,

recall that there is an edge from a to b in the pairwise majority

2Available at: http://www.cs.cmu.edu/∼arielpro/papers.html
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graph if a strict majority of the voters prefer a to b, i.e., if∑
v∈V I[Yv,a > Yv,b] > n/2 (where I is the indicator random

variable). Hence, in Lemma 1 we take Z1
v = I[Yv,a > Yv,b]

and Z2
v = I[Yv,a ≤ Yv,b]. Finally, we complete the proof by

showing that the two conditions required by Lemma 1 hold.

Condition 1: E[Z1
v ] − E[Z2

v ] ≥ γ, where γ > 0 is a con-
stant. Note that E[Z1

v ] − E[Z2
v ] = 2 · Pr[Yv,a > Yv,b] − 1.

Since Yv,a − Yv,b ∼ N (µa − µb, 2 ν2 (Wv)
2), we have that

Pr[Yv,a − Yv,b > 0] = Φ

(
µa − µb√

2 ν Wv

)
≥ Φ

(
∆√
2 ν

)
≥ 1

2
+ γ′,

where γ′ > 0 is a constant. Here, the second transition holds
because Wv ≤ 1 and µa − µb ≥ ∆, and the final transition
is a standard property of the Gaussian distribution. Hence,
condition 1 holds with γ = 2γ′.

Condition 2: Pr[Z1
v ≤ Z2

v + δ] = O(1/(dv)
1+ε), where

ε, δ > 0 are constants. Take δ = 0.5, and recall that Z1
v and

Z2
v are indicator random variables. Then,

Pr[Z1
v ≤ Z2

v + δ] = Pr[Z1
v = 0 ∨ Z2

v = 1] = Pr[Yv,a ≤ Yv,b].

Since Yv,a − Yv,b ∼ N (µa − µb, 2 ν2 (Wv)
2), we have

Pr[Yv,a − Yv,b ≤ 0] = 1− Φ(λ) ≤ 1√
2π · λ

e−λ
2/2,

where λ = (µa − µb)/(
√

2 ν Wv), and the last transition is a
standard upper bound for Gaussian distributions. Substituting
our assumption that (Wv)

2 ≤ ∆2/(8 ν2 ln dv) and simplify-
ing, we obtain that the probability is O(1/(dv)

2). Hence,
condition 2 holds with ε = 1.

Since both conditions are satisfied, Lemma 1 implies that
every PM-c rule is accurate in the limit.

Modal Ranking Rule. Recall that the modal ranking rule
chooses the most frequent ranking in the profile. Thus, we
need to show that the ground truth ranking appears more fre-
quently than any other ranking. Fix a ranking σ 6= σ∗, and
define Z1

v = I[σv = σ∗] and Z2
v = I[σv = σ]. Then, we wish

to use Lemma 1 to show that the number of occurrences of
σ∗ in the profile is larger than the number of occurrences of
σ with probability 1 as n goes to infinity. Applying the union
bound over all rankings σ 6= σ∗ would imply that σ∗ would
be the most frequent ranking in the profile with probability 1
as n goes to infinity. Thus, the modal ranking rule would be
accurate in the limit.

Next, we show that the two conditions of Lemma 1 hold.

Condition 1: E[Z1
v ] − E[Z2

v ] ≥ γ, where γ > 0 is a
constant. To derive this, we leverage a result by Jiang et
al. [2014]. Using techniques from the proof of their Theo-
rem 2, it can be shown that if we obtain a ranking σ by sam-
pling utilities from Gaussians and ordering the alternatives
by their sampled utilities, then for any ranking τ ∈ L(A) and
alternatives a, b ∈ A such that a �σ∗ b and a �τ b, we
have Pr[σ = τ ] − Pr[σ = τa↔b] is at least a positive con-
stant, where τa↔b denotes the ranking obtained by swapping
alternatives a and b in τ . That is, swapping two alternatives

to match their order as in σ∗ increases the probability of the
ranking being sampled by at least a positive constant. How-
ever, this result uses a lower bound on the variances of the
Gaussian distributions from which quality estimates are sam-
pled. In our case, no such lower bound may exist for vertices
with high degree. However, in the absence of such a lower
bound one can still show that for the ranking σv of voter v,
we have that Pr[σv = τ ]−Pr[σv = τa↔b] is non-negative for
every τ ∈ L(A) (with a �τ b), and is at least a positive con-
stant γ′ when τ = σ∗; this is formally presented as a lemma
in the full version of the paper.

Finally, to show that Pr[σv = σ∗] − Pr[σv = σ] ≥ γ
(where γ > 0 is a constant), we start from ranking σ and
perform “bubble sort” to convert it into σ∗. That is, in each
iteration we find a pair that is ordered differently than in σ∗,
and swap the pair. Note that this process converges to σ∗ in at
most m2 iterations, and the probability of the ranking never
decreases, and increases by at least γ′ in the last iteration.
This proves that condition 1 holds with γ = γ′.

Condition 2: Pr[Z1
v ≤ Z2

v + δ] = O(1/(dv)
1+ε) for con-

stants δ, ε > 0. This condition is very easy to establish.
Again, take δ = 0.5. Then,

Pr[Z1
v ≤ Z2

v + δ] = Pr[Z1
v = 0 ∨ Z2

v = 1] = Pr[σv 6= σ∗]

≤
∑

a,b∈A : a�σ∗b

Pr[Yv,a ≤ Yv,b],

where the last transition holds because if σv does not match
σ∗, then there exist alternatives a and b such that a �σ∗ b
but b �σv a (thus, Yv,a ≤ Yv,b). However, note that this
probability is at most m2 times the probability obtained in
condition 2 for PM-c rules, which was O(1/(dv)

2). Because
the number of alternatives m is a constant in our model, mul-
tiplying by m2 does not increase the order in terms of dv .
Hence, condition 2 also holds with ε = 1.

In conclusion, Lemma 1 implies that the modal ranking
rule is accurate in the limit, as required. �

While all strict positional scoring rules are accurate in the
limit irrespective of the social network structure, one can
show that other positional scoring rules such as plurality are
not always accurate in the limit; an example is presented in
the full version of the paper.

6 Unequal Variance
In the previous section we showed that PM-c rules, the modal
ranking rule, and strict scoring rules are accurate in the limit
when the independent conversations on the edges produce
quality estimates from Gaussian distributions (with equal
variance) and voters aggregate them using a weighted mean.
The equal variance assumption is perhaps the most restrictive
assumption in the model of Section 5. In this section, we ana-
lyze a more general model, which is identical to the model of
Section 5, except for allowing Gaussians with different vari-
ance. Formally, we instantiate our general model using the
following model of quality estimates.

Quality estimates. For each edge e ∈ E and alternative a ∈
A, assume Xe,a ∼ N (µa, (νe,a)2). Crucially, we assume
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that all (νe,a)2 are upper bounded by a global constant. For
notational convenience, denote this constant by ν2. Hence,
(νe,a)2 ≤ ν2 for all e ∈ E and a ∈ A.

Computer-based simulations provided non-trivial coun-
terexamples (presented in the full version) showing that un-
equal variance invalidates Theorem 1 with respect to strict
positional scoring rules and the modal ranking rule.

Theorem 2. There exist a social network graph G = (V,E),
true qualities of alternatives {µa}a∈A, and Gaussian random
variables Xe,a for each edge e ∈ E and alternative a ∈
A whose variances depend on the alternative a, for which
the modal ranking rule is not accurate in the limit, and there
exists a strict scoring rule (in particular, Borda count) which
is not accurate in the limit.

In a nutshell, the key insight is that we find a Gaussian
distribution for each alternative a ∈ A such that ranking the
alternatives based on a quality estimate sampled from their
Gaussian distribution leads to: (i) a ranking other than the
true ranking is returned with a probability higher than that of
the true ranking itself, which causes the modal ranking rule
to fail to achieve accuracy in the limit, and (ii) the probabili-
ties of different alternatives being placed in various positions
is such that between two alternatives, the less preferred alter-
native in the true ranking has greater expected Borda score
than the more preferred alternative, causing Borda count to
violate accuracy in the limit. Despite these counterintuitive
phenomena, it holds that the top alternative in the true rank-
ing is ranked higher than the alternative ranked second in the
true ranking with probability strictly greater than 1/2, and a
similar statement also holds for all other pairs of alternatives,
thereby ensuring that PM-c rules are accurate in the limit.

Happily, the success of PM-c rules is not a coincidence.
Indeed, note that in our proof of Theorem 1 we leverage the
results of Jiang et al. [2014] to prove condition 1 of Lemma 1
for PD-c rules and the modal ranking rule. Jiang et al. cru-
cially assume that all distributions have equal variance, and
their results break down when this assumption is violated.
On the other hand, our proof for the accuracy in the limit of
PM-c rules does not rely on their results, and, in fact, does not
make use of the equal variance assumption. Specifically, with
unequal variance we have that Yv,a − Yv,b follows the Gaus-
sian distribution N (µa − µb,

∑
e∈E(v)[wv(e)]

2 · ((νe,a)2 +

(νe,b)
2)). Note that our proof only uses an upper bound on

the variance of this Gaussian distribution, and the variance is
still upper bounded by 2 ν2 (Wv)

2. Hence, for PM-c rules,
the proof of Theorem 1 goes through even with unequal vari-
ance, and shows that all PM-c rules are accurate in the limit.

Theorem 3. Assume that there exists a constant ν such that
(νe,a)2 ≤ ν2 for all e ∈ E and a ∈ A, and a universal con-
stant D ∈ N such that

∑
e∈E(v)[wv(e)]

2 ≤ ∆2/(8 ν2 ln dv)

for all voters v with degree dv ≥ D. Then, all PM-c rules
are accurate in the limit irrespective of the choices of the un-
known parameters: the true qualities {µa}a∈A, the variances
{(νe,a)2}e∈E,a∈A, and the weights {wv(e)}v∈V,e∈E(v).

Theorem 3 establishes that PM-c rules are qualitatively
more robust than PD-c rules and the modal ranking rule in
our setting: While PD-c rules and the modal ranking rule

lose their accuracy in the limit when relaxing the equal vari-
ance assumption, PM-c rules still guarantee accuracy in the
limit irrespective of all unknown parameters. In fact, observe
that in our proof for PM-c rules, we only require that for ev-
ery pair of alternatives a, b ∈ A with a �σ∗ b, we have (i)
Pr[Yv,a > Yv,b] > 1/2, and (ii) both Yv,a and Yv,b are suf-
ficiently concentrated around their respective means µa and
µb so that Pr[Yv,a ≤ Yv,b] = o(1/dv). Using this observa-
tion, we can extend the robustness of PM-c rules beyond the
restrictions imposed by Theorem 3 in both dimensions: the
possible distributions on the edges and the possible aggrega-
tion rules used by the voters.

For example, leveraging an elegant extension of the classic
McDiarmid inequality by Kontorovich [2013], we can show
that PM-c rules are accurate in the limit when the distribu-
tions on the edges have finite “subgaussian diameter” (this
includes all distributions with bounded support and all Gaus-
sian distributions) and voters use weighted mean aggregation.
On the other hand, using a concentration inequality for me-
dians, one can show that when the distributions on the edges
are Gaussians with bounded variance, then the voters could
also use weighted median (instead of weighted mean) aggre-
gation, and PM-c rules would remain accurate in the limit.

7 Discussion
Let us briefly discuss several pertinent issues.

Temporal dimension. While in our model each voter per-
forms a one-time, synchronous aggregation of information
from its incident edges, in general voters may perform mul-
tiple and/or asynchronous updates. After k updates, the in-
formation possessed by a voter would be a weighted aggrega-
tion of the information from all nodes up to distance k from
the voter, although the weight associated with another voter
at distance k would presumably be exponentially small in k.
Deriving positive robustness results in this model seems to
require making our simple covariance bounds more sensitive
to weights. We believe that Gaussian hypercontractivity re-
sults [Mossel, 2010] may be helpful in this context.

Opinions on vertices. The independence part of our exten-
sion of the independent conversations model seems to be a re-
strictive assumption because the conversations of a voter with
two other voters are likely to be positively correlated through
the beliefs of the voter. In this sense, it seems more natural to
consider a model where the opinions are attached to vertices
rather than edges. Specifically, one might consider a model
where the prior opinion of each voter is first drawn from a dis-
tribution, and then voters are allowed to aggregate opinions
from their neighbors. This leads to immediate impossibili-
ties. Indeed, consider a star network where all peripheral vot-
ers give weight 1 to the central voter and 0 to themselves (this
does not violate the conditions of Theorem 1). At the end, all
peripheral voters would have perfectly correlated votes, co-
inciding with the prior opinion of the central voter which is
inaccurate with a significant probability. It follows that any
reasonable anonymous voting rule, which would output this
opinion, would not be accurate in the limit. Interestingly, we
can circumvent this impossibility easily if we know the social
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network structure: We can simply return the vote submitted
by the central voter, which is guaranteed to be accurate as the
central voter assimilates information from many sources.

Ground truth and opinion formats. Finally, we assume that
the ground truth is a true quality for each alternative, which
led to a random utility based model. Another compelling al-
ternative is to assume that the ground truth is only an ordi-
nal ranking of the alternatives. In this case, the samples on
the edges would also be rankings (instead of noisy quality
estimates), and voters would aggregate rankings on their in-
cident edges using their own local voting rules. This model
gives rise to many counterintuitive phenomena. For example,
using Borda count to aggregate two rankings sampled from
the popular Mallows’ model [Mallows, 1957] with noise pa-
rameters ϕ = 0.1 and ϕ = 0.9 leads to a ranking that is not
the ground truth being returned with higher probability than
the ground truth itself, ultimately showing that Borda count
would not be accurate in the limit. Remarkably, popular PM-
c rules seem to be robust against such examples, hinting at
the possibility that PM-c rules may also possess compelling
robustness properties in this model.
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