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Abstract

The triad is one of the most basic human groups
in social networks. Understanding factors affecting
the formation of triads will help reveal the under-
lying mechanisms that govern the emergence and
evolution of complex social networks. In this pa-
per, we study an interesting problem of decoding
triadic closure in social networks. Specifically, for
a given closed triad (a group of three people who
are friends with each other), which link was created
first, which followed, and which link closed. The
problem is challenging, as we may not have any
dynamic information. Moreover, the closure pro-
cesses of different triads are correlated with each
other. Our technical contribution lies in the pro-
posal of a probabilistic factor graph model (De-
Triad). The model is able to recover the dynamic
information in the triadic closure process. It also
naturally models the correlations among closed tri-
ads. We evaluate the proposed model on a large
collaboration network, and the experimental results
show that our method improves the accuracy of de-
coding triadic closure by up to 20% over that of
several alternative methods.

1 Introduction
Group formation—the process by which people come to-
gether, seek new friends, and develop communities—is a cen-
tral research issue in social science [Backstrom et al., 2006].
A triad is a group of three people. It is one of the most
basic human groups in social networks. Understanding the
formation of triads can help reveal the complex and subtle
mechanism that governs the dynamics of all social networks.
In an undirected network, the formation of a closed triad
∆ = (A,B,C) consists of two major steps: (1) Open triad:
the three persons (A,B,C) are connected by two undirected
links—e.g., eAB and eAC (formally, there is a path between
any two persons in the triad); (2) Closed triad: any two per-
sons are connected by an undirected link; i.e., we have eBC
in the above example. Uncovering the mechanism underlying
the triadic closure process can benefit many applications, for
example to explain the development of social communities

and to predict the evolution of network structures [Newman,
2001].

Analysis of triad formation has attracted tremendous inter-
est from both academic and industrial communities. Roughly
speaking, prior work has studied how different patterns of
triad formation influence the dynamic evolution of networks.
For example, Milo et al. [2002] defined the recurring signifi-
cant patterns of interconnections as “network motifs” and em-
phasized their importance. They found that triadic closure
patterns can used to distinguish different types of networks,
e.g., transportation networks and online social networks.
Grindrod et al. [2012], and Kossinets and Watts [2006], fo-
cused on how the evolution of networks has been affected
by the process of triadic closure. Opsahl [2011] used tri-
adic closure to redefine global and local clustering coeffi-
cients. Sintos and Tsaparas [2014] used triadic closure to
characterize social tie strength. Another thread of research
studies how closed triads develop from open triads. Romero
and Kleinberg [2010] studied the problem of triadic closure
and developed a methodology based on preferential attach-
ment for studying the directed triadic closure process. Lou
et al. [2013] investigated how a reciprocal link was devel-
oped from a parasocial relationship and how the relationships
further developed into triadic closure on a Twitter dataset.
Huang et al. [2014] studied how closed triads are formed in
a Chinese microblogging service. Dong et al. [2014] investi-
gated how social triadic relationships are maintained by peo-
ple with different demographic profiles. Zhang et al. [Zhang
et al., 2015] investigated how “following” links will trigger
the formation of other neighboring links.

Problem and Solutions. In this paper, from a different
perspective, we study a novel problem of decoding triadic
closure in social networks. Suppose we are only given a
static network G = (V,E), with a goal of uncovering how
each closed triad was formed step by step, i.e., which link
was firstly created, which followed, and which one closed the
triad. At high level, the problem can be viewed as a reverse
engineering of the triadic closure process; but it is actually
more challenging. First, in our setting, we do not have any dy-
namic information. This is the case in many mining tasks due
to various reasons such as privacy. Second, technically, the
closure processes of different triads are correlated with each.
For example, the closure of ∆1 = (A,B,C) may signifi-
cantly increase the closure probability of ∆2 = (A,B,D).
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Figure 1: Performance comparison between DeTriad and the
comparative methods. (in terms of accuracy and normalized
Kendall’s tau distance).
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y2 = 2 : (tBE ! tBC ! tCE)

y3 = 3 : (tAD ! tAC ! tCD)

Figure 2: Illustration of decoding triadic closure. tAB denotes
the time when the link eAB was created. y indicates a partial
order of the time stamps associated with the three links in a
closed triad.

To deal with these challenges, we propose a probabilistic
factor graph model (DeTriad). The model is very general
and flexible. It is able to recover the dynamic information
in the triadic closure process. It can also incorporate different
features into the model to help solve the task. More impor-
tantly, the model naturally models correlations among closed
triads. We evaluate the proposed model on a large collab-
oration network consisting of over 1 million authors and 4
million coauthor relationships. There are in total 5,913,455
closed triads in the network. We consider the year when a
collaboration started as the time information associated with
each relationship. Figure 1 shows the performance compari-
son of different methods in terms of accuracy and normalized
Kendall’s tau distance [Kendall, 1938] on the dataset. It can
be seen that our method improves the accuracy of decoding
triadic closure by up to 20%, compared with several alterna-
tive methods. We also evaluate different strategies for model-
ing correlations among triads. All codes and data used in this
paper are publicly available.1

Organization. In the rest of this paper, we first formulate the
problem, and then present the proposed model and describe
the algorithm for learning the model. After that, we give the
experimental results, and finally, conclude the work.

2 Problem Definition
Let G = (V,E) denote a static social network, where V =
{v1, v2, ..., vn} represents a set of users and E ⊆ V × V
represents a set of links connecting those users. Let eij ∈ E

1http://arnetminer.org/decodetriad.

represent a relationship between user vi and user vj . To begin
with, we give the definitions of closed triad and open triad in
a static social network.

Definition 1 Closed Triad: For three users ∆ = (A,B,C), if
there is a link between every two users, i.e., eAB , eBC , eAC ∈
E, then we say that ∆ is a closed triad.

Definition 2 Open Triad: For three users ∆ = (A,B,C),
if we have and only have two links among them, e.g.,
eAB , eAC ∈ E ∧ eBC /∈ E, then we call the triad ∆ as
an open triad.

In a static social network G, for each closed triad ∆,
our general goal is to recover the time when each link was
formed. More precisely, it is to associate each edge eij with
a time stamp tij . However, the problem is extremely chal-
lenging, as the space of the time stamp might be large and
continuous. In this paper, we focus on detecting the partial
order of the time stamps associated with the three links of a
closed triad. Specifically, for a closed triad ∆ = (A,B,C),
one example of the detected partial order could be (tAB �
tAC � tBC). Formally, we have the following problem defi-
nition.

Problem 1 Decoding Triadic Closure: Given a social net-
work G = (V,E), we associate a variable yi to each closed
triad 4i to represent the partial order of time stamps asso-
ciated with the three links in 4i. Our goal is to use some
available labeled information to train a function f , so that,
for an unlabeled4, we can predict its corresponding partial
order y, i.e.,

f : ({4}U |G, Y L)→ Y U

where Y L indicates a set of variables corresponding to the
available labeled triads for training, and {4}U indicates a
set of unlabeled triads; Y U is the set of predicted results by
function f corresponding to the unlabeled {4}U .

In an undirected network, there are six possible orders of
the time stamps for a closed triad. Figure 2 shows an exam-
ple. It is worth noting that the orders of different triads might
be correlated. When designing the function f , it is necessary
to consider the correlation. In addition, the order not only de-
pends on some kinds of “local” information associated with
the three users in the triad 4, but also is closely related to
the topological position of the triad in the whole network G.
The problem becomes more complicated for a directed net-
work. In this paper, we will first focus on the undirected net-
work. The study of the directed network is one of our ongoing
projects and will be reported elsewhere.

3 DeTriad: Decoding Triadic Closure
In this section, we start with some basic ideas to solve the
problem of decoding triadic closure and then present the pro-
posed model. Based on the definition in previous section, in
a straightforward way, the problem can be cast as a multi-
ple classification problem. In particular, each closed triad is
viewed as an instance, and features are defined for each in-
stance. Then we can use labeled data to train a classification
model and apply the trained model for classifying unlabeled
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triads. However, such a method cannot capture correlations
among different triads. Moreover, it is unclear how to incor-
porate the topological structure information into the model to
help decode the triadic closure process.

In this paper, we propose a new probabilistic factor graph
model, referred to as DeTriad, to address these technical chal-
lenges. Compared to the traditional classification model, the
proposed DeTriad model has three advantages. First, the
model is very general and flexible. It is very easy to in-
corporate any kinds of features into the model to solve the
task. Second, the model is able to model correlations among
closed triads. In addition, the model can easily support semi-
supervised learning. This is important, as in a social network,
it is very likely that we have only partial labeled information
(some labeled information for part of the network). The tech-
nical challenge is how to combine the labeled and the related
unlabeled structure information to design a more accurate de-
coding model.

Modeling. For a given network G = (V,E), we first extract
all closed triads as instances in our problem, and for each
instance ∆i = (va, vb, vc), we define a feature vector xi, and
associate a variable yi ∈ Y to it to represent its decoding
result, where Y is the decoding space. As mentioned before,
for an undirected network, there are six possible values for
the variable yi. Additionally, in a network, we may have some
labeled triads (we know their decoding results) and also many
other triads without labels. For those triads without labels, we
denote y =?, which is actually what we need to infer. We use
X to denote all the features defined for all instances (closed
triads) and use Y to denote the set of variables {y}. Given
this, we construct a factor graph model as follows.

A factor graph presents a general way to describe the (undi-
rected) graphical model, with more emphasis on the factor-
ization of the distribution [Kschischang et al., 2001]. In a
factor graph, variables (x and y) are denoted as vertices in
the graphical model, and the graphical structure of the fac-
tor graph represents the correlations between variables. Ac-
cording to the graphical structure, the probability distribution
over the graph can be factorized as a collection of functions
defined on the cliques of the graph. A clique c is a fully con-
nected subset of the variables Yc in the graph. In our prob-
lem, we consider the correlation between two related decod-
ing variables yi and yj as a clique.

Now, we explain how we use the factor graph model to
model the triadic closure decoding problem. Given the in-
put G, X and the corresponding Y , we can define the joint
distribution over the decoding results Y given G andX as

P (Y |X, G) =
∏
∆i

f(yi|xi)
∏
i∼j

h(yi, yj), (1)

where i ∼ j represents triads ∆i and ∆j are correlated with
each other, for example (A,B,C) and (A,C,D) in Figure 2.
The joint probability has two types of factor functions.

• Local factor: f(yi|xi) represents the posterior proba-
bility of the decoding result, given all features defined
for triad ∆i;
• Correlation factor: h(yi, yj) represents the correlation

between the decoding results of ∆i and ∆j .

Figure 3: Example of the DeTriad model. Notation yi in-
dicates the decoding results of ∆i; xi denotes local feature
vector of ∆i; f(yi|xi) and h(yi, yj) respectively represent
local factor and correlation factor in the proposed model.

The two factors can be instantiated in different ways, re-
flecting our prior knowledge for different applications. In
this paper, we give a general definition for the two types of
factors. For the local factor, we define it as

f(yi|xi) =
1

Z1
exp{

d∑
k=1

αkfk(xik, yi)}, (2)

where Z1 is a normalization factor; d is the number of fea-
tures defined for triad ∆i; fk(xik, yi) is the kth feature we
defined for ∆i, and αk is its corresponding weight, to be es-
timated by the learning algorithm.

Modeling Correlations. Straightforwardly, the correlation
factor can be modeled in a Markov random field; thus by
the fundamental Hammersley-Clifford theorem [Hammersley
and Clifford, 1971], we can define the correlation factor as:

h(yi, yj) =
1

Z2
exp{

∑
k

µkhk(yi, yj)}, (3)

where Z2 again is a normalization factor, hk(yi, yj) repre-
sents the kth correlation feature function we defined between
two triads ∆i and ∆j ; and µk is the weight of the kth corre-
lation feature function.

However, as shown in Figure 2, the correlations among
multiple triads are complicated. The challenge is how to
capture the complicated correlations in the proposed model.
We present two methods based on the triadic closure process:
Synchronous method and Asynchronous method.
Synchronous method: Given two closed triads ∆1 =
(A,B,C) and ∆2 = (D,B,C), ∆2 is more likely to be
closed by edge eBC if ∆1 is closed by the edge. Similarly,
if eBC is the kth (k = 1, 2, 3) formed edge in ∆1, it is also
more likely to be the kth formed edge in ∆2. Thus, for two
closed triads ∆i and ∆j that share the edge e, we define the
following factor function between yi and yj :

h(yi, yj) =
1

Z3
exp{

∑
k

µk · Ik(yi, yj)}, (4)
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where k ∈ {1, 2, 3}, µk is the model parameter of the cor-
relation factor, Z3 is the normalization term, and Ik(yi, yj)
is defined as an indicator function that indicates whether the
shared edge e is the kth formed edge in yi and yj .
Asynchronous method: we extend this approach to the
case where the shared edge is not the kth formed edge in
both decoding results. We still take ∆1 = (A,B,C) and
∆2 = (D,B,C) for an example. If ∆1 is closed by edge
eBC , the likelihood that eBC is the second formed edge in
∆2 is intuitively higher than the likelihood that it is the first
formed edge in ∆2. Similarly, if eBC is the kth1 formed edge
in ∆1, it could correlate with the case where eBC is the kth2
formed edge in ∆2. We use a factor function to model the
correlation. Specifically, for two closed triads ∆i and ∆j that
share an edge e, we define the following factor function be-
tween yi and yj :

h(yi, yj) =
1

Z4
exp{

∑
ki,kj

µki,kj · Iki,kj (yi, yj)}, (5)

where ki, kj ∈ {1, 2, 3}, µki,kj is the model parameter for
this type of correlation factor, Z4 is the normalization term,
and Iki,kj (yi, yj) is defined as an indicator functions that in-
dicates whether the shared edge e is the kthi formed edge in
yi and the kthj formed edge in yj .

Finally, by integrating Eqs. 1-5, we obtain the following
joint probability

P (Y |X, G) =
1

Z
exp{

∑
∆i

d∑
k=1

αkfk(xik, yi)

+
∑
i∼j

∑
k

µkhk(yi, yj)},
(6)

where Z is the normalization factor (also called the partition
function).

Figure 3 shows an example of our proposed model. The
left part is the input network, where we have six users and
five closed triads—e.g., (A,B,C) and (A,B,D). In the de-
coding task, we associate a variable yi with each closed triad.
All features defined over ∆i are denoted as xi. We have
five local factors f(yi|xi), i = 1, 2, 3, 4, 5. In addition, we
also consider correlations among the triads. For example,
the decoding result of (A,B,C) may have a strong corre-
lation with the decoding result of (A,B,D). Given this, we
build a correlation factor h(.) between y1 and y2. The joint
distribution over the whole set of random variables can be
factorized as the product of all factors, i.e.,

∏5
i=1 f(yi|xi)·

h(y1, y2)h(y1, y3)h(y2, y3)h(y3, y4)h(y4, y5).
Learning the DeTriad model is to estimate a parameter con-

figuration θ = ({α}, {µ}) from the training data, which
maximizes the log-likelihood objective function O(θ) =
logP (Y L|X, G).

Learning. One challenge to solving the objective function
is that the input data is partially labeled. To calculate the nor-
malization factor Z, one needs to sum up the likelihood of
possible states for all nodes in the factor graph, including un-
labeled nodes. To deal with this, we use the labeled data to

Algorithm 1: Learning algorithm for the DeTriad model.

infer the unknown labels. Here Y L denotes the set of known
labels, and Y |Y L denotes a full labeling configuration Y con-
sistent with the known labels. Therefore, we have:

O(θ) = logP (Y L|X, G) = log
∑

Y |Y L
P (Y |X, G)

= log
∑

Y |Y L
{
∑
∆i

d∑
k=1

αkfk(xik, yi) +
∑
i∼j

∑
k

µkhk(yi, yj)}

− log
∑
Y

{
∑
∆i

d∑
k=1

αkfk(xik, yi) +
∑
i∼j

∑
k

µkhk(yi, yj)}

(7)

To solve this objective function, we adopt a gradient de-
scent method (or a Newton-Raphson method). We use µ as
the example to explain how we learn the parameters. Specifi-
cally, we first write the gradient of each µk with regard to the
objective function Eq. 7: (A similar gradient can be derived
for parameter αk.)

∂O(θ)
∂µk

=EPµk (yi,yj |Y L,X,G)[hk(yi, yj)]

−EPµk (yi,yj |X,G)[hk(yi, yj)]

(8)

Another technical challenge is that the graphical struc-
ture in the constructed factor graph model can be arbitrary
and may contain cycles, which makes it intractable to di-
rectly calculate the marginal distribution Pµk(yi, yj |X, G)
and Pµk(yi, yj |Y L,X, G). A number of approximate al-
gorithms can be considered, such as Loopy Belief Propaga-
tion (LBP) [Murphy et al., 1999] and Mean-field [Xing et
al., 2002]. We chose Loopy Belief Propagation due to its
ease of implementation and effectiveness. Specifically, we
approximate the marginal distribution Pµk(yi, yj |X, G) and
Pµk(yi, yj |Y L,X, G) using LBP. With the marginal proba-
bilities, the gradient can be obtained by summing over all cor-
relation factors. It is worth noting that we need to perform the
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Input: network G, featuresX , learning rate η
Output: estimated parameters θ

Initialize θ ← 0;
repeat

Perform LBP to calculate P (yi|Y L,X, G),
P (yi, yj |Y L,X, G);
Perform LBP to calculate P (yi|X, G),
P (yi, yj |X, G);
Calculate the gradient∇µk of µk according to Eq. 8
(for αk with a similar formula):

∇µk =EPµk (yi,yj |Y L,X,G)[hk(yi, yj)]

−EPµk (yi,yj |X,G)[hk(yi, yj)]

Update parameter θ with the learning rate η:

θnew = θold + η ·∇θ

until Convergence;



LBP process twice in each iteration, once for estimating the
marginal distribution of unknown variables yi =? and again
for estimating the marginal distribution over all variables yi.
Finally, with the obtained gradient, we update each parameter
with a learning rate η. The learning algorithm is summarized
in Algorithm 1.

Decoding. With the estimated parameters θ, we can calcu-
late the marginal probabilities of unknown variables {yi =?}.
However, the problem of obtaining the exact solution of the
marginal probabilities remains intractable. Again, we utilize
Loopy Belief Propagation to approximate the solution, i.e.,
to calculate the marginal distribution of unknown variable
P (yi|Y L,X, G) and finally obtain y?i for each closed triad
4i by y?i = arg maxyi P (yi|Y L,X, G).

4 Experiments
4.1 Experimental Setup

Dataset. We perform our experiments in the coauthor
network dataset. The dataset is from ArnetMiner [Tang et
al., 2008]. Specifically, we collected 1,910,979 publica-
tions from ArnetMiner from 1995 to 2014.2 Then we con-
structed a coauthor network that contains 1,145,632 authors
and 4,322,998 coauthor relationships. For each coauthor re-
lationship, the formation time is set as the earliest year that
the two authors started to coauthor a paper. We enumerate
all triads in the network and obtain 5,913,455 closed triads.
In some closed triads, it might be that a triad has two coau-
thor relationships formed in the same year; in which case we
cannot determine the partial order of the creation time of the
three links. Therefore, for evaluation, we only keep those
triads that have clear partial orders, and are finally left with
631,465 closed triads with 200,891 authors in the network for
our experiments.

Feature Definition. Besides correlation features, we de-
fine three categories of local features: demography features,
interaction features, and social effect features.

Demography features: These represent the number of
publications and the number of collaborators for each author
in a triad.

Interaction features: These represent the number of com-
mon publications, the number of common conferences, the
number of common citations, and the number of mutual cita-
tions for every pair of authors in a triad.

Social effect features: These are defined based on the
PageRank score and the structural hole spanner score [Lou
and Tang, 2013] in the coauthor network of each author in a
triad.

Comparison Methods. To quantitatively evaluate the effec-
tiveness of the proposed model and the methods for compari-
son, we randomly divide the closed triads into two subsets of
even size: training and test. The training set is used to train
the model and the test set is used to evaluate the decoding
performance. We compare our model with three alternative
methods.

2http://arnetminer.org/citation

Table 1: Decoding triadic closure performance.
Algorithm Spearman Kendall Accuracy

Rule 0.4604 0.3525 0.3293
SVM 0.3205 0.2286 0.4121

Logistic 0.3379 0.2407 0.4830
DeTriad-A 0.3060 0.2190 0.5550

DeTriad 0.2716 0.1935 0.5964

Rule: We design a rule-based method to determine the de-
coding results by assuming that for each edge in a triad, the
more interactions it has between its two ends, the earlier the
edge is formed. We use the number of coauthor papers as the
number of interactions on an edge in the dataset.

SVM: Uses the same local features associated with each
triad as our model to train a support vector machine classifi-
cation model and then uses the model to predict the decoding
results in the test data. For SVM, we use svm-perf [Joachims,
2006].

Logistic: Similar to the SVM method. The only difference
is that it uses logistic regression model as the classification
model. We employ liblinear [Fan et al., 2008] here.

DeTriad: The proposed model that uses a synchronous
method to define correlation factors.

DeTriad-A: Differs from DeTriad in that it uses an asyn-
chronous method to define correlation factors.

Evaluation Metrics. We evaluate the performance of
different methods in terms of accuracy, normalized Spear-
man’s footrule distance [Spearman, 1904], and normalized
Kendall’s tau distance [Kendall, 1938]. Let ∆ be a triad
with three edges e1, e2, e3 sequentially formed. Let σ be a
decoding result of ∆. It can be viewed as a permutation
on {e1, e2, e3}, and let σ(ei) denote the rank of edge ei in
σ. The normalized Spearman’s footrule distance is given
by F (σ) = 1

4

∑3
i=1 |i − σ(ei)|, which measures the total

element-wise displacement. The normalized Kendall’s tau
distance is given by K(σ) = 1

3

∑
(i,j):i>j [σ(ei) < σ(ej)],

which measures the total number of pairwise inversions. For
both metrics, we report the average score across all test triads.

All algorithms are implemented in C++, and all exper-
iments are performed on an x64 machine with E5-4650
2.70GHz Intel Xeon CPU (with 64 cores) and 1TB RAM.
The operating system is Ubuntu 12.04.

4.2 Decoding Performance

Prediction Performance. We list the performance results
for the different methods in Table 1. It can be seen that the
proposed model DeTriad and DeTriad-A outperform the other
comparison methods on all three measures. In terms of accu-
racy, DeTriad achieves a 23.47% improvement over Logistic,
and 44.72% over SVM. In terms of normalized Spearman’s
footrule distance and normalized Kendall’s tau distance, De-
Triad also achieves up to 15% improvement over the other
methods. The advantages of the DeTriad model are as fol-
lows. First, DeTriad leverages the correlation information
among closed triads. Second, DeTriad incorporates the par-
tially observed information into the model, and can thus bet-
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Figure 4: Factor contribution analysis.

Figure 5: Performance of decoding triadic closure with dif-
ferent percentages of labeled data.

ter fit the data. Moreover, we can see that DeTriad shows
better performance than DeTriad-A (+7.38% in terms of ac-
curacy), which demonstrates that the synchronous method is
a better strategy to model the correlations among triadic clo-
sures, and the asynchronous method introduces noise to the
model.

Factor Contribution Analysis. In this section, we exam-
ine the contribution of four different categories of features:
demography features (D), interaction features (I), social ef-
fect features (S), and correlation features (C). We first rank
the individual categories by successively removing each cat-
egory of features from our model and evaluating the decrease
in prediction performance. Here, a larger decrease means
greater predictive power. We then remove them one by one
according to the order of their prediction power. We denote
DeTriad-C as removing correlation features and DeTriad-CI
as also removing interaction features. DeTriad-CID indicates
the model with the demography features removed. As shown
in Figure 4, we observe a significant performance decrease
when ignoring each category of features. This indicates that
our method works well by combining different categories of
features, and each category of features contributes to perfor-
mance improvement.

Training/Test Ratio. We provide further analysis on the
effects of training ratio on decoding performance. Figure 5
shows the prediction results when varying the percentage of
labeled closed triads in the dataset. For DeTriad, we see a
rising trend as the training set increases. This indicates the
positive effect of training data size on decoding triadic clo-
sures for our proposed model. The smooth lines of the base-
line methods reveal the limited contribution of training data

Figure 6: Performance comparison with different correlation
features.

size to the decoding task if only using local features. We can
see that obvious improvements in decoding accuracy can be
obtained by our proposed DeTriad model with different sizes
of training datasets.

Effect of Correlation Factors. We further evaluate the
effectiveness of using correlation factors to model the cor-
relation information among closed triads. We compare the
method of using correlation factors with a feature-based ap-
proach. We define a new set of features, where the feature
values are calculated as follows: for each edge e in a triad,
we calculate the number of labeled triads which also contain
edge e, and have e as the kth (k = 1, 2, 3) formed edge in the
formation processes. For a given triad ∆, this set of features
can capture the correlation between ∆ and the labeled triads.
We incorporate this new set of features into logistic regres-
sion model, and compare it with DeTriad. Figure 6 shows the
prediction results of DeTriad and logistic regression with and
without the correlation information. We can see that in both
evaluation metrics, the improvement of DeTriad by adding
correlation factors is significantly higher than that of logistic
regression by adding correlation features. This indicates that
our method works well by employing correlation factors to
model the correlation information among closed triads.

5 Conclusion

In this paper, we study an interesting problem of decoding
triadic closure in social networks. We propose a probabilistic
factor graph model, DeTriad, which can recover the dynamic
information in the triadic closure process. It integrates lo-
cal features, correlations among closed triads, and partially
labeled information into a uniform model. We validate the
model on a large collaboration network. Experimental results
show that the model effectively solves the task of decoding
triadic closure and outperforms several alternative methods
by up to 20% in terms of accuracy.
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