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Abstract
To enjoy more social network services, users nowa-
days are usually involved in multiple online social
media sites at the same time. Across these social
networks, users can be connected by both intra-
network links (i.e., social links) and inter-network
links (i.e., anchor links) simultaneously. In this
paper, we want to predict the formation of social
links among users in the target network as well
as anchor links aligning the target network with
other external social networks. The problem is for-
mally defined as the “collective link identification”
problem. To solve the collective link identification
problem, a unified link prediction framework, CLF
(Collective Link Fusion) is proposed in this pa-
per, which consists of two phases: step (1) collec-
tive link prediction of anchor and social links, and
step (2) propagation of predicted links across the
partially aligned “probabilistic networks” with col-
lective random walk. Extensive experiments con-
ducted on two real-world partially aligned networks
demonstrate that CLF can perform very well in pre-
dicting social and anchor links concurrently.

1 Introduction
To enjoy more social network services, users nowadays are
usually involved in multiple online social networks at the
same time, e.g., Foursquare, Facebook and Twitter. These
shared users of different online social networks are defined
as the “anchor users” [Kong et al., 2013] as they can act like
“anchors” aligning the networks they participate in, while the
remaining unshared users are called the “non-anchor users”.
Across partially aligned online social networks, users are con-
nected by various kinds of links: (1) intra-network links, i.e.,
the social links among users within networks; and (2) inter-
network links, i.e., the anchor links [Kong et al., 2013] con-
necting the accounts of the anchor users across different net-
works.

Predicting the formation of links in online social networks
has been a hot research topic in recent years. Across partially
aligned social networks, multiple link prediction tasks exist,
which can be conducted simultaneously. In this paper, we will
study the collective link identification problem, which covers

the following two different link prediction tasks at the same
time:
• Social Link Formation Prediction: discover social links
to be formed among users in the future in a network that we
target on.
• Anchor Link Formation Prediction: uncover the hidden
anchor links connecting accounts of anchor users between the
target network and other aligned social networks.

These two link formation prediction tasks covered in the
collective link identification problem are both of great impor-
tance for online social networks, especially when the target
network is very new and social connections among users in it
are sparse: (1) anchor link formation prediction can add more
inter-network connections between different networks, which
is a crucial prerequisite for many cross-network applications,
e.g., friend recommendation and information diffusion across
social networks, (2) social link formation prediction can add
more intra-network social connections among users in the tar-
get network, which is helpful for inter-network anchor link
identification [Kong et al., 2013].

The collective link identification problem studied in this
paper is novel and conventional classification based link pre-
diction models [Backstrom and Leskovec, 2011] cannot be
applied to solve it directly due to the following challenges.
Firstly, in traditional classification based methods [Back-
strom and Leskovec, 2011; Hasan and Zaki, 2011], links in
social networks are assigned with different labels according
to their physical meanings, e.g., friends vs enemies [Wilcox
and Stephen, 2012], trust vs distrust [Yao et al., 2013], posi-
tive attitude vs negative attitude [Ye et al., 2013], etc. How-
ever, when predicting the formation of links in social net-
works, we can only have the formed links (i.e., positive links)
but no information about links that will never be formed (i.e.,
negative links). Secondly, traditional classification based link
prediction models are based on the assumption that informa-
tion in the target network is sufficient to build effective mod-
els. This assumption will be seriously violated when the net-
work is new, available information in which would be very
sparse [Zhang et al., 2014a]. Furthermore, traditional clas-
sification based link prediction models mostly focus on pre-
dicting one single type of links without considering the cor-
relation between different link prediction tasks.

To solve these challenges, a two-phase link prediction
framework, CLF, is proposed in this paper. In the first
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step, CLF predicts anchor and social links independently
by (1) formulating the link formation problem with positive
links as a PU (Positive and Unlabeled [Liu et al., 2003])
learning problem, and (2) transferring information for social
links formed by anchor users from other source networks to
the target network via existing anchor links. In the second
step, CLF propagates information across the partially aligned
“probabilistic networks” constructed with the prediction re-
sults of the first step. With collective random walk, CLF
can (1) transfer information for both anchor users and non-
anchor users, (2) fuse newly predicted results of both anchor
and social links for mutual enhancement, and (3) control the
proportion of information diffused across networks.

This paper is organized as follows. In Section 2, we will
give the problem formulation. Methods will be introduced
in Section 3. Extensive experiments are done in Section 4.
Section 5 is about the related works. Finally, in Section 6, we
will conclude the paper.

2 Problem Formulation

2.1 Partially Aligned Heterogeneous Networks
In this paper, we will follow the definitions of “anchor users”,
“anchor links”, etc., proposed in [Kong et al., 2013], which
are not introduced here due to the limited space. Different
from [Kong et al., 2013], the major assumptions about the
aligned networks in this paper are: (1) no restrictions exist
on the constraint of anchor links, which can be either one-
to-one or many-to-many; (2) partial alignment of networks:
fully aligned networks rarely exist in the real world and net-
works studied in this paper are partially aligned [Zhang et al.,
2014b].

The partially aligned heterogeneous social networks stud-
ied in this paper are Foursquare and Twitter, which are used
as the target and source networks respectively. According to
the definition of aligned heterogeneous networks in [Kong et
al., 2013], networks studied in this paper can be formulated
as G = ((Gt, Gs), (At,s)), where Gt, Gs are the target net-
work and source network respectively and At,s is the set of
undirected anchor links between Gt and Gs.

2.2 Integrated PU Link Prediction Problem
The collective link identification problem studied in this paper
includes the simultaneous inference of both anchor links be-
tween Gt and Gs and social links in Gt merely with the posi-
tive links. Across aligned networks, in addition to the positive
links, we can identify lots of unconnected links as well. For
example, let Etu,u and U t be the sets of existing links and
users in Gt, we can represent the existing and unconnected
social links to be Etu,u and U t × U t − Etu,u respectively. If
these unconnected links are viewed as “unlabeled links”, then
the link formation prediction problem with positive and un-
labeled links can be formally defined as PU link prediction
problems. In this paper, we formulate the collective link iden-
tification problem as the integrated PU link prediction prob-
lem, which covers the (1) PU anchor link prediction; (2) PU
social link prediction simultaneously.
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Figure 1: Example of connection states and labels of links in
PU link prediction.

3 Proposed Methods
3.1 Preliminary
As introduced in [Zhang et al., 2014b], from networks, we
can extract both existing and unconnected links. To differ-
entiate these links, a term named “connection state”: z ∈
{−1,+1} was introduced in [Zhang et al., 2014b]. If a
certain link (u, v) is an existing link in the network, then
z(u, v) = +1; if (u, v) is an unconnected link, then z(u, v) =
−1. Meanwhile, besides the “connection state”, all the links
can also have their own labels, y ∈ {−1,+1}, e.g., friends vs
enemies, trust vs distrust, formed vs will never be formed,
etc. In this paper, if link (u, v) has been/will be formed,
then y(u, v) = +1; if (u, v) will never be formed, then
y(u, v) = −1. As shown in Figure 1, for all existing links
in the network, their connection states z and labels y are all
+1, while the connection states z of all initially unconnected
links are −1 but the labels y of these unconnected links can
be either +1 or −1, as the unconnected links include both
links to be formed and links that will never be formed. These
unconnected links are referred to as the unlabeled links in the
PU link prediction.

A PU social link prediction model applying spy technique
[Liu et al., 2003] to extract reliable negative links from the
unconnected link set was proposed in [Zhang et al., 2014b].
However, the correlation between links’ connection state and
labels is not clearly addressed in [Zhang et al., 2014b], which
will be analyzed and derived in details in this paper. A new
PU link prediction method based on the analysis and deriva-
tions will be introduced in the next subsection, which can be
applied to infer both anchor and social links across multiple
partially aligned networks.

3.2 Link Formation Probability Inference
For each anchor/social link, a set of features (e.g., the fea-
tures proposed in [Kong et al., 2013; Zhang et al., 2013]) can
be extracted from the networks, e.g., the feature vector ex-
tracted for certain anchor/social link (u, v) can be represented
as x(u, v). As a result, each anchor/social link (u, v) in the
networks can be denoted as a tuple 〈x(u, v), y(u, v), z(u, v)〉.
Let p(x, y, z) be the joint distribution of x, y and z. As shown
in Figure 1, all the existing links (z = 1) are positive links
(y = 1):

p(y = 1|x, z = 1) = p(y = 1|z = 1) = 1.0.
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A basic assumption about PU link prediction is that the
existing positive links are randomly sampled from the whole
positive link set, which means that for two arbitrary positive
links (u1, v1) and (u2, v2) we have

p(z(u1, v1) = 1|x(u1, v1), y(u1, v1) = 1)

=p(z(u2, v2) = 1|x(u2, v2), y(u2, v2) = 1).

In other words, the conditional distribution p(z = 1|x, y =
1) is independent of variable x, i.e.,

p(z = 1|y = 1) =
∑

link∈G
p(z = 1|x(link), y = 1)p(x(link)|y = 1)

=p(z = 1|x, y = 1) ·
∑

link∈G
p(x(link)|y = 1)

=p(z = 1|x, y = 1).

Meanwhile, the probabilities that link l is predicted to be “ex-
isting” (z = +1) and “formed” (y = +1) can be defined as
the “existence probability” (i.e., p(z = 1|x)) and “formation
probability” (i.e., p(y = 1|x)) respectively as introduced in
[Zhang et al., 2014b]. However, [Zhang et al., 2014b] fails
to study the correlation between links’ “existence probabil-
ity” and “formation probability”, which can be represented as
follows:

p(z = 1|x) = p(z = 1|x) · p(y = 1|x, z = 1) = p(y = 1, z = 1|x)

= p(y = 1|x) · p(z = 1|x, y = 1)

= p(y = 1|x) · p(z = 1|y = 1).

As a result, links’ formation probabilities can be inferred
from their existence probabilities if we know p(z = 1|y = 1)
in advance.
Definition 1 (Bridging Probability): p(z = 1|y = 1) is for-
mally defined as the bridging probability between the exis-
tence probability and the formation probability.

The bridging probability can be inferred with the binary
classification models built with the existing (z = +1) and
unconnected (z = −1) links [Elkan and Noto, 2008]. We
split all the existing and unconnected links into “training
set” and “validation set” via cross-validation. Classification
models built based on the training set can be applied to the
validation set. Let Pos be the subset of links that are positive
in the validation set. We have

Bridging Probability Inference Equation:

p(z = 1|y = 1) =
1

|POS|
∑

link∈POS

p(z = 1|y = 1)

=
1

|POS|
∑

link∈POS

p(z = 1|x, y = 1),

where p(z = 1|y = 1) = p(z = 1|x, y = 1) can hold
according to proof in previous parts. For links in Pos, we
have p(y = 1|x) = 1, p(z = 1|x, y = −1) = 0 and p(y =
−1|x) = 0. So,

p(z = 1|y = 1) =
1

|POS|
∑

link∈POS

(p(z = 1|x, y = 1)p(y = 1|x)

+ p(z = 1|x, y = −1)p(y = −1|x))

=
1

|POS|
∑

link∈POS

p(z = 1|x).
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Figure 2: Collective Link Fusion across Networks.

As a result, the average existence probabilities of links
in Pos works as an estimator of the bridging probability,
which clearly clarifies the correlation between link’s exis-
tence probability and formation probability. Based on the in-
ferred bridging probability p(z = 1|y = 1), we can predict
the formation probabilities of anchor and social links based
on their existence probabilities, which is totally different from
the spy technique introduced in [Zhang et al., 2014b].

3.3 Strict Co-Existence Transfer across Networks
To solve the information sparsity problem in the new target
network, we propose to transfer information from source net-
works via the anchor links with the strict co-existence (of an-
chor links) transfer method.

Given a certain social link (ut, vt) in Gt, we can extract
features for (ut, vt), which are represent as vector, x(ut, vt).
Meanwhile, we notice that by utilizing the anchor links At,s,
we can locate the corresponding accounts of user ut and vt
in Gs, which are us and vs respectively (if both ut and vt are
anchor users). The dense feature vector x(us, vs) together
with its label y(us, vs) extracted for social link (us, vs) from
the more establishedGs is correlated with (ut, vt) and can be
transferred to Gt.

With the information in Gt and that transferred from Gs,
we can get the formation probability of link (ut, vt) to be

p
(
y(ut, vt) = 1|

[
x(ut, vt)T ,x(us, vs)T , y(us, vs)

]T)
,

where, xT denotes the transpose of vector/matrix x.
According to the above descriptions, the strict co-existence

transfer method can transfer information for social links
formed by anchor users effectively. However, in real-world
partially aligned networks, many users are non-anchor users,
in which case, strict co-existence transfer method will not
work very well. To address such a problem, we will define
the concept of “probabilistic networks” in the next section
and introduce the collective random walk to transfer infor-
mation for both anchor and non-anchor users across “aligned
probabilistic networks”.

3.4 Loose Co-Existence Transfer across Aligned
Probabilistic Networks

As shown in Figure 2, collective anchor and social link pre-
diction can add many uncertain anchor links and social links
across networks (i.e., the red dotted/dashed lines), whose
weights are represented as their “formation probabilities”.
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Definition 2 (Aligned Probabilistic Networks): The original
partially aligned social added with the newly predicted an-
chor and social links are formally defined as the aligned prob-
abilistic networks, where weights of the originally existing
links are 1 and those of newly added ones are their inferred
formation probabilities.

Traditional random walk approach has been shown to be
effective in computing the similarities between nodes and
propagate information within one single network [Fouss et
al., 2007; Tong et al., 2006; Fujiwara et al., 2012; Konstas
et al., 2009; Backstrom and Leskovec, 2011]. Based on the
social links in the “probabilistic target network” (i.e., Gt),
we can construct the adjacency matrix W t ∈ R|Ut|×|Ut|

of the network, where W t
j,i denotes weight of link (ui, vj),

ui, vj ∈ U t. We use vector (pt)(τ) ∈ R|Ut| to store the prob-
abilities of walking from a certain starting user to other users
in the Gt with τ steps. Entries of (pt)(0) are initialized with
0s except the entry corresponding to the starting user is ini-
tialized as 1. Let W̄ t = W tD−1 be the column-normalized
adjacency matrix of W t, where Di,i =

∑
jW

t
j,i and W̄ t

j,i

denotes the probability of walking from ui to uj in 1 step.
Vector pt can be updated with the following equation until
convergence: (

pt
)(τ+1)

= W̄ t
(
pt
)(τ)

.

Values in vector p at convergence denote the “formation
confidence” scores of social links between the starting user
and other users within the target network Gt.

Furthermore, the newly added uncertain anchor link at-
tached to non-anchor users can provide the opportunity to
propagate information form Gs for non-anchor user in the
new target network Gt. We propose to extend the traditional
random walk to aligned social networks. Similar to Wt, we
define W̄ ts and W̄ st to be the column-normalized adjacency
matrices fromGt toGs and fromGs toGt respectively. With
W̄ ts and W̄ st, we can define the updating equations of inter-
network random walks from Gt to Gs and that from Gs back
to Gt to be

(ps)(τ+1) = W̄ ts (pt)(τ) ,(
pt
)(τ+1)

= W̄ st (ps)(τ+1) ,

where vector ps is initialized with 0s, while initialization of
pt is identical to that in traditional single-network random
walk. Vector pt obtained at convergence denotes the “forma-
tion confidence” scores of social links between the starting
user and other users within the target network Gt, while vec-
tor ps obtained at convergence denotes the “formation confi-
dence” scores of anchor links between the starting user and
other users in the source network Gs. Intra-network random
walk together with inter-network random walk are defined as
collective random walk in this paper formally.

Different from strict co-existence transfer, the inter-
network random walk across aligned probabilistic networks
relaxes the requirements of anchor links and is named as the
loose co-existence transfer in this paper.

3.5 Collective Link Fusion
Furthermore, as illustrated in Figure 2, newly predicted infor-
mation of both anchor and social links can propagate within

Table 1: Properties of the Aligned Social Networks
network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

Gt and Gs as well as propagating across Gt and Gs. This
process of fusing predicted information of anchor and social
links across partially aligned networks is formally defined as
the collective link fusion (CLF) in this paper. By integrat-
ing the intra-network random walks in Gt and Gs as well as
the inter-network random walks from Gt to Gs and from Gs

and Gt (i.e., the collective random walk), we can obtain the
updating equations of CLF across the aligned probabilistic
networks:{

(ps)(τ+1) = αsW̄ s (ps)(τ) + (1− αs)W̄ ts
(
pt
)(τ)

,(
pt
)(τ+1)

= αtW̄ t
(
pt
)(τ)

+ (1− αt)W̄ st (ps)(τ) ,

where αt and αs denote the weights of information within
Gt and Gs respectively in updating the vectors. Careful
choice of αt and αs can control the usage of information from
other networks to avoid negative transfer problem effectively
[Perkins and Salomon, 1992].

If the walkers are allowed to return to the starting point,
then the integrated updating equation will be

p(τ+1) = (1− c)Wp(τ) + cq,

where W =

[
αtW̄ t (1− αt)W̄ st

(1− αs)W̄ ts αsW̄ s

]
, constant c de-

notes the probability of returning to the starting point, vector

p(τ) =

[(
(pt)

(τ)
)T

,
(
(ps)

(τ)
)T]T

stores the probabilities

of walking from the starting user to users in both Gt and Gs

and vector q ∈ {0, 1}|Ut|+|Us| is filled with 0 except the cell
corresponding to the starting user, which is set as 1. Keep
updating p until convergence, we can get

p = c [I − (1− c)W ]
−1

q,

where matrix I ∈ {0, 1}(|Ut|+|Us|)2 is an identity matrix. En-
tries in vector p at convergence store the “formation confi-
dence” scores of potential anchor and social links connecting
the starting user with other users in Gs and Gt respectively.

4 Experiments
4.1 Data Description
Datasets used in this paper include Foursquare, a famous
location-based online social networks, and Twitter, the hottest
microblogging social network. A more detailed comparison
of these two datasets is available in Table 1. The anchor
link between Foursquare and Twitter is obtained by crawl-
ing users’ Twitter accounts from their Foursquare homepages,
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Figure 3: ROC curve of link prediction results.
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Figure 4: Anchor and social link prediction results.

whose number is 3, 388. In the experiment, social links in
Foursquare and anchor links between Foursquare and Twit-
ter are used as the ground truth to evaluate the performance
of CLF and other baseline methods. For more information
about the datasets and the crawling method, please refer to
[Zhang et al., 2014b].

4.2 Experiment Setting

Comparison Methods
We compare CLF with many different baseline methods in
predicting both social links and anchor links, in which SVM
of linear kernel with optimal parameters is used as the base
classifier. The comparison methods used in the experiment
include:
• Collective Link Fusion: CLF proposed in this paper in-
clude multiple phases: (1) collective multi-network link pre-
diction; (2) collective link fusion across partially aligned
probabilistic networks.
•Multi-Network Link Prediction: MLP extends the state-
of-art PU link prediction method proposed in [Zhang et al.,
2014b] to infer the existence probabilities of both anchor and
social links.
• Collective Random Walk: C-RWR is the second step of
CLF and can propagate information of both anchor and social
links across networks. When C-RWR is used as a baseline
method, only the existing anchor and social links are used in
constructing the adjacency matrices.
• Random Walk with Restart: RWR (Random Walk with
Restart) [Tong et al., 2006] can calculate the “similarity” be-
tween any pairs of users within one network.
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Figure 5: Analysis of parameters αt and αs.

Evaluation Methods
Considering that CLF, MLP, C-RWR and RWR can only
output scores of both anchor links and social links, we will
only use AUC and Precision@30 to evaluate their perfor-
mance.

Experiment Setups
We use all existing social links in Gt as the sets of positive
social links in the experiment. Then, we randomly sampled a
set of non-existent social links as the negative social link set
fromGt, which is of the same size as the set of positive social
link. These links are partitioned into 3 parts with 5 folds cross
validation: 3 folds as the training set, 1 fold as the validation
set and the remaining 1 fold as the test set. We randomly
sampled a portion of links with percentage γs (γs varies from
0.1 to 0.9) from the positive social links in the 3 folds as the
final positive training set. The remaining (1 − γs) positive
social links are mixed with the negative training links. Clas-
sifiers built with the γs sampled positive and mixed social
links (negative links and the remaining (1 − γs) positive so-
cial links) are applied to classify social links in the validation
set and test set. Existence probabilities obtained on the posi-
tive social links in the validation set are used to approximate
the bridging probability, p(z = 1|y = 1), which will be used
to get the final formation probabilities of social links in both
the validation set and the test set. In a similar way, we can get
the formation probabilities of anchor links in the validation
set and test set. The parameter used to control the percentage
of positive anchor links used to train models is γa (γa varies
from 0.1 to 0.9).

Based on the multi-network link prediction result, we fur-
ther propagate the predicted information across networks.
The probabilities of propagating within Gt and Gs instead
of crossing the networks are αt, αs ∈ [0, 1.0]. The probabil-
ities of returning to the starting point is c ∈ [0, 1.0]. In the
experiment, we set αt and αs as 0.6 and c is set as 0.1, whose
sensitivities will be analyzed in the following parts.

4.3 Experiment Result
In Figure 3, we show the ROC curve of the anchor and social
link prediction results. In Figure 3(a), we set γs = 0.5 and
γa = 0.9 and In Figure 3(b), we set γa = 0.5 and γs = 0.9.
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We can find that the area under the ROC curve of CLF is the
largest among all the baseline methods.

In Figure 4, we show the experiment results (mean± std)
of both anchor links and social links of different method un-
der the evaluation of AUC and Precision@30 over all links
of all users, where γa(γs) changes from 0.1 to 0.9. The per-
formance of most methods will increase as γa(γs) increases
in Figure 4. When γa(γs) is small, all the baseline methods
can not work well, but CLF can still achieve good perfor-
mance. Figures 4(a)- 4(b) show the result of anchor link pre-
diction, in which γs = 0.5 and γa changes from 0.1 to 0.9,
and Figures 4(c)- 4(d) are the social link prediction result,
where γa = 0.5 and γs changes from 0.1 to 0.9.

In Figure 4(a), we show the performance evaluated by
AUC. The AUC of CLF is over over 40% better than MLP
and over 50% better than C-RWR consistently in the whole
changing range of γa. It demonstrates that the combination of
MLP and C-RWR can lead to better results. In Figure 4(b),
the performance of CLF is also better than both MLP and C-
RWR under the evaluation of Precision@30. In Figure 4(c),
we show the social link prediction result under the evalua-
tion of AUC. CLF can perform well in predicting social links
and outperform all other baseline methods with a big advan-
tage. Method C-RWR, which propagate information of ex-
isting links across networks, can perform better than RWR,
which shows that loose co-existence transfer for “non-anchor
users” can indeed improve the result. However, CLF using
the probabilistic network will further enhances the perfor-
mance over C-RWR. This shows the importance of the first
step on using the multi-network link prediction to build the
probabilistic network. Similar to the result in Figure 4(b),
in Figure 4(d), CLF can beat all the baseline methods and
perform very well when γs is small. CLF can out-perform
C-RWR shows that the multi-network link prediction step is
essential and can work very well, while CLF can out-perform
MLP demonstrates that the collective link fusion step can im-
prove the prediction results of both anchor and social links.

In sum, CLF can out-perform all the baseline methods un-
der the evaluation of both AUC and Precision@30 within
the changing range of γa and γs in predicting both anchor
and social links.

4.4 Parameter Analysis
CLF has three parameters in all, which are c, αt, αs. To an-
alyze the effects of parameters in the experiment, we assign
αt, αs with values in [0.1, 0.9], and assign parameter c with
values in {0.06, 0.08, 0.10, 0.12, 0.14} to compare the per-
formance of CLF and C-RWR under the evaluation of AUC.
The results are available in Figures 5 - 6, where Figures 5(a) -
5(d) show the effects of parameter αt and αs and Figures 6(a)
- 6(b) show the effects of parameter c.

In Figure 5(a) - 5(b), we only change αt with values in
[0.1, 0.9] and fix all other parameters. Both CLF and C-
RWR can perform very stable within the changing range of
αt but CLF in Figure 5(b) has an visible increasing trend
when αt ∈ [0.1, 0.6] and stay stable when αt ∈ [0.6, 0.8] and
drops at 0.9. Figures 5(c) - 5(d) show the effects of αs. The
performance of CLF and C-RWR is more stable compared
with that in Figures 5(a) - 5(b), which shows that αt has a
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0.7
0.8
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U
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(b) AUC of social link

Figure 6: Analysis of parameter c.

much more significant effects than αs.
In Figures 6(a) - 6(b), we show the effects of parameter c

in the experiment where αt and αs are both set as 0.6. Per-
formance of both CLF and C-RWR will varies as c changes
and they can achieve the best performance around c = 0.1.

5 Related Works
PU learning has been studied for several years and dozens of
papers on this topic have been published. Liu et al. [Liu et al.,
2003] propose different settings to find the reliable negative
instances in text classification. Zhao et al. propose to classify
graphs with only positive and unlabeled examples in [Zhao
et al., 2011]. Zhang et al. are the first to propose the con-
cept of PU link prediction in [Zhang et al., 2014b] and study
the PU social link prediction in multiple networks simultane-
ously. However, it does not address the collective prediction
of anchor links and social links together, as we have studied
in this paper. A new PU link prediction method is introduced
in this paper, which is totally different from the spy technique
used in [Zhang et al., 2014b].

Link prediction first proposed by Liben-Nowell et al.
[Liben-Nowell and Kleinberg, 2003] has been a hot research
topic in recent years. Predicting the labels of links with su-
pervised models is formulated as a supervised link prediction
problem [Hasan et al., 2006]. Meanwhile, Xiang et al. [Xi-
ang et al., 2010] develop an unsupervised model to estimate
relationship strength. In heterogeneous social networks, mul-
tiple types of links can be predicted simultaneously. Namata
propose a collective graph identification problem in [Namata
et al., 2011]. Some works labels links as positive and negative
links according to their physical meanings, e.g., friendship vs.
antagonism [Leskovec et al., 2010], trust vs. distrust [Song
and Meyer, 2014], and propose to predict these links in online
social networks.

Entity identification across networks(communities) gets
lots of attention in recent years. Sahraeian et al. [Sahraeian
and Yoon, 2013] introduces a scalable algorithm to align pro-
teins across large-scale PPI network. Zafarani et al. [Za-
farani and Liu, 2009] propose to connect corresponding iden-
tities across communities. Iofciu et al. [Iofciu et al., 2011]
propose to identify common users across social tagging sys-
tems. Liu et al. [Liu et al., 2013] propose an unsupervised
to link users across communities. Kong et al. [Kong et al.,
2013] notice that users are involved in multiple social net-
works nowadays and propose to infer the links between ac-
counts of the anchor users. Zhang et al. [Zhang et al., 2013;
2014a] propose transfer links across networks to predict links
for new users and new networks respectively. Furthermore,
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links in multiple partially aligned social networks can be
strongly correlated and Zhang et al. [Zhang et al., 2014b]
introduces an integrated PU link prediction framework to pre-
dict social links in multiple social networks concurrently.

6 Conclusion
In this paper, we study the collective link identification prob-
lem merely with formed links (i.e., positive links) in the net-
works. By using unconnected links in networks as the un-
labeled links, we propose a two-phase method, CLF, to in-
fer the anchor and social links simultaneously. Extensive ex-
periments conducted on two real-world partially aligned net-
works, Foursquare and Twitter, demonstrate that CLF can ad-
dress the challenges of collective link identification very well
and achieve good results in predicting both anchor and social
links.
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