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Abstract
This paper addresses the task of time separated
aerial image registration. The ability to solve this
problem accurately and reliably is important for a
variety of subsequent image understanding appli-
cations. The principal challenge lies in the extent
and nature of transient appearance variation that a
land area can undergo, such as that caused by the
change in illumination conditions, seasonal vari-
ations, or the occlusion by non-persistent objects
(people, cars). Our work introduces several nov-
elties: (i) unlike all previous work on aerial im-
age registration, we approach the problem using a
set-based paradigm; (ii) we show how local, pair-
wise constraints can be used to enforce a globally
good registration using a constraints graph struc-
ture; (iii) we show how a simple holistic represen-
tation derived from raw aerial images can be used
as a basic building block of the constraints graph in
a manner which achieves both high registration ac-
curacy and speed. We demonstrate: (i) that the pro-
posed method outperforms the state-of-the-art for
pair-wise registration already, achieving greater ac-
curacy and reliability, while at the same time reduc-
ing the computational cost of the task; and (ii) that
the increase in the number of available images in
a set consistently reduces the average registration
error.

1 Introduction
The goal of the present work is to achieve accurate reg-
istration of time separated aerial images. The key chal-
lenge of this task emerges as a consequence of the po-
tentially large transient appearance changes, such as those
which may be caused by different illumination conditions,
seasonal variations, or mobile objects with a non-permanent
presence (e.g. people, cars, lawnmowers). Some of these
challenges are illustrated in Fig 1, using a sample of im-
ages taken from our evaluation data set. Reliable registra-
tion is an important pre-processing step required by a wide
range of practical applications including semantic labelling
of images [Mnih and Hinton, 2012], and the detection of
meaningful (high-level), structural changes [Chhabra, 2009;

Luo and Li, 2011]. Unlike previous work on aerial images,
we formulate and address the registration problem using an
image set-based framework, rather than a sequence of inde-
pendent pair-wise registrations.

(a) (b) (c)

(d) (e) (f)

Figure 1: Input images (for easier visualization, the patches shown
include only approximately 10% of the area used as actual input).
These correspond to approximately the same land area imaged on
different days and different times of the day, and registered using
a state-of-the-art commercial registration system which uses both
GPS and image data. Substantial registration errors remain (e.g. the
misalignment between (d) and (e) is 78 pixels).

Registration, as a general problem of geometric normaliza-
tion, is pervasive in computer vision. Unsurprisingly, the cor-
pus of relevant previous work is rich and varied, often with a
high degree of domain specificity [Zitová and Flusser, 2003].
In aerial imaging applications, most registration approaches
described in the literature typically focus on man-made struc-
tures, a priori choosing to exploit the presence of line features
[Wong and Clausi, 2007], rectangular buildings [Noronha and
Nevatia, 2001], or roads [Mnih and Hinton, 2010]. All of
these methods register images in a pair-wise manner, either
aligning an aerial image to an aerial image, or an aerial image
to a map. No previous work on aerial image registration op-
erates directly on image sets as input, nor is readily extended
to this problem setup.

To place the present work in broader context and better ap-
preciate our contributions, it is worth noting that set-based
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registration methods have been described in other applica-
tion domains of computer vision, most notably in the field
of medical image understanding [Metz et al., 2011]. How-
ever, an examination of these approaches shows that they
too cannot be readily applied on the problem we consider in
this paper. Indeed, medical images are often taken in cali-
brated conditions, consistent across acquisitions, while aerial
images exhibit extreme variations due to uncontrollable il-
lumination and seasonal effects, amongst others. For exam-
ple, the set-based method based on Havrda-Carvát cumulative
residual entropy proposed in [Chen et al., 2010] requires the
shapes of objects of interest to be known in advance. The
approaches described in [Lord et al., 2007] and [Li et al.,
1995] suffer from a similar limitation in this context, given
that they require reliable contour information. Their target
domain being void of such challenges, in [Wachinger and
Navab, 2012] the authors do not consider the issues of illu-
mination change or the potential presence of transient struc-
tures and occlusions. Similar observations hold for a num-
ber of other approaches [Thevenaz et al., 1998; Foroosh et
al., 2002]. A major recent development draws from the
advances in sparsity learning, often with the specific focus
on the alignment of images of faces [Wagner et al., 2012;
Ghosh and Manjunath, 2013]. Because of their computational
cost, these methods are limited in their application to images
prohibitively small for our problem. In actual practice, the
standard registration procedure used by geographers involves
the manual selection of a set of placemarks, followed by the
application of a bundle adjustment algorithm [Triggs et al.,
2000]. This is not only a laborious process but also one which
requires considerable expertize and experience because the
number and the choice of placemark locations is highly scene
specific yet crucial for the success of the overall scheme.

Our work introduces several major novelties of signifi-
cance. Firstly, we show how a simple quasi-invariant rep-
resentation derived from raw aerial images, employed in a
coarse-to-fine fashion with a suitable matching function can
be used to improve the accuracy and reliability of registration
at the level of pair-wise image alignment already. Secondly,
we describe how this approach can be employed as a part
of a novel set-based registration framework. The proposed
framework is built upon what we term a constraints graph,
which is used to propagate local, pair-wise registration infor-
mation across the image set. We demonstrate that the result-
ing method outperforms the current state-of-the-art in aerial
image registration both in terms of accuracy and reliability,
as well as speed.

2 Proposed approach
In this section we describe the key technical contributions of
the present paper. We start with an overview of the proposed
approach and its key constituent elements, and follow with a
detailed description of each.

2.1 Overview
At the centre of the proposed approach is an optimization
scheme. While the optimization scheme itself is global (i.e.
it operates jointly over the entire image set), globality is

achieved through the propagation of local registration con-
straints. The aim is to co-register an entire image set by
finding the best compromise between different pair-wise reg-
istrations. Both for the sake of computational efficiency as
well as reasons inherently linked to the nature of the problem
under consideration (see Sec 2.2 for detail), only some pair-
wise registrations contribute to the objective (fitness) function
which is maximized. Like most previous work, we constrain
our consideration to translation only.

2.2 Constraints graph
The method we propose in this paper is founded on two key
ideas. The first of these is that the registration of an en-
tire set of images can be assessed and should be formulated
as a function of pair-wise registrations. The second idea
and premise, is that the magnitude and nature of confound-
ing variation present in realistic images of approximately the
same geographical location acquired make pair-wise registra-
tion difficult and unreliable. Thus, our method aims to find
the best solution (relative registration adjustment) which bal-
ances different pair-wise assessments of registration quality.
Formally, our registration can be written as an optimization
problem which comprises the maximization of the following
fitness function (we use the term “fitness function” to empha-
size that the desired solution maximizes its value, rather than
“objective function” which is less specific and is generally
used when minimization is sought):

J({∆rk};{Ik}) =

n∑
i=1

n∑
j=1

{
wi,j × ρ̂(∆ri −∆rj ; ζ(Ii), ζ(Ij))

}
.

(1)

Here, J({∆rk}; {Ik}) is the value of the fitness function for
the set of registration adjustments {∆rk} relative to a specific
reference image (the choice of the reference image does not
affect the result so we consistently select the first image of
the set, i.e. I1, as the reference image) for the input image
set {Ik} = {I1, . . . , In}, ζ(Ii) the quasi-invariant represen-
tation of the view captured by image Ii, ρ̂(∆ri−∆rj ; ζ1, ζ2)
a measure of pair-wise registration agreement between quasi-
invariant representations ζ1 and ζ2 geometrically adjusted by
∆ri−∆rj , andwi,j a binary weight (valued 0 or 1) which in-
cludes or excludes the contribution of the corresponding “lo-
cal” i.e. pair-wise registration to the global criterion.

The design of the local elements in (1) – specifically the
quasi-invariant image representation and the corresponding
distance measure – is addressed in Sec 2.3. Presently we
focus on the global issues, that is, the problem of selecting
which weights wi,j should vanish and which should assume
a unitary value. We think of this process as the construction
of a constraints graph G = (V,E) whose vertices (nodes)
correspond to input images V = {I1, I2, . . . , In} and whose
edges E = {w1,1, w1,2, . . . , wn,n−1, wn,n} encode the set of
local constraints which contribute to the set-based registration
fitness function.

Considering that we assume that the extent and the nature
of appearance changes across input images present a major
challenge to pair-wise registration, it is a premise inherent in
our approach that the additional constraints and information
should come from the structure of the graph G. Thus the cen-
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tral question becomes what the topology of this graph should
be to ensure that additional information is indeed extracted.

Qualitatively speaking, we identify two types of good reg-
istration reinforcement that our constraints graph can effect.
The first of these concerns similar input images and thus acts
in a proximal fashion in the image space. The intuition is that
similar images, i.e. images which are close in the input image
space in the Euclidean distance sense, correspond to the scene
imaged in similar conditions (e.g. few differences due to tran-
sient objects in the images, similar illumination conditions
etc). By virtue of this observation, such images should be
easier to register in a pair-wise manner. Consequently, there
should be a connection between the corresponding nodes in
the constraints group so as to ensure that the global registra-
tion is built upon such reliable pair-wise registrations. This
allows reliable registrations to propagate their initially local
constraints across the graph, achieving global effect. The sec-
ond type of constraint we identify acts in a rather opposite
manner from the previously described proximal constraint, in
that it seeks to connect images which are distant from oth-
ers. Intuitively speaking, these are images which have been
acquired in conditions very much unlike any of the other im-
ages (more generally, we can talk about cliques of distant im-
ages which are separated from the rest of the data). The rea-
son why good connectivity of the graph nodes corresponding
to these images is desirable stems from the observation that
these images cannot be included in the set registration scheme
by means of concatenated reliable pair-wise registrations –
some other means of meaningful polling of information from
the rest of the graph is needed. The premise behind the idea
that distant images (or indeed cliques of such images) should
be richly connected to the rest of the graph is that pair-wise
appearance differences corresponding to their connection are
likely to be approximately uncorrelated. By including a rich
set of connections, the effect of changeable elements of the
scene is outweighed by the persistent and reliable structures
which remain stable across different connections.

Based on these two key ideas, we investigated four dif-
ferent elementary blocks – building schemes – used to con-
struct the constraints graph. Two of them are used to estab-
lish proximal connections, while the other two are their distal
analogues:

• scheme 1: connections local in the Euclidean sense:

wi,j =

{
0 : i = j ∨ Ij not one of k nearest neighbours of Ii
1 : Ij is one of k nearest neighbours of Ii

(2)

• scheme 2: connections local in the Euclidean sense:

wi,j =

{
0 : i = j ∨ d(Ii, Ij) > dthres1
1 : i 6= j ∧ d(Ii, Ij) ≤ dthres1

(3)

• scheme 3: connections distal in the Euclidean sense:

wi,j =

{
0 : i = j ∨ Ij not one of k furthest images from Ii
1 : Ij is one of k furthest neighbours of Ii

(4)

(a) 1: k-nearest n/bours (b) 2: thresh. proximity

(c) 3: k-furthest n/bours (d) 4: thresh. remoteness

Figure 2: Illustration of four schemes for constructing the local
constraints graph over a set of images. Images (blue circles) are con-
ceptually shown projected onto the 2D principal component space.
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Figure 3: A constraints graph is used to propagate globally reg-
istration information from pair-wise image comparisons. Its nodes
correspond to input images (here shown projected to their 3D lin-
ear principal subspace), while the connections between them encode
which pair-wise comparisons contribute to the fitness function used
to quantify the quality of registration on the level of the entire set.

• scheme 4: connections distal in the Euclidean sense:

wi,j =

{
0 : d(Ii, Ij) < dthres2
1 : d(Ii, Ij) ≥ dthres2

(5)

where the distance between two images is in all cases mea-
sured in the original Euclidean space:

dE(Ii, Ij) =

√∑
r

[
Ii(r)− Ij(r)

]2
. (6)

Notice that schemes 2 and 4 result in symmetric edges (i.e.
wi,j = 1 ⇔ wj,i = 1) while in general this is not the case
for schemes 1 and 3. The four schemes are illustrated and
compared conceptually in Fig 2.

We obtained the best results by combining two schemes,
one proximal and one distal. The choice of the specific
schemes was not found to affect the results significantly, and
henceforth we adopt the combined use of schemes 1 and 3.
An example of a graph built in this fashion is shown in Fig 3.
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2.3 Local constraint: pair-wise registration quality
In the previous section we described how in our method ‘lo-
cal’, pair-wise registration information is propagated glob-
ally, that is, across the entire set of images being registered.
The aim was to integrate the available information in a mean-
ingful manner which leads to a globally good solution by
virtue of local constraints. From this it is clear that ultimately
the elementary building block of the scheme and the poten-
tial bottleneck is to be found in the way registration between
a pair of images is assessed – while the extent of the chal-
lenge posed by large appearance changes makes it unrealistic
to expect a highly accurate result when only pairs of images
are used, it is crucial that pair-wise registration is sufficiently
powerful to drive the constraints graph optimization.

Our initial experiments with a variety of interest point de-
tectors and local feature descriptors suggested that the extent
of local appearance changes in our data is so substantial that
very few reliable keypoint matches could be made [Arand-
jelović et al., 2015]. Furthermore, we found that keypoints-
based approaches did not readily lend themselves to an effi-
cient integration in our constraints graph framework. Thus,
we developed a holistic approach instead. Our approach on
this, pair-wise level consists of two steps. Firstly, input im-
ages are processed using simple filters to produce a quasi-
illumination invariant representation (the effects of illumina-
tion are readily recognized as effecting the most substantial
changes between different images). The assessment of the
registration quality for a particular translation is then quanti-
fied using the simple normalized cross-correlation coefficient.

Considering that illumination changes effect the most sub-
stantial appearance changes that we wish our representa-
tion to be invariant to, we focused our attention to vari-
ous filters which preserve edge-like, high frequency infor-
mation content in images. We experimented with high-
pass filters [Arandjelović and Cipolla, 2006; Gangkofner
et al., 2008], quotient representations [Arandjelović, 2009;
2013], distance transformed edge maps [Liu et al., 2010;
Arandjelović, 2012b; Arandjelović and Cipolla, 2013], and
others [Arandjelović, 2012c], with limited success. The rep-
resentation that we found effective, and therefore which we
adopt henceforth, is the absolute value of the high-pass fil-
tered image:

ζi = ζ(Ii) =
∣∣∣ Ii − {Ii ∗G(σ)

} ∣∣∣, (7)

where G(σ) is the isotropic 2D Gaussian kernel with the
standard deviation ‘width’ parameter σ, and ∗ denotes 2D
convolution. The quality of registration agreement between
two such quasi-illumination invariant images ζi and ζj , geo-
metrically transformed for the specified registration parame-
ters, is then quantified using the normalized cross-correlation
coefficient ρ̂(∆ri,j ; ζi, ζj):

ρ̂(∆ri,j ; ζi,ζj) =

∑
r ζi(r) ζj(r + ∆ri,j)√∑
r(ζi(r))2 ×

∑
r(ζj(r))2

. (8)

While the use of a high-pass filter ensures that the most sig-
nificant responses occur around edge-like structures, taking
its absolute value achieves invariance to the sign of the corre-
sponding gradients, i.e. bright-dark vs. dark-bright interfaces.
We will refer to this representation as ABS-HP. An example
is shown in Fig 4.

Original image High−pass filtered
High−pass filtered,

absolute value

Figure 4: Image patch
extracted from a raw in-
put image (left), after
high-pass filtering (cen-
tre), and after taking
the absolute value of
the high-pass filter output
(right).

Computational considerations
The computation of the normalized cross-correlation coeffi-
cient ρ̂(∆ri,j ; ζi, ζj) in (8) can be extremely slow – if imple-
mented ‘naı̈vely’ in the image domain the number of compu-
tations is approximately 4 × w × h, where w and h are the
width and the height of an image in pixels. This is a poten-
tial bottleneck, as the value of the coefficient is needed for a
different ∆ri,j in each iteration of the maximization of the
fitness function in (1). It is an attractive feature of the pro-
posed framework that it lends itself to an efficient solution of
this problem. Firstly, we employ the well-known fast Fourier
transform-based pre-computation of the full cross-correlation
matrix ρ(∆ri,j ; ζi, ζj) [Reddy and Chatterji, 1996]. Briefly,
the cross-correlation between images ζi and ζj , defined as:

ρ(∆ri,j ; ζi, ζj) =
∑
r

ζi(r) ζj(r + ∆ri,j) = (ζi ∗ ζj) (∆ri,j),

can be computed efficiently in the Fourier domain by exploit-
ing the convolution theorem:

ρ(∆ri,j ; ζi, ζj) = F−1 {F(ζi)
∗ · F(ζj)} (9)

where F is the Fourier transform operator, · point-wise mul-
tiplication, and (. . .)∗ complex conjugation. This solves the
problem of computing the numerator in (8). The computation
is performed once and need not be repeated in each iteration,
but rather the corresponding value looked-up. However, it is
crucial that this value is normalized by the denominator in (8);
the reason for this is that for different registration adjustments
∆ri,j , different parts of two images overlap. The omission of
normalization could lead to an unfair bias towards large shifts
because small overlapping image patches on average tend to
look more alike. Thus, we pre-compute the normalization
values using the integral image technique [Viola and Jones,
2001]. Specifically, we compute integral images for ζi · ζi
and ζj · ζj , which allows us quickly to obtain the values of
all possible denominators in (8) in at most three elementary
operations per denominator (since the overlapped area of an
image always extends from one of its corners).

2.4 Fitness function maximization
Having pre-computed the full normalized cross-correlation
matrix of the filtered images which are being registered, the
fitness function introduced in (1) can be readily maximized
using the steepest ascent method; we initialize the process by
setting ∀i. ∆ri = 0. The final issue we address here con-
cerns the difficulty posed by what can be described as limited
spatial influence of characteristic features extracted by our
ABS-HP representation. Consider what happens when the
initial misalignment between two images is large. Because
our representation is based on a high-pass filter, the maxi-
mal filter responses are observed around edge-like structures.
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Since these structures are narrow, their responses do not have
enough spatial reach to guide the optimization in the correct
direction. While this problem does become much less notice-
able when larger image sets are used, rather than the minimal
set comprising two images, it is nonetheless beneficial for this
potential pitfall to be avoided altogether. We achieve this by
approaching the problem in a coarse-to-fine fashion. Specifi-
cally, observe that by varying the bandwidth of the high-pass
filter used to extract our ABS-HP representation, it is pos-
sible to trade-off the breadth of spatial influence of a filter
response, and its localization power. Thus, we start the reg-
istration process by using a wide-band high-pass filter, and
follow that by progressively narrower band filters as conver-
gence at each level is detected. The particular filters we used
in our experiments have the values of 40, 20, 8, and 3 pixels
for the parameter σ in (7).

3 Evaluation
In this section we describe our evaluation of the proposed
method, and report and discuss its performance in the context
of the current state-of-the-art. We begin by describing our
data set and evaluation protocol, follow with a presentation
of a comprehensive set of performance statistics, and finish
off with an analysis of our results and their significance.

3.1 Data
As reviewed in detail in Sec 1, the existing literature on the
registration of aerial imagery is void of any set-based ap-
proaches, the present paper being the pioneering work in the
area. It is an unsurprising consequence of this that there are
no public data sets suitable for the evaluation of set-based al-
gorithms so we collected a novel data set ourselves.

Our data set comprises 10 image sets, each set contain-
ing 10 images acquired at different, non-uniformly distributed
dates, as illustrated in Fig 5. This data was manually down-
loaded using the freely accessible web portal provided by
Nearmap Ltd. Nearmap has developed technology for rapid
acquisition of high resolution aerial imagery, which allows
frequent re-imaging of large areas. The most time demanding
task in their pipeline concerns the registration and stitching
of aerial images (tiles) to form a continuous representation.
Registration is performed using a combination of manual in-
put and state-of-the-art commercial software; thus, different
images within the same image set in our data correspond to
approximately the same land area. Both GPS and image data
are used in the registration process, the latter being based on
a robust alignment of local features (the exact details of the
registration algorithm are proprietary and as such were not
disclosed to us in entirety).

3.2 Protocol
We first obtained an estimate of the ground truth by manually
labelling images. Specifically, the optimal registration pa-
rameters were estimated from correspondences between se-
lected characteristic image loci. Loci physically lying on the
ground plane were consistently chosen to avoid the problem
of varying viewpoint from which images are obtained, and
which can significantly change the perspective from which
different surfaces are seen (e.g. house walls or roofs).

2009−01 2010−01 2011−01 2012−01 2013−01
Image acquisition date

Figure 5: The distribution of acquisition dates for a typical image
set in our data. It can be readily seen that the acquisition was not per-
formed at regular intervals: in some instances images are re-acquired
after only a month, while in others several months pass.

Table 1: Baseline performance (all statistics are in pixels).

Method Nearmap ARRSI SURF
Mean error 18.0 248.5 140.9
Deviation

0.75 77.2 110.9(between sets)
Deviation

24.6 139.8 266.9(within a set, mean)

After obtaining an estimate of the ground truth, we con-
ducted three baseline experiments. Firstly, we assessed the
quality of registration performed by Nearmap. In addition, we
evaluated two popular registration approaches from the liter-
ature: (i) using SURF [Bay et al., 2008] feature correspon-
dences (similar to [Arandjelović, 2012d] using SIFT), and
(ii) the state-of-the-art ARRSI algorithm [Wong and Clausi,
2007], specifically tailored to aerial images, which is also
sparse in nature and uses phase congruency-based control
points. Feature matching in both cases is performed robustly
using RANSAC.

3.3 Results and discussion
Using our ground truth labelling, we were able to estimate
that the average registration error of the proprietary method
employed by Nearmap is approximately 18 pixels. Much like
most of Nearmap’s imagery, our data was acquired in the res-
olution for which one pixel width corresponds to 7.5 cm on
the ground. Thus, the average misalignment of two images
considered to show the same patch of land by Nearmap is
about 1.35 m. This error is more than sufficiently large to
limit the powers of subsequent processing for image under-
standing; to give an example, this may be the detection of per-
manent structural change (e.g. solar panel installation, well
drilling etc), which is of major interest to local councils and
governments. It is insightful to notice that while the standard
deviation of the mean misalignment error between sets was
found to be very small indeed (0.75 pixels, or 5.6 cm on the
ground), the mean deviation within a set was far larger (24.6
pixels, or 1.85 m); please see Table 1. This strongly supports
one of the premises of our work: that the primary challenge is
not posed by the content of the aerial scene (i.e. the structures
in it), but rather the changes that the scene exhibits over time
(illumination being the most substantial one).

We next turn our attention to the two baseline methods
from the literature. As the summary in Table 1 clearly shows,
both of these performed very poorly on our data. Not only
did neither of the methods manage to improve on the original
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registration by Nearmap, both of them increased the average
registration error by approximately an order of magnitude.
While perhaps surprising at first, this finding is readily ex-
plained following a more in-depth examination of the results.
Specifically, in both cases observe the extremely large devi-
ation of the misalignment error within an image set – while
in the case of some image pairs registration was highly suc-
cessful (error of ≈ 4 pixels), in other cases unreliable inter-
est point correspondences resulted in grossly inaccurate re-
sults (errors in excess of 400 pixels). Indeed, as stated in
Sec 2.3, this is consistent with our experiments using a va-
riety of interest point descriptors – while highly successful
in the registration of images acquired in similar illumination
conditions, even in the presence of different small transient
objects, sparse feature-based methods exhibit a dramatic drop
in performance as illumination conditions change. We found
them to lack sufficient robustness to deal with the challenges
in real-world images such as those in our data set.

Lastly, we present the results obtained using the proposed
method. For all sets we found that our method substantially
decreased Nearmap’s registration error. On average, the re-
duction was 75.8%, resulting in the average absolute image
error of only 4.4 pixels, or 32.7 cm on the ground. A plot
detailing the performance of the method is shown in Fig 6(a).
While our method too exhibited some variation across dif-
ferent sets, even in the worst case (number 6) the error was
reduced by over 60%. This demonstrates the achievement of
our first goal of developing both a more accurate, and a more
robust registration method, than the state-of-the-art used com-
mercially, or indeed described in the academic literature.
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Figure 6: (a) Mean pair-wise registration error (blue bars) per im-
age set obtained with the proposed method, relative to the initial
error. In all cases the error reduction is dramatic, averaging 75.8%.
The red stems extending from the blue bars show the standard de-
viation of the relative registration error within each of the 10 image
sets. (b) The reduction in the mean registration error per image set
using 10-image sets relative to 2-image sets. In all cases the error is
reduced at least to half, and 3.2 times on average.

A major premise of our work, and a methodological nov-
elty, pertaining to the joint co-registration of aerial image sets
rather than image pairs is substantiated by the data shown in
Fig 6(b). This plot compares the reduction in the mean regis-
tration error (relative to Nearmap’s baseline error) when our
method is applied to minimal 2-image sets (i.e. subsets of the
original sets), and when all the available data (10 images) is
used instead. Indeed, it can be readily seen that the error is
consistently reduced in the case of all sets. Even in worst
case (set number 1) the reduction is over two-fold, while in
the best case it is more than nine-fold (set number 4).

Table 2: Computational cost comparison. ARRSI and the SURF-
based methods were implemented primarily in C, with a Matlab
‘wrapper’, while the proposed method was implemented fully in
Matlab. The estimates are averages of 100 executions ran in Mat-
lab 7 on an AMD Phenom II X4 965 processor with 8GB RAM.

Method Proposed ARRSI SURF
Set size 10 5 3 n/a n/a
Registration time

5.6 3.8 3.9 17.5 22.5(s per image)

The variation in the benefit – that is, the reduction in the
registration error – across sets corresponding to different land
areas obtained by using 10 as opposed to 2 images led us to
investigate this specific aspect of our results in greater detail.
By examining the variation in the average registration error as
the size of an image set is gradually increased we noticed that
the variation observed in Fig 6(b) primarily emerges as a con-
sequence of the variation in the registration error obtained for
the minimal set size (i.e. pair-wise registration) [Arandjelović
et al., 2015]. Already for sets of size 3 the variation (absolute,
as well as relative) across different sets is much reduced. This
finding too strongly supports the premise that the constraints
which can be extracted from the use of more than two images
are a powerful source of information which can be harnessed
to increase the accuracy and reliability of registration in the
presence of large appearance changes.

Lastly, a summary of the computational cost statistics is
given in Table 2. As expected, the average time for registra-
tion per image achieved using the proposed method increases
somewhat with the increase in the set size due to the greater
complexity of the constraints graph. Nonetheless, in all cases
our method’s computational cost was significantly lower than
that of either of the state-of-the-art methods.

4 Summary and conclusions

In this paper we introduced a novel method for the registra-
tion of aerial images. Unlike previous work which consid-
ered either pair-wise image-to-image or image-to-map reg-
istration, our approach jointly registers an entire set of im-
ages of approximately the same area but acquired at different
times. We formulated the joint registration problem as an op-
timization scheme. Set-based registration was built upon sim-
ple pair-wise registrations which are mutually constrained by
means of a connectivity graph. We showed how this graph
can be constructed automatically, using a combination of two
rules, one proximal, the other distal in the Euclidean image
space. Using a novel data set suitable for the evaluation of set-
based aerial image registration algorithms, we demonstrated
that the proposed approach significantly outperforms the cur-
rent state-of-the-art both in terms of accuracy and reliability,
as well as speed. Amongst other possible directions for im-
provement, our future work will investigate the use of colour
invariants [Arandjelović, 2012a].
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