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Abstract

Hashing is an important method for performing ef-
ficient similarity search. With the explosive growth
of multimodal data, how to learn hashing-based
compact representations for multimodal data be-
comes highly non-trivial. Compared with shallow-
structured models, deep models present superiority
in capturing multimodal correlations due to their
high nonlinearity. However, in order to make the
learned representation more accurate and compact,
how to reduce the redundant information lying in
the multimodal representations and incorporate dif-
ferent complexities of different modalities in the
deep models is still an open problem. In this pa-
per, we propose a novel deep multimodal hashing
method, namely Deep Multimodal Hashing with
Orthogonal Regularization (DMHOR), which fully
exploits intra-modality and inter-modality correla-
tions. In particular, to reduce redundant infor-
mation, we impose orthogonal regularizer on the
weighting matrices of the model, and theoretically
prove that the learned representation is guaranteed
to be approximately orthogonal. Moreover, we find
that a better representation can be attained with
different numbers of layers for different modali-
ties, due to their different complexities. Compre-
hensive experiments on WIKI and NUS-WIDE,
demonstrate a substantial gain of DMHOR com-
pared with state-of-the-art methods.

1 Introduction
Nowadays, people have generated huge volumes of multi-
modal contents on the Internet, such as texts, videos and im-
ages. Multimodal data carries different aspects of informa-
tion, and many real-world applications need to integrate mul-
timodal information to obtain comprehensive results. For ex-
ample, recommendation systems aim to find preferred mul-
timodal items (e.g. web posts with texts and images) for
users, and image search systems aim to search images for text
queries. Among these important applications, multimodal
search, which integrates multimodal information for similar-
ity search is a fundamental problem.

Faced with such huge volumes of multimodal data, multi-
modal hashing is a promising way to perform efficient multi-
modal similarity search. The fundamental problem of multi-
modal hashing is to capture the correlation of multiple modal-
ities to learn compact binary hash codes. Despite the suc-
cess of these hashing methods [Kumar and Udupa, 2011;
Zhang et al., 2011; Zhen and Yeung, 2012], most existing
multimodal hashing adopts shallow-structured models. As
[Srivastava and Salakhutdinov, 2012a] argued, correlation of
multiple modalities exists in the high-level space and the
mapping functions from the raw feature space to the high
level space are highly nonlinear. Thus it is difficult for shal-
low models to learn such a high-level correlation [Bengio,
2009].

Recently, multimodal deep learning [Ngiam et al., 2011b;
Srivastava and Salakhutdinov, 2012a; 2012b] has been pro-
posed to capture the high-level correlation in multimodal in-
formation. [Kang et al., 2012] also proposed a multimodal
deep learning scheme to perform hashing. However, existing
works do not consider the redundancy problem in the learned
representation, which makes it incompact or imprecise, and
significantly affects the performance of efficient similarity
search. In shallow-structured models, it is common to directly
impose the orthogonal regularization on the global dataset to
decorrelate different bits. However, due to the high nonlin-
earity, the objective function of deep learning is highly non-
convex of parameters, thus potentially causes many distinct
local minima in the parameter space [Erhan et al., 2010]. In
order to alleviate this problem, mini-batch training is com-
monly adopted for deep learning [Ngiam et al., 2011a], but
this intrinsically prohibits the possibility to impose regular-
ization directly on the final output representation of global
dataset. Therefore, how to solve the redundancy problem
of hashing representation learning by deep models is still a
challenging and unsolved problem. Furthermore, most of
the previously proposed deep models adopt symmetric struc-
tures, with the assumption that different modalities possess
the same complexity. However, it is intuitive that visual data
has much larger semantic gap than textual data, which results
in different complexities in different modalities. How to ad-
dress the imbalanced complexity problem in deep learning
models is also critical for multimodal hashing.

To address the above problems, we propose a Deep Mul-
timodal Hashing model with Orthogonal Regularization (as
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shown in Figure 1) for mapping multimodal data into a
common hamming space. The model fully captures intra-
modality and inter-modality correlations to extract useful in-
formation from multimodal data. In particular, to address
the redundancy problem, we impose orthogonal regularizers
on the weighting matrices, and theoretically prove that the
learned representation is approximately guaranteed to be or-
thogonal. For the problem of imbalanced complexities, we
empirically tune the number of layers for each modality, and
find that a better representation can be attained with different
number of layers for different modalities.

The contributions of our paper are listed as follows:
• We propose a novel deep learning framework to gener-

ate compact and precise hash codes for multimodal data,
by fully exploiting the intra-modality and inter-modality
correlation and incorporating different complexities of
different modalities.
• We propose a novel method with theoretical basis to

reduce the redundancy in the learned hashing repre-
sentation by imposing orthogonal regularization on the
weighting parameters.
• Experiments on two real-world datasets demonstrate a

substantial gain of our DMHOR model compared to
other state-of-the-art hashing methods.

2 Related work
In recent years hashing methods have experienced great suc-
cess in many real-world applications because of their supe-
riority in searching efficiency and storage requirements. In
general, there are mainly two different ways for hashing to
generate hash codes: data-independent and data-dependent
ways.

Data-independent hashing methods often generate random
projections as hash functions. Locality Sensitive Hashing
(LSH) [Datar et al., 2004] is one of the most well-known
representative. It uses a set of random locality sensitive
hashing functions to map examples to hash codes. Further
improvements such as multi-probe LSH [Lv et al., 2007]
are proposed but the performance is still limited by the ran-
dom projection technique. Data-dependent hashing methods
were then proposed. They use machine learning to utilize
the distribution of data to help improve the retrieval qual-
ity. Spectral Hashing [Weiss et al., 2008] is a representa-
tive. Then some other hashing methods are proposed, in-
cluding shallow structured methods [Norouzi and Blei, 2011;
Liu et al., 2012; Wang et al., 2010] and deep learning based
methods [Salakhutdinov and Hinton, 2009; Xia et al., 2014].

Most of the above methods are designed for single modal-
ity data. However, we often need to process multimodal in-
formation in real-world applications. Therefore, some re-
cent works have focused on encoding examples represented
by multimodal features. For example, Cross-View Hash-
ing (CVH) [Kumar and Udupa, 2011] extends spectral hash-
ing to multiview. Predictable Dual-view Hashing (PDH)
[Rastegari et al., 2013] applies max-margin theory to perform
multimodal hashing. Relation-aware Heterogeneous Hashing
(RaHH) [Ou et al., 2013] incorporates a heterogeneous rela-
tionship to help learning the multimodal hash function and so

on [Bronstein et al., 2010; Zhai et al., 2013; Song et al., 2013;
Zhang and Li, 2014; Ou et al., 2015]. However, these mul-
timodal hashing models adopt shallow-layer structures. It is
difficult for them to capture the correlation between different
modalities.

Only a few recent works focus on multimodal deep learn-
ing. [Ngiam et al., 2011b; Srivastava and Salakhutdinov,
2012a; 2012b] target at learning high-dimensional latent fea-
tures to perform discriminative classification task. [Wang et
al., 2014a; Feng et al., 2014] apply autoencoder to perform
cross-modality retrieval. However, these methods are all dif-
ferent from our task of learning compact hash codes for multi-
modal data. From the angle of targeted problem, the most re-
lated work with ours is [Kang et al., 2012], which proposed a
multimodal deep learning scheme to perform hashing. How-
ever, in their scheme, it does not consider the redundant in-
formation between different bits of hash codes. The redun-
dancy in hash codes will badly influence the performance of
similarity search due to the compact characteristic of hashing
representations. In addition, they fail to consider the different
complexity of different modalities.

3 The Methodology

In this section, we present Deep Multimodal Hashing with
Orthogonal Regularization (DMHOR) in detail and analyze
its complexity to prove the scalability.

3.1 Notations and Problem Statement
In this paper, we use image and text as the input of two differ-
ent modalities without loss of generality. Note that it is easy
for the model to be extended to incorporate other forms of
representations and more modalities. The terms and notations
of our model are listed in Table 1. Note that the subscript v
represents image modality and t represents text modality.

Table 1: Terms and Notations
Symbol Definition
mv ,mt number of hidden layers in image or text pathway
n number of samples
M the length of the hash codes

xv , xt image or text input
h(l)

v , h(l)
t the l-th hidden layer for image or text pathway

h top joint layer
W (l)

v ,W (l)
t l-th layer’s weight matrix for image or text pathway

b(l)
v , b(l)

t l-th biases for image or text pathway
θ {W (l)

v ,b(l)
v , c(l)

v }
mv+1
l=1 ∪ {W (l)

t ,b
(l)
t , c

(l)
t }

mt+1
l=1

s(l)v ,s(l)t l-th layer’s unit numbers for image or text pathway

Suppose that we have n training examples with image-
text pairs, represented by Xv = {xv,1, ..., xv,n} and Xt =
{xt,1, ..., xt,n}. The main objective is to find M -bit binary
hashing codes H for training examples, as well as a corre-
sponded hash function f(·), which satisfies H = f(Xv, Xt).
Moreover, if two objects O1 and O2 are semantic similar, the
hash functions should satisfy that the distance of hash codes
H(O1) andH(O2) is small. After learning the hash function,
given any out-of-sample image-text pair denoted as (xv,xt),
its corresponding hashing codes are calculated as f(xv,xt).
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Figure 1: (a) The multimodal DBN in pretraining (b) The multimodal AutoEncoder and the cross-modality Autoencoder in
fine-tuning. They are optimized together. The same color in different bits means they may contain redundant information.

3.2 Modality-specific Deep Multimodal Hashing
Pretraining
Due to the high nonlinearity, deep-structured models often
suffer from many local minima in the parameter space. In
order to find a good region of parameter space, we use pre-
training in our multimodal hashing.

As the correlation of multiple modalities exists in the high-
level space, we propose a multimodal Deep Belief Network
(mDBN) as shown in Figure 1(a). The mDBN is composed of
two DBNs and a joint Restricted Boltzmann Machine (RBM).
The two DBNs map individual low-level features to high-
level space and the joint RBM captures the correlation of mul-
tiple modalities.

To train the mDBN, we adopt the popular method of greedy
layer-wise training [Hinton et al., 2006]. We perform approx-
imately learning of the RBM with 1-step Contrastive Diver-
gence [Hinton, 2002] and adopt dropout [Hinton et al., 2012]
over the entire network to prevent overfitting.

Fine-Tuning
After Pre-training, the parameters lie in a good region of the
parameter space, but are not optimal. Thus we do fine-tuning
to refine the parameters by performing local gradient search.

To learn an accurate representation, we need to incorpo-
rate both intra-modality and inter-modality correlation to ex-
tract more discriminative information. To preserve the intra-
modality correlation, we unroll the mDBN to form the multi-
modal Autoencoder (MAE) as shown in the left part of Figure
1(b). Given input of two modalities, the joint representation
is demanded to reconstruct both modalities.

In this way, the intra-modality correlation is maintained,
but the cross-modality cannot be well captured. Inspired by
[Ngiam et al., 2011b], we further propose a cross-modality
Autoencoder (CAE) as shown in right part of Figure 1(b). In
this model, when only one modality is present and the other is
absent, the learned representation is still required to be able to
reconstruct both modalities. In this way, the common seman-
tic lying in both modalities is strengthened and the modality-
specific information is weakened, which results in the effect

of capturing the inter-modality correlation.

Modality-specific Structure
Even if different modalities describe the same object, they
will have different statistical properties in the low-level raw
feature space, while they have high correlation in the high-
level semantic space. Thus, deep-structured models adopt
multiple layers to map low-level raw feature space to high-
level space. However, the gap between low-level feature
space to high-level semantic space varies for different modal-
ities. For example, the gap between visual pixels and ob-
ject categories is much larger than the gap between textual
words to topics, which means that the visual modality possess
higher complexity than text modality. Therefore, we propose
a modality-specific structure on all of the above models to
incorporate different complexities of different modalities. In
particular, we endow the model with the flexibility of varying
the number of layers for different modalities independently.
The experimental results clearly demonstrate that the optimal
solution is achieved with different number of layers for dif-
ferent modalities.

Hash Function
To define the hash function, we first define the representation
of the l-th hidden layer z(l)

i , i ∈ {v, t} for the image or text
pathway, and the joint representation z as follows:

z
(1)
i = σ(W

(1)T
i xi + b

(1)
i )

z
(l)
i = σ(W

(l)T
i z

(l−1)
i + b

(l)
i ), l = 2, ...,mi

z = σ

[ ∑
i∈{v,t}

(W
(mi+1)T
i z

(mi)
i + b

(mi+1)
i )

]
(1)

where σ(·) is the sigmoid function. Specifically for CAE,
we set the missing modality to zero when calculating Eq. 1.
For the decoder part of CAE or MAE, the representation is
calculated reversely in a similar way.

Then the hash function f(·) and hash codes h for input xv
and xt are defined as follows:

h = f(xv,xt; θ) = I
[
z ≥ δ

]
∈ {0, 1}M (2)
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where I is the indicator function and δ is the threshold.
To obtain a hash function which both preserves intra-

modality and inter-modality correlation, we need to learn the
parameters θ by optimizing MAE and CAE together. For
MAE, the loss function is defined as:

Lvt(xv,xt; θ) =
1

2
(‖x̂v − xv‖22 + ‖x̂t − xt‖22) (3)

where x̂i is the reconstruction of xi, i ∈ {v, t}.
For CAE with only Image input (Image-only CAE), the

loss function is defined as:

Lvt̄(xv, xt; θ) =
1

2
(‖x̂Iv − xv‖22 + ‖x̂It − xt‖22) (4)

where the superscript I denotes the image-only CAE. x̂Ii is
the reconstruction of xi, i ∈ {v, t} in image-only CAE. The
loss function for text-only CAE Lv̄t is defined similarily.

Then a straightforward solution to the hash function is pro-
posed as follows:

min
θ

L1(Xv, Xt; θ) =
1

n

n∑
i=1

(Lvt+λLv̄t+µLvt̄)+νLreg

where Lreg is an L2-norm regularizer term of the weight ma-
trix to prevent overfitting.

3.3 Orthogonal Regularization
For hashing representation learning, compactness is a critical
criterion to guarantee its performance in efficient similarity
search. Given a certain small length of binary codes, the re-
dundancy lies in different bits would badly affect its perfor-
mance. By removing the redundancy, we can either incorpo-
rate more information in the same length of binary codes, or
shorten the binary codes while maintaining the same amount
of information. Thus to alleviate the redundancy problem,
we impose the orthogonal constraints to decorrelate different
bits. Since H is non-negative as is shown in Eq. 2, we first
transform H to H̃ = 2H − 1 ∈ {−1, 1}. We formulate the
problem as the following objective function:

min
θ

L1(Xv, Xt; θ) =
1

n

n∑
i=1

(Lvt+λLv̄t+µLvt̄)+νLreg

s.t.
1

n
H̃T · H̃ = I

The above objective function is a hard problem in two as-
pects. Firstly, the value of H̃ is discrete, which makes H̃
non-differentiable. To solve it, we follow [Weiss et al., 2008]
to remove the discrete constraint. Secondly, the orthogonal-
ity constraint constrains the hash codes of the global dataset.
However, mini-batch training is commonly adopted for deep
learning. Thus it prevents us directly solving the constraint
on the global dataset. To solve this, we provide the following
lemma to transform the objective function.
Lemma 3.1. SupposeH = σ(WxX

T +WyY
T ). IfX ,Y ,Wx,Wy

are orthogonal matrices,WT
x Wy = 0, then the matrix H̃ = 2H−1

satisfies H̃T · H̃ ∝ I .
Proof. The one-order Taylor Series of H at X = 0, Y = 0 is:

H ≈ H(0, 0) + (
∂

∂X
XT +

∂

∂Y
Y T )H(0, 0)

=
1

2
+

1

4
(WxX

T +WyY
T )

Therefore, H̃ = 2H − 1 = 1
2
(WxX

T +WyY
T ).

H̃T · H̃ ∝ XWT
x WxX

T + YWT
y WyY

T

+XWT
x WyY

T + YWT
y WxX

T

∝ I

Under the assumption that input Xv and Xt are orthogonal
[Wang et al., 2010], if we impose the orthogonal constraints
on each layer’s weight matrix as shown in Eq.5, the repre-
sentations of the layer h(mv)

v and h(mt)
t are approximately or-

thogonal. In this case the input of the joint RBM is orthogo-
nal, if we further impose the constraint of Eq. 6, the Lemma
3.1 guarantees the orthogonality of the hash codes. Thus we
can impose the orthogonal regularization on the weighting
matrices instead of the hashing bits, which significantly fa-
cilitate the optimization process. Therefore, we propose the
following new objective function:

min
θ

L1

s.t. W
(l)T

i ·W (l)
i = I, l = 1, ...,mi + 1 i ∈ {v, t} (5)

W (mv+1)
v ·W (mt+1)T

t = 0 (6)

Inspired by [Wang et al., 2010], the hard orthogonality
constraints may reduce the quality. Thus instead of impos-
ing hard orthogonality constraints, we add penalty terms on
the objective function and propose the following final overall
objective function:

min
θ

L(Xv, Xt; θ) = L1 + γ‖W (mv+1)
v ·W (mt+1)T

t ‖2F

+

mv+1∑
l=1

αl‖W (l)T

v W (l)
v − I‖2F +

mt+1∑
l=1

βl‖W (l)T

t W
(l)
t − I‖

2
F

(7)

3.4 Solution
We adopt back-propagation on Eq. 7 to fine-tune the param-
eters. We calculate the derivative of W (mv+1)

v as an example
1:

∂L

∂Wv
=

∂L1

∂Wv
+ γ

∂‖WvW
T
t ‖2F

∂Wv
+ α

∂‖WT
v Wv − I‖2F
∂Wv

(8)

The calculation of the first term is the same as most basic
autoencoders. The second and third terms are calculated as
follows:
∂‖WvW

T
t ‖2F

∂Wv
=
∂tr[(WvW

T
t )T (WvW

T
t )]

∂Wv
= 2WvW

T
t Wt

∂‖WT
v Wv − I‖2F
∂Wv

=
∂tr[(WT

v Wv − I)T (WT
v Wv − I)]

∂Wv

= 4× (WvW
T
v − I)Wv

(9)

The update of other parameters follows a similar way. The
fine-tuning algorithm is presented in Algorithm 1.

After finishing training all of the parameters, we can use
Eq.2 to derive representations for any samples. We use the
median value of all the training samples as the threshold δ to
perform binarization and generate hash codes.

1Here, for simplicity,W (mv+1)
v andW (mt+1)

t is simply denoted
as Wv and Wt
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Algorithm 1 Fine-tuning for DMHOR
Input: Xt, Xv , θ;
Output: New Parameters: θ
1: repeat
2: for batch (Bv ,Bt) in (Xv ,Xt) do
3: Apply Eq.4 to get Lvt̄(Bv, Bt; θ), Lv̄t(Bv, Bt; θ).
4: Apply Eq.3 to get Lvt(Bv, Bt; θ).
5: Apply Eq.7 to get L(Bv, Bt; θ)
6: Use ∂L(Bv, Bt; θ)/∂θ to back-propagate through the en-

tire network to get new θ
7: end for
8: until converge

3.5 Complexity Analysis
The overall complexity is composed of training complexity
and online test complexity. For online complexity, the calcu-
lation of the hash codes can be performed using a few ma-
trix multiplications, which is fast and is linear with the num-
ber of query data and irrelevant with the size of training data
[Salakhutdinov and Hinton, 2009].

For pre-training, we suppose that each RBM is pre-trained
for k1 epochs. Thus, the computational cost of updating the
weights and bias for the l-th RBM in the image pathway is
O
(
nk1(s

(l)
v s

(l+1)
v )

)
. The cost is similar for other layers or

text pathway. For fine-tuning with k2 epochs, the process is
almost the same. Then the overall training complexity is:

O
(
n(k1 + k2) ·

∑
i∈{v,t}

(

mi∑
l=1

s
(l)
i s

(l+1)
i +M · s(mi+1)

i )
)

Therefore, the training time complexity is linear to the size
of the training data. These complexities guarantee the good
scalability of DMHOR.

4 EXPERIMENTS
4.1 Dataset
In our work, two real-world datasets are used for evaluation.

NUS-WIDE [Chua et al., 2009] is a public web image
dataset, which consists of 269,648 images from Flickr. These
images are surrounded by tags, with a total of 5,018 unique
tags. The ground-truth for 81 concepts is available. Two im-
ages are regarded to be similar if they share common con-
cept and vice versa. In our experiment, we select images be-
longing to the 10 largest concepts and the 1000 most frequent
tags. We randomly choose 30,000 images for training, 2,000
images for test and 100,000 images as database. For image
features, many features are proposed and some research dis-
cussed about their own characteristics [Wang et al., 2014b].
Since our paper does not focus on the comparison of features,
we use one of the best known image features SIFT [Lowe,
1999] to form 500-dimensional bag of words. Texts are rep-
resented by 1000-dimensional tag occurrence vectors.

WIKI [Rasiwasia et al., 2010] is a web document dataset,
which has 2,866 documents from Wikipedia. Each document
is accompanied by an image and is labelled with one of the
ten semantic classes. If two documents share the same class,
they are regarded to be similar. The images are represented
by 128-dimensional SIFT vectors and texts are represented

by 100-dimensional vectors based on LDA[Blei et al., 2003].
80% samples of the dataset are chosen as training set and the
rest is used for testing. The training set is also used as the
database due to the limited samples in this dataset.

4.2 Experiment Settings
For both datasets, the model consists of a 6-layer image path-
way, a 4-layer text pathway and a joint RBM. The number of
units in each layer is summarized in Table 2. The RBMs for
the first layer are different and corresponded with input types.
In NUS-WIDE, the RBM is a Gaussian RBM [Welling et al.,
2004] for real-valued image input and a Bernoulli RBM for
binary text input. In WIKI, the RBMs for image and text in-
put are both Gaussian RBMs. Other layer’s RBMs are all
Bernoulli RBMs. We run the following experiments with
implementation in Matlab on a machine running Windows
Server 2008 with 12 2.39GHz cores and 192 GB of memory.
The hyper-parameters of λ, µ and ν are set as 0.5, 0.5 and
0.001 by using grid search. The value of αl, βl and γ are
discussed later.

Table 2: Number of units on NUS-WIDE and WIKI
Dataset Image Pathway Text Pathway

NUS-WIDE 500-512-256-128-64-32 1000-1024-512-128
WIKI 100-256-128-64-32-32 100-256-128-32

4.3 Baseline and Evaluation Metrics
Our task mainly focuses on the multi-source hashing, which
is defined in [Zhang and Li, 2014]. As most hash meth-
ods apply, we use precision, recall and Mean Average Pre-
cision (MAP) as evaluation metrics. Their definitions and
calculations are the same as in [Ou et al., 2013]. For multi-
source hashing task, we choose Bimodal DBN [Srivastava
and Salakhutdinov, 2012a], Cross-modality AE [Ngiam et
al., 2011b], DMVH [Kang et al., 2012], CHMIS [Zhang et
al., 2011], CVH [Kumar and Udupa, 2011] and PDH [Raste-
gari et al., 2013] as baseline methods. The first three baseline
methods are deep learning methods and the rest are shallow-
layer models. Note that DMVH is supervised in fine-tuning.
Therefore, we apply multimodal autoencoder to make a fair
comparison. Parameters and experiment settings of all deep-
structured methods are the same as those for our method. We
run each algorithm five times and report the following results.

4.4 Results
First, Table 3 shows the MAP when we vary the number of
hashing bits in {8, 12, 16, 20, 32} in both dataset.

From these comparison results, some observations and
analysis are included as follows:

• The deep-structured models can consistently and ob-
viously outperform other shallow-structured models,
which demonstrates that the multimodal correlations
cannot be well captured by shallow-structured model,
and deep models have much merit in this aspect due to
its intrinsic nonlinearity.

• The result shows that DMHOR outperforms Cross-
modality AE, which demonstrates that removing the re-
dundancy from hashing is critical in improving the per-
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Table 3: MAP on WIKI and NUS-WIDE with varying length of hash codes
Method WIKI NUS-WIDE

8 bit 12 bit 16 bit 20 bit 32 bit 8 bit 12 bit 16 bit 20 bit 32 bit
DMHOR 0.3424 0.4693 0.489 0.5033 0.5268 0.5472 0.5543 0.5618 0.5702 0.5791

Cross-modality AE 0.306 0.3795 0.3922 0.4251 0.4478 0.5314 0.5397 0.5476 0.5482 0.5508
Bimodal-DBN 0.2695 0.3344 0.3727 0.3941 0.4035 0.5252 0.536 0.5392 0.5339 0.5386

DMVH 0.2847 0.3241 0.3543 0.3843 0.3960 0.5211 0.5274 0.5288 0.5342 0.5336
CHMIS 0.2171 0.2491 0.2672 0.2731 0.2697 0.5199 0.5276 0.5284 0.5308 0.5294

CVH 0.17 0.1665 0.1649 0.1615 0.1824 0.5088 0.5009 0.4961 0.4928 0.4868
PDH 0.1618 0.1622 0.1602 0.2412 0.2532 0.5164 0.507 0.5169 0.5204 0.5223

formance, and the proposed orthogonal regularization
method can well address the redundancy problem.

• When the length of codes increases, the performance
of DMHOR improves significantly than other baseline
methods improve. The reason is that our methods well
reduce redundant information. Thus we can make use of
the increasing bits to represent more useful information.

By fixing the length of hash codes to 16, we report the
precision-recall curve as shown in Figure 2. It is clear that
DMHOR performs best among the baseline methods.
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Figure 2: Precision-recall curve for WIKI and NUS-WIDE
dataset, with a fixed bit number of 16.

4.5 Insights

Table 4: MAP for WIKI with varying orthogonality con-
straints with 16-bit codes

α6 α5 α4 α3 α2 α1 γ MAP
Exp1 0.5 0.5 0.5 0.5 2 5 0.5 0.489
Exp2 0.5 0.5 0.5 0.5 2 0 0.5 0.485
Exp3 0.5 0.5 0.5 0.5 0 0 0.5 0.478
Exp4 0.5 0.5 0.5 0 0 0 0.5 0.467
Exp5 0.5 0.5 0 0 0 0 0.5 0.45
Exp6 0.5 0 0 0 0 0 0.5 0.429
Exp7 0 0 0 0 0 0 0.5 0.391
Exp8 0.5 0.5 0.5 0.5 2 5 0 0.475

Here we give some insights about our proposed methods.
Firstly, we evaluate how the orthogonality constraints affect
the performance. In Eq. 7, we fix the values of βl to 0.5
and change the value of αl and γ to observe the change of
MAP for WIKI as shown in Table 4. All of the parameters
are optimally chosen.

The result shows that from Exp1 to Exp7 the performance
gradually decreases, which demonstrates the effectiveness of
all the orthogonal constraints on each layer’s matrix as shown
in Eq. 5. Furthermore, the result that Exp1 outperforms Exp8
demonstrates that the cross-modality constraint as shown in
Eq. 6 is also necessary and effective.
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Figure 3: MAP for WIKI when setting the number of layers
for one modality to 4 and varying the number of layers of
another modality.

Now we will evaluate how the number of layers affects the
performance. We set one modality to be 4 layers and change
the number of layers for another modality to see the MAP. As
shown in Figure 3, we find that the curve of text modality sta-
bilizes faster than that for image modality. The explanation
is that image features have larger semantic gap, thus we need
to assign more layers to attain a better performance. How-
ever, for text modality, the structure needs not to be very deep
otherwise it will waste time and space but obtain almost the
same performance. Therefore, we need to assign an appropri-
ate number of layers for different modalities. 4 layers for text
modality and 6 layers for image modality is optimal for us.

5 CONCLUSIONS
In this paper, we propose a novel Deep Multimodal Hashing
with Orthogonal Regularization (DMHOR) for performing
similarity search on multimodal data. The proposed model
with orthogonal regularization solves the redundancy prob-
lem. Furthermore, our strategy of applying different num-
bers of layers to different modalities makes a more precise
representation and more compact learning process. Experi-
mental results demonstrate a substantial gain of our method
compared with state-of-the-art on two widely used public
datasets. Our future work will aim at automatically deter-
mining the ideal number of layers for different modalities.
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