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Abstract

Clustering has gained widespread use, especially
for static data. However, the rapid growth of
spatio-temporal data from numerous instruments,
such as earth-orbiting satellites, has created a need
for spatio-temporal clustering methods to extract
and monitor dynamic clusters. Dynamic spatio-
temporal clustering faces two major challenges:
First, the clusters are dynamic and may change
in size, shape, and statistical properties over time.
Second, numerous spatio-temporal data are incom-
plete, noisy, heterogeneous, and highly variable
(over space and time). We propose a new spatio-
temporal data mining paradigm, to autonomously
identify dynamic spatio-temporal clusters in the
presence of noise and missing data. Our proposed
approach is more robust than traditional cluster-
ing and image segmentation techniques in the case
of dynamic patterns, non-stationary, heterogeneity,
and missing data. We demonstrate our method’s
performance on a real-world application of moni-
toring in-land water bodies on a global scale.

1 Introduction

Spatio-temporal data are rapidly becoming ubiquitous thanks
to affordable sensors and storage. These information-rich
data have the potential to revolutionize diverse fields such as
the social, earth, and medical sciences where there is a need to
extract and understand complex spatio-temporal phenomena
and their dynamics. Additionally, the data in such scientific
domains tend to be large and unlabelled. This highlights the
importance of unsupervised methods in monitoring spatio-
temporal dynamics with little or no human supervision.

Clustering is one of the most common unsupervised data
mining techniques. It has enjoyed tremendous success, es-
pecially for static data [Jain and Dubes, 1988]. Yet, there
is little work in the spatio-temporal setting where data is in
the form of continuous spatio-temporal fields and the clusters
are dynamic. Furthermore, spatio-temporal data that origi-
nate from earth-orbiting satellites, cell phones, and other sen-
sors tend to be noisy, incomplete, and heterogeneous, making
their analysis especially challenging [Faghmous and Kumar,

Figure 1: An example of a dynamic spatio-temporal cluster. In
each time step (ti) we must extract the cluster from the continuous
field (red pixels) and track its evolution over time. Such patterns are
common in the Earth Sciences, fMRI analysis, and other domains.

2013]. When dealing with continuous spatio-temporal data,
the clusters are embedded in the continuous spatio-temporal
field, where these clusters or objects have no clear bound-
aries. The goal is to isolate such clusters from the background
and continuously monitor them over time (see Figure 1 ).

In this paper, we propose a novel spatio-temporal clus-
tering paradigm to identify clusters in a continuous spatio-
temporal field where clusters are dynamic and may change
their size, shape, location, and statistical properties from one
time-step to the next. Our paradigm stems from the obser-
vation that in numerous dynamic settings, although clusters
may move or change shape, there are a number of points that
do not change cluster memberships for a significant time-
period. This observation allows us to autonomously extract
dynamic clusters in continuous spatio-temporal data that may
contain missing values, noise, or highly-variable features.
We demonstrate our paradigm on a real-world application of
monitoring in-land water bodies (e.g. lakes, dams, etc.) us-
ing remotely-sensed data on a global scale. We compare our
method’s performance to the K-MEANS and Expectation-
Maximization (EM) clustering algorithms as well as the Nor-
malized Cuts (NCUT) image segmentation algorithm, and
find that our method’s ability to leverage both spatial and
temporal information makes it more robust to noise, missing
data, and heterogeneity – common characteristics of emerg-
ing spatio-temporal datasets.

2 Background and Related work

2.1 Problem formulation

The goal of this work is to autonomously extract dynamic
clusters from a continuous spatio-temporal field. An fMRI
recording or remotely sensed data are examples of continuous
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spatio-temporal fields, where each location has unique spa-
tial coordinates and is characterized by uni/multi-dimensional
time-series representing the evolution of the feature vector
over time. Thus, given a continuous spatio-temporal field,
our task is to identify all clusters in space and associate the
clusters across time.

2.2 Existing clustering approaches

Clustering is a common data mining technique that groups
similar points together to reveal high-level patterns in a
dataset. Clustering algorithms may belong to two broad cate-
gories: feature-based clustering and constraint-based cluster-
ing.

Feature-based clustering algorithms group data based on
their similarity in the corresponding feature space, with-
out considering other information. Many popular cluster-
ing algorithms including K-MEANS [MacQueen and oth-
ers, 1967], EM [McLachlan and Krishnan, 2007], LINKAGE
(e.g., single-linkage [Sibson, 1973], complete linkage [De-
fays, 1977]) and DBSCAN [Ester et al., 1996] all belong to
this category.

Constraint-based clustering algorithms assign data to clus-
ters based on additional constraints other that similarity in
the feature space. For example, many image segmentation al-
gorithms (e.g. [Shi and Malik, 2000; Enright et al., 2002])
can be considered to be clustering methods with spatial con-
straints. They cluster data into spatially connected patches
such that data from the same cluster have similar feature val-
ues and are also spatially connected. Other clustering algo-
rithms, such as trajectory clustering [Lee et al., 2007], min-
ing swarm/flock patterns [Li et al., 2010] and moving clus-
ters [Li et al., 2004], are other examples of constraint-based
clustering. They discover clusters of objects that have similar
behavior over time.

Despite the wide applicability of these approaches, they do
not address the fundamental needs of many spatio-temporal
applications. For example, on the one hand, feature-based
methods do not take into account spatial and temporal in-
formation that uniquely represent spatio-temporal clusters.
Thus, in a feature-based setting, one either clusters the feature
values or the spatial locations within data. On the other hand,
in a constrained clustering setting, objects are already prede-
fined and are grouped based on some constraints. However,
in continuous spatio-temporal fields, there is no clear defini-
tion of an object, thus these methods have limited applica-
bility. Finally, there have been works that cluster continuous
spatio-temporal data into static clusters, such that the result-
ing clusters explain the data for the entire temporal duration
(e.g. [Birant and Kut, 2007; Steinbach et al., 2003]). Such ap-
proaches are not well-suited for the discovery of clusters over
every time-step in the data, especially when the clusters are
dynamic and may change size, shape, location and statistical
properties over time.

A desirable solution is one that can isolate clusters that
have similar feature values over space and time, while also
keeping track of such clusters as they evolve. The most com-
mon approach to tackle this problem has been to either ana-
lyze the data in space and then aggregate/associate over time,
or by analyzing over time and then smoothing over space

Figure 2: Examples of data challenges associated with spatio-
temporal data. The data represent a remotely-sensed “wetness in-
dex” to estimate surface wetness. Each panel shows the wetness
index of the same location at four different dates. As it can be seen,
data quality often varies with time. The top row shows two dates
where the data is of good quality, while the bottom row shows data
with noisy and missing values (white pixels).

[Roddick and Spiliopoulou, 1999]. However, there is mount-
ing evidence that such an approach may lead to false discov-
eries (e.g. [Davidson et al., 2013; Faghmous et al., 2014]).

2.3 Challenges

In addition to technical limitations, clustering spatio-
temporal data faces significant data challenges in many real
world applications. Figure 2 shows some of the common data
challenges associated with analyzing spatio-temporal data.
The data are routinely missing and noisy. Thus, analyzing the
data on a snapshot-by-snapshot basis, or while disregarding
spatial information would lead to inadequate performance.

Another significant challenge is heterogeneity in space and
time [Faghmous and Kumar, 2014]. Heterogeneity in space
refers to the case where data belonging to the different clus-
ters may have the same feature values, despite being dis-
tinct “objects”. Temporal heterogeneity refers to the instance
where the feature values that uniquely discriminate a cluster
change over time for the same cluster. Figure 3 demonstrates
the concept. The left panel shows the “wetness index” values
for a region containing two lakes surrounded by land. On the
top right panel, one notices a clearly distinguishable signal in
the feature space (as seen by the bi-modal distribution of the
feature values). However, in another time-step (bottom right
panel) the feature space is not as informative due to spatio-
temporal heterogeneity. Thus, relying solely on information
in one time-step would yield inaccurate results.

3 A Spatio-Temporal Clustering Paradigm

To address the above-mentioned challenges, we propose a
general spatio-temporal clustering paradigm that systemat-
ically leverages the very challenges that affect traditional
methods to identify dynamic spatio-temporal clusters. Our
paradigm consists of two main steps: identifying the most
certain cluster memberships and iteratively finalizing the
most uncertain points which will likely be at the cluster
boundaries where dynamics occur. Figure 4 outlines the four
key steps. The first step specifies the clustering objectives
such as separating certain activity from the background, or
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Figure 3: An example of data heterogeneity. Each row shows the
“wetness index” values for the same lake at different time steps. The
right panel shows the density of the feature values (pixel colors) on
the left. In the top row, the water and land are easily distinguishable
in the feature space however in the bottom row the two clusters are
not distinguishable. Thus, relying solely on that time-step would
yield inaccurate results.

labeling the clusters with target labels. The second step is to
identify “core points”, which are the points that for a given
time-window do not change cluster memberships. The key
here is to choose an appropriate time window size. In prac-
tice, one could identify core points for each snapshot by ex-
amining data from the previous and upcoming time-steps.
The third step is to finalize cluster memberships along the
cluster’s boundary. Given the dynamic nature of the clusters
and the uncertainty in the data, the boundary points are going
to be more challenging to cluster. While the exact approach
may differ, the idea is to use information from the core points
(especially the ones that are spatially nearby) to finalize clus-
ter assignments. The fourth and final step is to post-process
the cluster result in case not all points have been labeled.

Figure 4: Our proposed four-step spatio-temporal clustering
paradigm.

4 Proposed method

The proposed paradigm takes advantage of the fact that in
many domains, although the clusters may move, there are
“core points” that never change cluster memberships for a
given time window. This is an important observation when
the data may be missing or noisy between time-steps, as such,
although clusters might not be separable during every single
time-step, borrowing stronger signals from other time steps
helps overcome some of these challenges.

While there are many ways to implement this paradigm,
this section presents one such realization in practice. We hope
that introducing this paradigm to the community will allow us
to leverage our collective creativity to design a host of meth-
ods to analyze space-time data.

4.1 Clustering objectives

The first step in the paradigm is to articulate the objectives of
our clustering analysis. In the case of global water monitor-
ing, we are given a single-dimensional spatio-temporal field
without any notion of water or land. The goal is to extract
clusters and their dynamics over a fifteen-year period and
then label each cluster as water and land in the post-process
phase. We monitor surface water using a “wetness index”,
known as TCWETNESS. TCWETNESS has been widely used
in mapping and monitoring land use/land cover by the remote
sensing community [Collins and Woodcock, 1996; Coppin
and Bauer, 1996]. The steps used to produce TCWETNESS
are discussed in detail in [Chen et al., 2015].

4.2 Discover stable clusters

After specifying the clustering objective, the second step of
the paradigm is to identify groups of data that rarely change
cluster membership for a given time window. Points in any
stable cluster are expected to be contiguous in space and also
have similar temporal characteristics during the pre-defined
time window. The main motivation behind stable clusters is
that points are grouped together not only based on their spa-
tial connectivity but also their long-term temporal similarity.
This is critical in noisy and incomplete data as the features
might not be informative at every time-step, but over a long
enough period, similar time-series would emerge.

Our spatio-temporal method that identifies stable clusters
is an extension of the traditional DBSCAN algorithm. DB-
SCAN [Ester et al., 1996] is a density-based clustering al-
gorithm. It groups data that are closely packed together in
the feature space. The algorithm identifies “core points” that
have at least m neighbors within an ε distance in the feature
space. Unlike DBSCAN which only considers distances in
the feature space, our approach seeks to associate points that
are adjacent in space and have similar feature values over a
non-trivial time window. Similar to the ST-DBSCAN method
proposed by [Birant and Kut, 2007], we use both spatial and
temporal information in finding ε− neighbors. The main dis-
tinction between our approach and [Birant and Kut, 2007] is
that we are interested in identifying clusters for every time-
step and associating these clusters accross time, despite noise
and missing data. While [Birant and Kut, 2007] returns only a
single cluster for the entire time period. To do so, we propose
a new spatio-temporal distance metric.

We use the notion of spatio-temporal ε− neighbors to de-
note two points that are spatially connected and have similar
temporal characteristics. Thus, given a distance function that
accounts for both spatial adjacency and temporal similarity,
two points are spatio-temporal ε− neighbors if their spatial-
temporal distance is smaller than ε. Points that have more
than m ST ε− neighbors are defined as core points. Once the
core points are identified, the algorithm iteratively associates
the core points with their spatio-temporal ε− neighbors.

The steps of our method is shown in Fig. 5. The algo-
rithm first detects core points (shown as red dots in Fig. (a))
based on a predefined distance function. Then it creates an
edge between all core points and their own spatio-temporal
ε− neighbors (as shown in Fig. (b)). Finally, it groups points
that have been connected by an edge as clusters. In the given
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example, as shown in Fig. (c), two clusters are discovered
(orange and green) and there is a single point (yellow) that
does not belong to any cluster.

Figure 5: The steps of creating stables clusters from a spatio-
temporal data using ST-DBSCAN.

The spatio-temporal distance function that we choose
forces two spatio-temporal ε− neighbors to be spatially adja-
cent and have similar temporal characteristic. It is a function
as below.

dst(x, y) =
{

dt(x, y) if x and y are spatial neighbors
0 otherwise

where, dt(x, y) is a time-series distance function.
The choice of time series distance function is related to the

application. Commonly used time-series distance functions
include (but are not limited to) Euclidean distance, Pearson’s
correlation and kth order statistic [Chen et al., 2013]. Pear-
son’s correlation is preferred when the trend of time-series is
more important than the actual values. Euclidean distance is
suceptible to noise and outliers [Latecki et al., 2005]. The
kth order statistic distance is a time series distance function
that is robust to outliers. However, it requires an estimation
of the outlier properties. In the scenario where the property
of the data changes over time and space, the kth order statistic
distance is not suitable.

We propose to estimate the distance between two time se-
ries based on how similar they are over a period of time.

Definition 1 (Temporal similarity) Two time series are tem-
porally similar if they have the same expected value for the
entire duration.

To use temporal similarity, we assume that our data follow
the additive white noise model, i.e., any real observation of
object x at time t, x(t), is the summation of its true value
x̂(t) and a random white noise signal n(x, t) as shown below.

x(t) = x̂(t) + n(x, t)

When two objects x and y are temporally similar, their true
value at any time are identical. Hence,

x(t)− y(t) = n(x, t)− n(y, t)

Since we assume the white noise model, the expectation of
any noise is zero. Thus,

E(x(t)− y(t)) = E(n(x, t)− n(y, t))

= E(n(x, t))− E(n(y, t)))

= 0

Figure 6: Core segments and their corresponding temporal profiles

Therefore, we can estimate the temporal similarity of two
time series x and y as the p− value of the following test.

H0 : E(x− y) = 0

Ha : E(x− y) �= 0

Since outliers may negatively impact expectations, an alter-
nate test can be used when the data are susceptible to outliers.

H0 : median(x− y) = 0

Ha : median(x− y) �= 0

Thus, under the white noise assumption, we propose that
two time-series are similar if their difference over the given
duration is centered around zero. We can use the p-value
of such a hypothesis test, e.g., the Kolmogorov-Smirnov test
[Massey Jr, 1951], as the measure of similarity.

An example of stables clusters discovered for an area con-
taining two lakes is shown in Figure 6. The three stable clus-
ters are highlighted in yellow, red and green. The dark blue
locations around the clusters are points that we cannot yet as-
sign to any cluster and we must rely on the third step in our
paradigm to finalize cluster memberships. We refer to such
points as “uncertain points”

The right panel of Figure 6 shows the temporal profile of
the clusters in the figure’s left panel. We highlighted the time-
series with the same color of the cluster they were assigned
to. The yellow and red time-series have very similar tempo-
ral profiles and overlap for almost the entire record. However,
notice that data in the light blue (land) pixels have different
feature values from the yellow and red (water) pixels only
during some periods. This is where our temporal similarity
over a long time window helps overcome spatio-temporal het-
erogeneity.

Our temporal similarity measure is sensitive to the choice
of time window length. Specifically, the window length w
impacts the number of points that will be assigned to stable
clusters and/or the number of uncertain points. If we set w
to 1 then, our method would be similar to many of the tra-
ditional clustering algorithm that disregard time (e.g NCUT)
and it would not be able to cluster time-steps where data are
missing. If we choose a too broad w then we might include
too much uncertainty from the highly variable data signal or
the changing properties of the dynamic cluster, which would
increase the proportion of “uncertain points”.

4.3 Growing and refining clusters for each time
point

The third step of our paradigm finalizes cluster memberships
by assigning “uncertain points” to clusters and correcting any
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Figure 7: Illustrative example of layer based classifier

assignment mistakes from the previous step. This step relies
on the cluster assignments from the previous step to build a
spatial predictive model. We use the constructed model to
predict the cluster membership of unassigned points based on
their feature values in the current time-step. However, given
the spatial-heterogeneity in the data, we propose a layer-
based classification method which iteratively assigns the un-
certain points to existing stable clusters based on spatial prox-
imity and the feature value at the current time-step. Unlike the
first step in the paradigm, this classification step only uses in-
formation for the current time-step.

Assuming we identified k stable clusters in the previous
step, we build a k-class classifier to determine the probability
that a given uncertain point belongs to one of the k stable
clusters. The model is trained using the feature values of the
points in the stable clusters, with each point having a feature
value and stable cluster membership. The algorithm then tries
to classify the first uncertain point which is at the boundary
of a stable cluster using the learned classifier. By assuming
clusters are spatially contiguous, an uncertain point is more
likely to have the same label as its stable neighbor. Thus after
we classify an uncertain point, if its resulting label is the same
as its neighbor from a stable cluster we accept that labeling,
and move on the next uncertain point. If the label assigned to
the uncertain point is inconsistent with its neighbor from the
stable cluster, we label the point as “unknown”. The idea is
to delay an uncertain labeling until more data are available to
make an unambiguous assignment.

Figure 7 illustrates our layer-based method. In this exam-
ple, there are two stable clusters in green and light blue. The
points in white are the uncertain points that we have not la-
beled. We attempt to assign these uncertain points to exist-
ing clusters in the layer-based fashion by first assigning the
points that are adjacent to existing clusters. The first layer
of uncertain points to be classified are highlighted in red in
the left panel of Figure 7. Then these uncertain points (red
points) are classified based on their feature values using a
classifier trained on the feature values of the points in the
stable clusters. The classification results in this example are
shown in the middle panel of Figure 7. Finally, the algorithm
checks for spatial consistency such that any newly labeled
point should have the same label as its neighbor from the sta-
ble clusters. We relabel any points with inconsistent labels as
“uncertain” and we repeat the classification procedure until
no points change class membership.

While numerous classifiers could be used, we chose a local
Bayesian classifier. For any given time, we consider observa-
tions that are spatially nearby and also in the same cluster to
follow a Normal distribution. Then, for each neighborhood,
we train a Bayesian classifier. Its conditional probability for

any cluster C as

p(x|x ∈ C, t) ∼ N(μ(CR, t), σ(CR, t))

where μ(CR, t) is the sample mean of all points belonging
to stable cluster C and within region R (i.e., a spatial region
that is centered around x) at time t and similarly σ(CR, t)
is the sample standard deviation of all points belonging to
clustering C and in region R.

The prior probability of p(x ∈ C|t) is a function of the
spatial distance between x and the cluster C. It is independent
of t. Specifically,

p(x ∈ C|t) = e
− ||x,C||space

δ2
d

where ||x,C||space is the spatial distance between the point
x and cluster C. δd is a parameter that controls the weight of
the spatial constraint. The larger δd is, the smaller the impact
of the spatial distance on the prior probability. Thus for every
uncertain point at the boundary of stable clusters, we would
assign it to the cluster with the highest probability.

5 Experimental results

To test the performance of our approach, by autonomously
extracting all in-land water bodies from 166 lakes regions
on a global scale (see Figure 8). We compared our perfor-
mance against that of Normal-cut (an image segmentation
method) [Shi and Malik, 2000] and Gao et al.’s method [Gao
et al., 2012] – a K-MEANS based approach used by the water
resources management community. To compare the perfor-
mance of the three methods, we use ground truth data from
the Shuttle Radar Topography Mission’s (SRTM) Water Body
Dataset (SWBD), which consists of a global water body map
for Feburary 2000. The SWBD data contains most water bod-
ies for a large fraction of the Earth (60o S to 60O N) and
is publicly available through the MODIS repository as the
MOD44W product. For verification purposes, we compare
each algorithm’s output (i.e. water pixels and land pixels) for
the Feburary 18th 2000 snapshot of TCWETNESS (the closest
MODIS date near the time SWBD was collected) against the
SWBD data

Figure 8: Positions of the 166 lake regions analyzed.

We evaluate the performance of the algorithms on each
lake region independently using the F1 score – measure that
conveys the balance between a model’s precision and recall
[Pang-Ning et al., 2006]. To do so, we consider the water
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locations as the positive set and the land locations as the neg-
ative set. The F1 score of each model can be obtained by
comparing an algorithm’s output and its corresponding vali-
dation set [Pang-Ning et al., 2006].

Figure 9 shows the overall performance of each algorithm
across all 166 lakes. Overall, our proposed method is more
robust compared to NCUT and Gao et al.’s method as seen by
the higher median F1 score as well as a smaller inter-quartile
range (the blue box).

Figure 9: The performance of algorithms on the test 166 lakes.

To further understand our algorithm’s performance in the
presence of noise and missing values, we repeated the same
experiment except that we segmented the data into groups of
increasing difficulty. In the first experiment we grouped the
test data of February 2000 into the three groups based on the
percentage of missing data in that snapshot. The three groups
were: (i) regions that had less than 10% missing data; (ii)
regions that had more than 10% but less than 60% missing
data; and (iii) regions that had more than 60% missing data.
Figure 10 shows the performance of each algorithm as a func-
tion of the percentage of missing data. We find that when the
data are relatively complete (left panel of Figure 10) all three
methods perform similarly. However, as the percentage of
missing data increases, our proposed method outperforms the
baseline methods. Note than in extreme cases where most of
the data are missing NCUT breaks down completely, while
our method is able to recover thanks to its reliance on infor-
mation from multiple time-steps.

Figure 10: Performance of the three algorithms as a function of
missing data.

In another experiment, we segmented the test data based
on how noisy the data were. We considered the 107 lakes
that had less than 10% missing data. We separated the 107
lakes into three groups based on their classification difficulty
(e.g. how sperable were the land and water pixels in the fea-
ture space). We used the Bhattacharyya coefficient (BC) [Co-
maniciu et al., 2000] to measure how separable were the land
and water TCWETNESS feature distributions. A BC measure
of 0 means that the two distributions are completely separa-
ble. The three groups we evaluated were: (i) regions with a
BC smaller than 0.05; (ii) regions with BC larger than 0.05
and smaller than 0.1; and (iii) regions with BC larger than
0.1 but smaller than 0.5. The performance of each algorithm
on the different groups is shown in Figure 11. The results
show that when water and land locations are high separable

in the feature space, all three methods perform equally well.
However, when the features from a single time-step are not
discriminative enough, using both spatial and temporal infor-
mation is better than using only information from the feature
space.

Figure 11: Performance of the three algorithms as a function of
noise.

6 Conclusion and future work

In this paper, we introduced a new spatio-temporal paradigm
to identify dynamic clusters from a continuous spatio-
temporal field where data might be missing or noisy. The in-
tuition behind this work is that although the cluster may move
slightly from time-step to the next (and thus some points may
change cluster membership), there are core points that never
change clusters across the entire time. Our method used spa-
tial contiguity and temporal similarity assumptions to over-
come the limitations of non-space-time-aware methods espe-
cially in the presence of noise and missing values – two com-
mon characteristics of satellite products. We presented one
implementation of the paradigm and expect numerous inno-
vations on how to exactly carry it out. Our method can be
used by domain scientists and sustainability experts to study
the dynamics of in-land water availability and may potentially
lead data driven resource management. One avenue of future
work could be the automatic choice of the window size w. In
our case we chose a time period of five years, but other more
systematic ways to choosing the time window size should be
explored.
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