

















KL distance with 3 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Full C-Vine | 0.125 | 0.103 | 0.033 | 0.112 | 0.112 | 0.090 | 0.076 | 0.059 | 0.034 | 0.041 0.042 0.063 0.891
4-t C-Vine 0.114 | 0.119 | 0.028 | 0.106 | 0.130 | 0.089 | 0.083 | 0.059 | 0.034 | 0.050 | 0.035 0.049 0.894
Full D-Vine | 0.141 0.106 | 0.138 | 0.088 | 0.086 | 0.104 | 0.043 | 0.058 | 0.015 | 0.048 | 0.055 0.072 0.954
4-t D-Vine 0.162 | 0.139 | 0.109 | 0.101 0.105 | 0.110 | 0.051 0.061 0.018 | 0.071 0.037 0.080 1.043

n-Gaussian | 0.093 | 0.118 | 0.089 | 0.197 | 0.128 | 0.134 | 0.108 | 0.027 | 0.018 | 0.057 | 0.041 0.051 1.059
LRR 0.201 | 0268 | 1.698 | 3.123 | 1.291 | 0.723 | 0.615 | 0.427 | O.I11 | 0.024 | 0,128 | 0,0554 8.664
(@)

KL distance with 6 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Full D-Vine | 0.086 | 0.051 | 0.119 | 0.120 | 0.116 | 0.100 | 0.049 | 0.036 0.063 0.096 | 0.062 | 0.085 0.984
4-t C-Vine 0.059 | 0.088 | 0.155 | 0.143 | 0.063 | 0.091 0.066 | 0.043 0.060 0.093 | 0.067 | 0.055 0.985
Full C-Vine | 0.071 0.108 | 0.133 | 0.149 | 0.084 | 0.095 | 0.068 | 0.055 0.063 0.097 | 0.079 | 0.059 1.061
4-t D-Vine 0.106 | 0.063 | 0.147 | 0.162 | 0.173 | 0.098 | 0.059 | 0.048 0.062 0.109 | 0.054 | 0.087 1.169
n-Gaussian 0.121 0.149 | 0.141 0.133 | 0.120 | 0.096 | 0.078 | 0.043 0.047 | 0.099 | 0.088 | 0.092 1.208
LRR 0.236 | 0.396 | 0.361 0963 | 0.783 | 0.592 | 0.528 | 0.389 0.064 0.036 | 0.948 | 0.057 5.355
(b)

KL distance with 8 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
4-t C-Vine 0.064 | 0.070 | 0.169 | 0.071 0.052 | 0.050 | 0.066 | 0.083 | 0.108 | 0.090 | 0.080 | 0.053 0.955
Full C-Vine | 0.067 | 0.073 | 0.120 | 0.087 | 0.071 0.041 0.058 | 0.078 | 0.127 | 0.091 0.095 | 0.051 0.959
Full D-Vine | 0.103 | 0.116 | 0.168 | 0.158 | 0.112 | 0.085 | 0.077 | 0.058 | 0.094 | 0.110 | 0.101 0.106 1.288
n-Gaussian 0.136 | 0.143 | 0.135 | 0.110 | 0.129 | 0.118 | 0.099 | 0.065 | 0.085 | 0.122 | 0.095 | 0.105 1.342
4-t D-Vine 0.124 | 0.145 | 0203 | 0.237 | 0.205 | 0.134 | 0.094 | 0.061 | 0.101 0.116 | 0.087 | 0.094 1.602
LRR 0357 | 0545 | 0378 | 0.523 | 0.417 | 0.288 | 0.364 | 0.319 | 0.058 | 0.035 | 0.113 | 0.067 3.468
(©)

Table 1: KL distance for every model and every training set. Each column represents a directional bin but the right-most one,
which is the sum of them. The lower the sum, the better the model overall performance.
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Figure 3: C-Vine truncated in the 4th level constructed out of the data from the 8 month training set and the 1st directional bin.
Numbers represent the fourteen airports, and Y is the site of interest (Museum of Science, Boston). The bold edge in every tree
represents the couple with highest Kendall’s 7, and 7 decreases clockwise.

set for the first directional bin; which is highlighted in Table Comparison of KL distance as more data is provided
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5.2 Increasing the data available for modeling

Sum of KL dist

We next examine the robustness of each technique as progres-
sively more data is made available to it for modeling. Fig-
ure 5a compares the sum of KL distances of each model for
training sets D3, Dg and Dg. C-Vine does not significantly
change as more/less data is incorporated whereas the other
models get worse with more data. This may indicate overfit-
ting which could be a disadvantage of such sensitive, tunable
models.

Figure 5: Comparison of performance increasing the data
available for modeling. Sum of KL distances for all bins and
for all models when D3, Dg and Dg are employed.

, - , . . 6 Conclusions
When we examine the minimum KL distance attained with

each train set for every bin (not shown),the highest difference In this paper we presented copula based approaches for Wind
in KL distance is less than 0.1. In other words, there is always resource estimation. Copula based approach allow us form a
at least one model out that performs similar to the best one in  joint distribution with Weibull marginals and allow us capture
case of lost data or when more data is available. non-linear correlations between the variables. In addition,
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Figure 4: Comparison of different techniques when 3 months worth of data is modeled and integrated with longer term historical
data from 14 airports. These results were derived using D3, Dg, and Dg, and then compared with KL distance to the Weibull
distribution estimate of the second year of measurements at the Boston Museum of Science.

we presented a methodology to construct a variety of cop-
ula models by factorizing the joint in different ways. With its
ability to capture long tails and tail dependencies these mod-
els allowed us to estimate the wind resource at the new site
with as little as 3 months of data. This is a significant achieve-
ment in the wind resource estimation domain where ability to
estimate the wind resource accurately in less amount of time
allows better planning. Such estimation from reduced amount
of time/data is highly beneficial for offshore wind technol-
ogy development where site-measurement campaigns are ex-
tremely expensive.
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An introduction to copulas.

Appendix

For the sake of completeness we include below relevant ex-
pressions of the copulas used for constructing vines. All the
following tables include:



The range of the copula parameter 6.

The bivariate copula cdf, C'(u, v).

e The conditional cdf of v given u, F(v|u) = £ C(u,v).
e The bivariate copula pdf, c(u,v) = %C(u, v).

e The Kendall’s tau given the copula parameter, 7.

In addition, for Frank copulas it is useful to define

Clayton copula

0 € (0,00)
Clu,v) = (u 400 - 1)71/9

o+
Folu)=u " (u™? +0v7041) 7

_ 2041
c(u,v) = (64 1) (uv) 7 (w40 —1) 7
T=0/(0+2)
Frank copula
0 € (—o0,0)
—In(149gugv
C(u,v) = ( .g gv/91)
F(U|u) — Gugvtgv
—%g;}(ﬁﬂ}ng)
o(u,v) = (gugotg1)?

T=1-444 [Tt/(c —1)dt

Gumbel copula

6 €0,00) ,
C(u,v) = exp (—((—lnu)o + (—lnv)e) / )

((— Inu)?+(—1In 11)6)%71
O(—Inu)t=?

F(v|u) = C(u,v)

) —Inu 9+—lnv9 %_2
c(u,v) = C(;ljt) (« (llufnv)lfl )
T=(0-1)/0
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