
Answer Update for Rule-based Stream Reasoning∗

Harald Beck and Minh Dao-Tran and Thomas Eiter
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{beck,dao,eiter}@kr.tuwien.ac.at

Abstract
Stream reasoning is the task of continuously de-
riving conclusions on streaming data. To get re-
sults instantly one evaluates a query repeatedly on
recent data chunks selected by window operators.
However, simply recomputing results from scratch
is impractical for rule-based reasoning with seman-
tics similar to Answer Set Programming, due to the
trade-off between complexity and data throughput.
To address this problem, we present a method to
efficiently update models of a rule set. In particu-
lar, we show how an answer stream (model) of a
LARS program can be incrementally adjusted to
new or outdated input by extending truth mainte-
nance techniques. We obtain in this way a means
towards practical rule-based stream reasoning with
nonmonotonic negation, various window operators
and different forms of temporal reference.

1 Introduction
Stream reasoning [Della Valle et al., 2009] emerged from
stream processing [Babu and Widom, 2001] to reason about
information from data streams in real time, and to perform
evaluation continuously in order to obtain latest results. In
this way, users may be provided with live results for instant
decision making, depending on data streams that often come
from sensors and may be combined with other information.

This pertains to many application scenarios, such as in pub-
lic transport where real-time information about current vehi-
cle locations, together with time tables may be used to reason
about expected arrival times and ensuing travel options.
Example 1 Consider Fig. 1 (a), which depicts a tram line `1
and a bus line `2. Kurt is on his way to station m to go to the
theater, located near station s. It usually takes the same time
for the tram and the bus to get from m to s. Thus, Kurt could
simply take the bus, which is expected to arrive first at m.
However, he recalls that there are frequent traffic jams on the
bus line. In this case, the tram could be the better option. �

Unbounded data and high frequency of data arrival pose a
challenge, especially to advanced reasoning over streams that
∗This research has been supported by the Austrian Science Fund

(FWF) projects P24090 and P26471.

`1

(a) `2

Beethoven Sq. (b)

Gulda Lane (g)
Mozart C.

(m)

Strauß Ave. (s)

t(b)
37.2
•

39.1
•

40.2
•

44.1
•

busG tramB expBusM expTrM

Figure 1: (a) Transportation map (b) Timeline (minutes)

aims to solve AI problems such as planning, monitoring, or
decision making. The rule-based LARS language [Beck et
al., 2015] faces this by using windows, which were intro-
duced in stream processing as partial stream snapshots for
efficient evaluation and move on the timeline in query eval-
uation. Window operators may select data differently from a
stream, e.g. all data in a time frame or the last n tuples. LARS
has an Answer Set Programming (ASP) like semantics and
supports also different means for time reference.

However, while windows reduce the data volume, efficient
re-evaluation of a query remains an issue. A full re-evaluation
of an (expensive) query may be impractical, the more as often
only part of the data may have changed and moreover the final
answer (e.g., a plan or decision) remains the same.

Example 2 (cont’d) Fig. 1 (b) illustrates actual and expected
arrival times of vehicles. A bus appears at station g (busG) at
minute 37.2. Based on this, we can immediately conclude the
expected arrival time at m (expBusM). This inference does
not need to be re-evaluated after the tram appears at b. �

It is thus desired that re-evaluation can be done incremen-
tally and fast. For expressive (intractable) languages such as
LARS, this poses a particular challenge. Aiming at a good
trade-off between efficiency and expressiveness, we consider
incremental re-evaluation for a class of LARS programs, that
is, a new answer stream (model) is computed from the previ-
ous answer stream and the new incoming data, under a suit-
able management of temporal information.

Our contributions can be briefly summarized as follows.
(1) Stream-stratified programs. Towards efficient evaluation,
we introduce stream stratified programs, a fragment of LARS
programs that can be split along the stream flow into layers

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2741

that can be evaluated sequentially, where the output of lower
layers serves as input stream for the next layer.
(2) TMS extension. We extend techniques from truth mainte-
nance systems (TMS) [Rich and Knight, 1991], which were
conceived to maintain models of non-monotonic theories, to
deal with the streaming and temporal aspects of LARS on top
of ASP. We extend the maintenance method for justification-
based TMS [Doyle, 1979], which amount to logic programs
under stable model semantics [Elkan, 1990], in two regards:
(i) We introduce an extended set of atoms comprising window
and temporal operators, and for temporal data management
time labels to record validity information of atoms. (ii) We
similarly extend central notions of consequences and affected
consequences of TMS [Beierle and Kern-Isberner, 2000].
(3) Generic Windows. Our method works at a generic level,
and any concrete window operator can be plugged in if certain
basic functions to process incoming data, identify outdated
input, and change the temporal status of atoms are available;
time- and tuple-based windows have such functions, as well
as typical partition-based windows.

The emerging algorithm is nontrivial and inherently in-
volved due to the properties of temporal operators. For space
reasons, we must confine to show how the method works and
omit the technical details. Notably, for relevant yet less ex-
pressive settings it is much simpler.

Our results contribute to the foundations of answer mainte-
nance in expressive stream reasoning languages; to the best of
our knowledge, no similar results exist to date. The presented
ideas and principles may be transferred to similar languages.

2 Preliminaries
2.1 Streams, Windows and Time Reference
We will gradually introduce the central concepts of LARS
[Beck et al., 2015] tailored to the considered fragment. If ap-
propriate, we give only informal descriptions.

Throughout, we distinguish extensional atomsAE for input
data and intensional atoms AI for derived information. By
A = AE ∪ AI , we denote the set of atoms.
Definition 1 (Stream) A stream S = (T, υ) consists of a
timeline T , which is an interval in N, and an evaluation func-
tion υ : N 7→ 2A. The elements t ∈ T are called time points.

Intuitively, a stream S associates with each time point a set of
atoms. We call S a data stream, if it contains only extensional
atoms. To cope with the amount of data, one usually consid-
ers only recent atoms. Let S = (T, υ) and S′ = (T ′, υ′) be
two streams s.t. S′ ⊆ S, i.e., T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for
all t′ ∈ T ′. Then S′ is called a window of S.
Definition 2 (Window function) Any (computable) function
w that returns, given a stream S = (T, υ) and a time point
t ∈ T , a substream S′ of S is called a window function.

Important are tuple-based window functions, which select a
fixed number of latest tuples, and time-based window func-
tions, which select all atoms appearing in last n time points.

Example 3 (cont’d) To model the public transport scenario,
we take a timeline T = [1, 30000] with unit 0.1 secs. For

37.2

•

39.1

•

40.2

•

t

busG tramB expBusM

Figure 2: Window of last 3 min (1801 time points) at t=39.7

readability, we write m for minutes, i.e., T = [1, 50m]. We
have the data stream D=(T, υ), where υ can be seen as a
set of mappings 37.2m 7→ {busG} and 39.1m 7→ {tramB}.
We implicitly take υ(t) = ∅ for all t ∈ T \ {37.2m, 39.1m}.
Fig. 2 depicts the window S′=(T ′, υ) of D, where
T ′= [36.7m, 39.7m]. Obtained by applying a time-based
window function with a size of 3 min (1801 time points) at
time point t = 39.7m = 23820. There, a tuple-based window
of size 1 would return ([39.1m, 39.7m], {39.17→{tramB}}).
Note that D itself does not contain expected arrival times. �

Window operators �. Window functions can be accessed in
formulas by window operators. That is to say, an expression
�α has the effect that α is evaluated on the “snapshot” of the
data stream delivered by its associated window function w�.

By dropping information based on time, window operators
specify temporal relevance. For each atom in a window, we
then want to control the semantics of its temporal reference.
Time Reference. Let S = (T, υ) be a stream, a ∈ A and
B ⊆ A static background data. Then, at time point t ∈ T ,

• a holds, if a ∈ υ(t) or a ∈ B;
• 3a holds, if a holds at some time point t′ ∈ T ;
• 2a holds, if a holds at all time points t′ ∈ T ; and
• @t′a holds, if t′ ∈ T and a holds at t′.

Next, the set A+ of extended atoms is given by the grammar

a | @ta | �@ta | �3a | �2a .

where a ∈ A and t is any time point. The expressions of form
� ? a, where ? ∈ {@t,3,2}, are the window atoms.

Example 4 (cont’d) Given D from Ex. 3, busG holds at
t = 37.2m, and thus @37.2mbusG holds at any time point.
Let �k denote the window operator associated with a time-
based window function of size k. Then, �3m@37.2mbusG
and �3m3busG hold at all time points t∈ [37.2m, 40.2m]. �

2.2 LARS Programs
We present a fragment of the formalism in [Beck et al., 2015].
Syntax. A rule r is of the form α← β(r), where H(r) = α
is the head and β(r) = β1, . . . , βj ,notβj+1, . . . ,notβn is
the body of r. Here, α is of form a or @ta, where a ∈ AI ,
and each βi is either an ordinary or a window atom.

We let B(r) = B+(r)∪B−(r), where B+(r) = {βi | 1 ≤
i ≤ j} is the positive and B−(r) = {βi | j < i≤n} is the
negative body or r. A (LARS) program P is a set of rules.

We say an extended atomα occurs in a programP , denoted
by α ∈̂ P , if α ∈ H (r) ∪ B(r) for some rule r ∈ P . We de-
fine the α-rules of P as PH(α) = {r ∈ P | H (r) = α}.
Example 5 (cont’d) Consider the program P in Figure 3.
Rule (r1) says that, if within the last 3 min (�3m), at some
time time T (@T) a bus appeared at station g (busG) and

2742

(r1) @T+3mexpBusM ← �3m@T busG, on.

(r2) @T+5mexpTrM ← �5m@T tramB , on.

(r3) on ← �1m3request .

(r4) takeBusM ← �+5m3expBusM , not takeTrM ,

not �3m3jam.

(r5) takeTrM ← �+5m3expTrM , not takeBusM .

Figure 3: Program P , encoding the running example

the rule is activated (on) (triggered by (r3) for one 1 min
upon request), then the bus is expected to arrive 3 min later at
station m (@T+3mexpBusM). Rules (r4) and (r5) express a
choice to take a bus or tram at station m, if both are expected
to arrive within the next 5 min (�+5m). The bus recommenda-
tion further depends on the traffic status (not�3m3jam). �

Semantics. For a data stream D = (TD, vD), any stream
I = (T, υ) ⊇ D that coincides with D on AE is an interpre-
tation stream forD. A tupleM = 〈T, υ,W,B〉, whereW is a
set of window functions and B is the background knowledge,
is then an interpretation for D. Throughout, we assume W
and B are fixed and thus also omit them.

Satisfaction by M at t ∈ T is as follows: M, t |= α for
α ∈ A+, if α holds in (T, υ) at time t; M, t |= r for rule
r, if M, t |= β(r) implies M, t |= H(r), where M, t |= β(r),
if (i) M, t |= βi for all i ∈ {1, . . . , j} and (ii) M, t 6|= βi
for all i ∈ {j+1, . . . , n}; and M, t |= P for program P ,
i.e., M is a model of P (for D) at t, if M, t |= r for all
r ∈ P . Moreover, M is minimal, if in addition no model
M ′ = 〈T, υ′,W,B〉 6=M of P exists such that υ′ ⊆ υ.

Definition 3 (Answer Stream) An interpretation stream I is
an answer stream of program P for the data stream D ⊆ I at
time t, if M = 〈T, υ,W,B〉 is a minimal model of the reduct
PM,t = {r ∈ P |M, t |= β(r)}. By AS(P,D, t) we denote
the set of all such answer streams I .

Example 6 (cont’d) Let D′ = (T, υ′) be the data stream
which adds to the stream D from Example 3 the in-
put 39.7m 7→ {request}. We get two answer streams
I1 = (T, υ1) and I2 = (T, υ2) of P for D′ at t = 39.7m,
which both contain, in addition to the mappings in υ′,
40.2m 7→ {expBusM } and 44.1m 7→ {expTrM }. An-
swer stream I1 additionally contains the recommendation
t 7→ {takeTrM } and I2 suggests t 7→ {takeBusM }, since
both vehicles are expected to arrive in the next 5 minutes. �

2.3 Truth Maintenance Systems
Truth maintenance systems (TMS) [Rich and Knight, 1991]
aim to implement nonmonotonic reasoning. We recall the
general idea of justification-based TMS (JTMS) [Doyle,
1979], using notation as in [Beierle and Kern-Isberner, 2000].

A TMS T = (N ,J) consists of a set N of nodes and
a set J of justifications J of the form 〈I|O → n〉, where
I = {in1, . . . inl} and O = {o1, . . . , om} are sets of nodes.
Intuitively, n is by J in (true), if all ini’s are in and no oj’s
are in (they are all out), i.e., J “fires.” A modelM of T labels
each node n with status in or out. Notably, the admissible
models of T correspond to the answer sets (stable models) of

the logic program PT = {rJ | J ∈ J } where rJ is the rule
n← in1, . . . , inl,not o1, . . . ,not om [Elkan, 1990].

Given an admissible model M of T and a new justifica-
tion J0 = 〈I0|O0 → n0〉, the TMS algorithm aims to update
M to an admissible model M ′ of T ′ = (N ,J ∪ {J0}). In
that, key notions for nodes n are the following. The conse-
quences (Cons(n)) are nodes with a justification that involves
n. The support consists of a set (Supp(n)) of nodes witness-
ing the (in)validity of n. Finally, the affected consequences
(ACons(n)) are nodes whose support involves n.

Briefly, if J0 fires in M and n0 was not in, only the nodes
in ACons(n0) are re-evaluated (after setting their status to
unknown) proceeding along the dependencies, where Supp
is updated. For a node n, its justifications are checked whether
they are (i) founded (in)valid, or (ii) unfounded (in)valid. In
case (i), the new status of n (in or out) is settled, as definitely
some (resp. no rule) will fire; if not, in case (ii) a guess is
made and propagated, with backtracking on failure.

3 Stream-stratified Programs
Stratification [Apt et al., 1988] is a well-known method to
split a logic program with acyclic negation into strata that can
be evaluated successively. We carry this over to stream inputs
and define stream stratification, which will allow us to evalu-
ate and predict the temporal validity of atoms hierarchically.

In the sequel,A+
sub(P) are the extended atoms α occurring

in P , plus the extended atoms of form @ta and a inside α.
Definition 4 The (stream) dependency graph of a program P
is a directed graph GP = (V,E), where V = A+

sub(P) and
E contains edges

- α→≥ β, if ∃ r ∈ P s.t. α∈H(r) and β ∈B(r),

- @ta↔= a, if @ta ∈ A+(P), and

- � ? a→> a, if � ? a ∈A+(P), where ?∈{@t,3,2}.
The intuition of an edge α→� β is that the truth value of α
depends on the one of β. The label �∈ {≥,=, >} indicates
the possibility to slice the program into parts (strata) that can
be evaluated levelwise. For instance, �3a can only be eval-
uated after the value of the ordinary atom a is known. This
dependency would be reflected by an edge �3a→> a. On
the other hand, @ta must be co-evaluated with a.
Example 7 Let P ′={@tx←�3@ty}. Then, GP ′ =(V,E),
where V = A+

sub(P
′) = {@tx, x,�3@ty,@ty, y} and

E =

{
@tx→≥ �3@ty, �3@ty →> y,
@tx↔= x, @ty ↔= y

}
.

�

Based on this, we define the notion of stream stratification.
Definition 5 (Stream stratification) Let P be a program
with stream dependency graph GP = (V,E). A map-
ping λ : A+(P)→ {0, . . . , n}, k ≥ 0, is called a stream
(s-)stratification for P , if α→� β ∈ E implies λ(α) � λ(β)
for all�∈ {≥,=, >}. We call P stream (s-)stratified, if it has
a stream stratification.

Stream stratification captures the intuition that the depen-
dency graph has no cycle with an edge α→> β, i.e., no re-
cursion through window operators. Using standard methods,

2743

` = 0 jam @37.2mbusG busG request=

�3m3jam �3m@37.2mbusG �1m3request

> > >

on

≥

@40.2mexpBusMexpBusM
=

≥

≥

. . .

�+5m3expBusM

>

...

takeTrMtakeBusM

≥

≥

≥

≤

` = 1

` = 2

Figure 4: Stream dependency graph (partial)

we can decide in linear time whether P is s-stratified, i.e.,
check that no strongly connected component of GP contains
an edge α→> β and if so, compute an s-stratification λ.

Example 8 (cont’d) Program P ′ of Ex. 7 is s-stratified. We
take λ(@ty)=λ(y)=0 and λ(�3@ty)=λ(@tx)=λ(x)=1. �

From λ, we naturally obtain a partition of P into strata
P0, . . . , Pn by Pi = {r ∈ P | λ(H(r)) = i}. Without loss of
generality, we may assume that each Pi is non-empty.

Example 9 Figure 4 depicts a partial s-stratification of the
program P in Ex. 5 and the induced three strata P0, P1, P2. �

Like in usual stratified logic programs, we can evaluate an s-
stratified program P stepwise, i.e., stratum per stratum, where
the results of the previous strata serve as input to the current
stratum. This is formally captured by the following result.

Proposition 1 Let D be a data stream and let P be
an s-stratified program with strata P0, . . . , Pn. Define
IP,t0 =AS(P0, D, t) and IP,tk+1=

⋃
I∈IP,t

k
AS(Pk+1, I, t) for

0 ≤ k < n. Then, we have I ∈ AS(P,D, t) iff I ∈ IP,tn .

Intuitively, at each layer k, s-stratification ensures that infer-
ences of P0 ∪ · · · ∪ Pk will not be retracted by adding Pk+1,
and new inferences come exclusively from Pk+1.

4 TMS Extension

We now present technical ingredients of our update algorithm
for answer streams, which are reflected in a TMS extension
suitable for incremental evaluation of temporal information.

Towards an according TMS data structure M, we intro-
duce a label of an extended atom α as L(α) = (s, T) where
s ∈ {in, out, unknown} is the status of α and T is a set
of time intervals, meaning that α has status s during each
interval in T . (We will write [t1, t2] instead of {[t1, t2]}.)
Given a partial labeling of atoms, i.e., some atoms have
status unknown, we define different types of (un)founded
(in)validity of rules, where for readability, we use obvious
abbreviations. For instance, “B+(r) some out” means that

some atom in the positive body of r has status out:

fVal(r) ⇔ B+(r) all in and B−(r) all out
fInval(r) ⇔ B(r) none unknown and

(B+(r) some out or B−(r) some in)
ufVal(r) ⇔ B+(r) all in and B−(r) none in and

B−(r) not all out
ufInval(r) ⇔ ¬fVal(r) and ¬fInval(r) and ¬ufVal(r)

Informally, fVal(r) (resp. fInval(r)) fully determines sat-
isfaction (resp. falsification) of the rule body based on the
atoms appearing in r. On the other hand, ufVal(r) also holds
for partial labelings and thus leaves falsification open.

We extend the TMS notions in Section 2.3 to deal with the
temporal and streaming aspects in our setting as follows.
Consequences. Let P0, . . . , Pn be the strata of P . To cap-
ture the structural dependencies between atoms a ∈ A and
extended atoms α ∈ A+ in P , we define the consequences
Cons(α) = Consh(α) ∪ Consw(α) ∪ Cons@(α), where

• the head consequences are all heads of rules with α in the
body, i.e., Consh(α) = {H (r) | ∃r ∈ P, α ∈ B(r)},
• the window consequences are Consw(a) = {� ? a ∈̂ P},
where ? ∈ {3,2} and a∈A; and Consw(@tβ)= {�@tβ},
• the @-consq. are Cons@(@t′a) = {a} if @t′a ∈̂ P , else ∅.
Cons∗(α) denotes the transitive closure of Cons(α).1

Support. The support of α is defined by

Supp(α) = Supp+(α) ∪ Supp−(α) ∪ Supp@(α),

where Supp+ and Supp− reflect the support in TMS, i.e., the
witnessing of the status of an atom via rules. Formally:
• Supp+(α) is the positive support of α, which is empty if
s(α) 6= in and otherwise the union of the bodies B(r) of all
rules r ∈ PH(α) that are founded valid at t;

• Supp−(α) is the negative support of α, which is empty
if s(α) 6= out. Else, if no rule r ∈ PH(α) is founded valid,
it contains for each r ∈ PH(α) either an atom βi ∈ B+(r)
with status out or an atom βi ∈ B−(r) with status in;

• Supp@(α) is the @-support of α, which is empty if α is a
non-ordinary atom or s(α) = out; otherwise, it contains all
atoms @t′α with s(@t′α) = in. Intuitively, @-support cap-
tures label witnesses for an ordinary atom α of the form @t′α.

Affected consequences. The affected consequences of α are
ACons(α) = {β ∈ Cons(α) | α ∈ Supp(β)} ∪ Cons@(α),

i.e., all consequences that have α in their support and the or-
dinary atom extracted from α in case it is an @-atom. Fur-
thermore, ACons∗(α) is the transitive closure of ACons(α).
Given a set A of ordinary atoms, we define the affected con-
sequences of A at a time point t as

ACons(A, 0) =
⋃
a∈A Cons∗(a),

ACons(A, t) =
⋃
a∈AACons∗(@ta) \A, if t > 0.

Distinguishing t > 0 from t = 0 is due to the fact that when
starting from scratch at t = 0, no support of atoms is estab-
lished and likewise no affected consequences; we thus rely

1I.e., the least setC s.t. Cons(α)⊆C and
⋃
β∈C Cons(β)⊆C.

2744

Algorithm 1: AnswerUpdate(t,D,varM)

Input: Time point t, data stream D, TMS structureM
reflecting an answer stream for an s-stratified
program P = P0, . . . , Pn on D at time t′ < t

Output: Update ofM reflecting an updated answer
stream for P at time t or fail

foreach stratum ` := 1→ n do
C := ∅ and L′ := current labels
foreach 〈α, ω〉 ∈ Expired(`, t′, t) do

ExpireInput(α, ω, t) and C := C ∪ {ω}
foreach 〈α, ω, t1〉 ∈ Fired(`, t′, t) do

FireInput(α, ω, t1) and C := C ∪ {ω}
UpdateTimestamps(C,L′, `, t)
SetUnknown(`, t)
repeat

if SetRule(`, t) fails then return fail
if MakeAssignment(`, t) fails then return fail

until no new assignment made
SetOpenOrdAtomsOut(`, t)
PushUp(`, t)

on the syntactic dependencies given by Cons . The affected
consequences of A at t restricted to a stratum ` are

ACons(A, t, `) = {α ∈ ACons(A, t) | α ∈̂ P`}.
Example 10 Consider a program P ′ containing only the fol-
lowing ground instance r′2 of rule (r2) in Example 5:

(r′2) @44.1mexpTrM ← �5m @39.1mtramB , on .

We have the following consequences:

Consw(@39.1mtramB) = {�5m@39.1mtramB}
Consh(�5m@39.1mtramB) = {@44.1mexpTrM }
Consh(on) = {@44.1mexpTrM }
Cons@(@44.1mexpTrM) = {expTrM }

Suppose we are given the following labels:

L(�5m@39.1mtramB) = (in, [39.1m, 44.1m])

L(on) = (in, [39.7m, 40.7m])

Then, r′2 is founded valid, i.e., fVal(r′2) holds, and we have:

Supp+(@44.1mexpTrM) = {�5m@39.1mtramB , on}
ACons(�5m@39.1mtramB) = {@44.1mexpTrM }

5 Answer Update Algorithm
This section presents the AnswerUpdate algorithm. Let P
be an s-stratified LARS program and D be a data stream.
Given a time point t, a time point t′ < t, and an answer
stream of P for D at t′, reflected in a TMS data structure
M. AnswerUpdate modifies M such that a new (updated)
answer stream at time t is reflected in it. To this end, it iter-
ates over the strata of the program P and updates the status of
atoms and their temporal validity. At each stratum `, we have
to consider two orthogonal aspects:

(O1) For extended atoms with unchanged status, we only up-
date the time labels and set a label to the maximal extent for
which the status can be guaranteed. For window atoms, this
guarantee comes, e.g., from reappearance of the same tuple
in the data stream in case of 3, or from absence of tuples in
case of 2. For atoms in rule heads, the label update depends
on label updates of window atoms in the bodies.
(O2) Re-evaluate the status of atoms affected by the change
in the input. This is inspired by the TMS algorithm, which
tries to keep the answer untouched as much as possible.
Expire/Fire Input. The algorithm collects two sets
Fired(`, t′, t) of firing atoms and Expired(`, t′, t) of expired
(extended) atoms between time points t′ and t at stratum `.
Intuitively, Fired(1, t′, t) is collected from υ(t′ + 1) to υ(t),
i.e., the window atoms of the tuples from the input stream
fire at stratum 1. For ` > 1, Fired(`, t′, t) is computed from
the atoms concluded at lower strata. Expired(`, t′, t) is calcu-
lated by a supportive function of each window atom, taking
into account the current time point, the content of the win-
dow and the fired input. Both functions return an atom α and
a window atom ω in which α expires/fires. Fired(`, t′, t) also
returns a time point t1 ≤ t at which the firing happens. Then,
ExpireInput and FireInput update the labels of window atoms
at `. Note that FireInput can be optimized by not firing in-
coming inputs that are not anymore relevant at t. The affected
window atoms are collected in a set C.
Time and status adjustment. The processing continues to
determine the labels of rule heads wrt. the orthogonal aspects
(O1) and (O2). For (O1), UpdateTimestamps finds window
atoms in C having unchanged labels (by comparing with L′),
based on that identifies rules where the applicability does not
change and thus the time label of the head can be extended.
For (O2), the TMS method is applied to set the labels of re-
maining atoms. We set the labels of atoms (except window
atoms) affected by incoming and expiring atoms to unknown
(SetUnknown), identify founded (in)valid rules and set the
status of respective head (SetRule), and make assignments
for head and unknown body atoms in an unfounded (in)valid
rule (MakeAssignment). SetRule and MakeAssignment detect
inconsistency when they set the label of an atom to in/out but
that label was already set to out/in for the same interval. The
algorithm then stops and outputs ‘fail.’

The repeat loop ensures that rules that become founded
will be processed by SetRule. After the loop, ordinary atoms
that do not occur as rule heads may still be unknown, if
some of their @-atoms do occur (e.g., expTrM). Such atoms
are labeled (out , [t, t]) in SetOpenOrdAtomsOut. Finally, rule
heads are pushed as input to the next stratum by PushUp(`, t).
Initialization. The first answer stream reflects the initial
state with an empty input stream at time 0. To obtain it,
we set in M all atom labels to (out , [0, 0]) and all transi-
tive consequences of the input atoms except window atoms
to unknown. We then call AnswerUpdate(0, D0,M), where
D0 = ([0, 0], {}). This results in a labeling at time 0 and sup-
ports for atoms in it; from t ≥ 1, the sets of affected conse-
quences are in place for calling AnswerUpdate(t,D,M).
Example 11 (cont’d) Consider the program in Example 5.
The initialization sets all labels to (out , [0, 0]) and thus a neg-

2745

ative support for all rule heads. Maintenance starts with an
empty answer stream and waits for input.
Simple Updates. At t = 37.2m, busG arrives as first atom. In
the window obtained by �3m, atom @37.2mbusG will hold
for 3 min. This is reflected in the algorithm by FireInput which
sets L(�3m@37.2mbusG) = (in, [37.2m, 40.2m]). The rele-
vant ground rule of (r1),

(r′1) @40.2mexpBusM ← �3m @37.2mbusG , on

should not fire, since on cannot be derived. Indeed, the
status of on is still out and so is @40.2mexpBusM af-
ter SetRule. At t = 39.1m, atom tramB arrives, and
we have L(�5m@39.1tramB) = (in, [39.1m, 44.1m]). Sim-
ilarly, ground rule (r′2) (shown in Example 10) cannot fire,
i.e., @44.1mexpTrM will be out.
Update with rule firing. As shown in Fig. 2, Kurt sends
his first request at t = 39.7m. FireInput sets the label of
�1m3request to (in, [39.7m, 40.7m]). By SetRule, this
label is then first carried over to predicate on due to
rule (r3). Furthermore, the labels of @40.2mexpBusM
and @44.1mexpTrM are set to (in, [39.7m, 40.2m]) and
(in, [39.7m, 40.7m]) due to rules (r1) and (r2), respectively,
where according ground rules are now founded valid.

Pushing these conclusions to the next stratum up-
dates L(�+5m3expBusM) to (in, [39.7m, 40.2m]) and
L(�+5m3expTrM) to (in, [39.7m, 44.1m]).
Choices. The last two rules of P are still unfounded valid,
since the status of the negative atoms is unknown. The
choice of MakeAssignment to take the bus materializes as sta-
tus in for takeBusM and out for takeTrM .
Nonmonotonic negation. Later at time t = 40.0m a traffic jam
report comes in as υ(40.0m) = {jam}, thus at stratum 2, rule
(r4) is unfounded invalid due to the negation of the window
atom �3m3jam which is set to in by FireInput. The head
cannot be concluded anymore, and MakeAssignment flips the
previous statuses of takeBusM and takeTrM .
Efficient adjustment. Kurt sends another request t = 40.1m,
so FireInput sets L(�1m3request) = (in, [40.1m, 41.1m])
and C = {�1m3request}, since it was in before. Thus,
UpdateTimestamps updates the time label tm(on) to
[39.7m, 41.1m] due to rule (r3) and furthermore updates
tm(@44.1mexpTrM) to [39.1m, 41.1m] due to rule (r2). The
rest on stratum 2 proceeds similarly as before. �

Correctness. Algorithm AnswerUpdate computes new labels
for atoms in an s-stratified program P that get affected by the
update of the input stream D at a time point t. Its correct-
ness relies on the generic subroutines FireInput, ExpireInput
to faithfully reflect the functionalities of an associated win-
dow function w. Under this assertion, the new labeling inM
can be translated into an answer stream fromAS(P,D, t). In
particular, for time-based windows, which have simple sup-
portive subroutines, this is formally stated as follows.

Proposition 2 Let D = (T, υD) be a data stream, P be
an s-stratified program, and W = {w1

τ , . . . , w
n
τ } be

time windows. Let t, t′ ∈ T s.t. t′ < t and suppose M re-
flects some I ∈ AS(P,D|t′ , t′), where D|t′ is the restric-
tion of D up to t′. Then, if AnswerUpdate(t,D,M) does

not return fail, it updates M such that for some an-
swer stream (T, υ) ∈ AS(P,D, t), every t′′ ∈T satisfies
υ(t′′)= υD(t

′′)∪{a∈AI | s(a)= in ∧ t′′ ∈ tm(a)}.

6 Discussion
The above TMS extension amounts to the (corrected) TMS
procedure if (i) no windows and temporal operators are used,
or (ii) all windows are time-based and select only the current
time point, since this essentially eliminates the timeline.
Runtime complexity. The runtime of AnswerUpdate de-
pends on the program size |P | (number of rules), the number
n of strata, the number of extended atoms |A+|, the stream
size, and the specific window functions. For the practically
important time- and tuple-based windows, status labels can be
maintained efficiently. In the worst-case, UpdateTimestamps
runs in O(|P |2·|A+|) time but can be made sub-quadratic in
|P | using suitable data structures to store the relation between
atoms, window atoms, rules, etc. Other subroutines are less
costly. Window sizes are small and thus a constant factor.
Head-@-free programs. The useful @-atoms in rule heads
complicate evaluation, as intuitively intentional streams must
be handled at each stratum. Excluding head occurrences of
@ yields a fragment with simple and faster algorithms, where
intensional facts are only derivable at the query time. Such
head-@-free programs P can be split into a lower part Pl with
acyclic rules using windows on extensional facts, and an up-
per part Pu consisting of ordinary rules; by using ExpireInput
and FireInput, the rules of Pl can be evaluated in a determin-
istic way, and those of Pu by using either an ASP solver or
the incremental TMS extension to carry over the time labels.
Completeness. Algorithm AnswerUpdate might fail, even if
some answer stream for P wrt. D at the query time t exists.
To gain completeness, one needs to use proper backtracking
in case an inconsistency (a conflict) is encountered. The back-
tracking technique in TMS can be extended for this purpose,
by finding a ‘nogood’ assignment that leads to the conflict
and going for a different guess from there. Notably, if P has
no cyclic negation, no backtracking is needed. Furthermore,
one can similarly employ extended backtracking to compute
other answer streams. However, this is beyond the scope of
this paper and subject for future work.

7 Related Work and Conclusion
In ASP, incremental evaluation as in iclingo (see
potassco.sourceforge.net) aims at time slicing;
reactive ASP as in oclingo [Gebser et al., 2012] considers
k-expanded logic programs, which are incrementally evalu-
ated over a single sliding window of size k by incorporating
always the next time point. In contrast, we build an answer
stream at time t by adapting one from t′ < t. Furthermore,
the more expressive language LARS makes temporal data
management much more demanding.

ETALIS [Anicic et al., 2012] is a monotonic rule formal-
ism for complex event processing to reason about intervals.
No incremental evaluation or windows are considered.

StreamLog [Zaniolo, 2012] extends Datalog for stream
reasoning based on XY -stratification, which guarantees a

2746

single model on a stream. As in s-stratified programs, rules
concluding about the past are excluded. However, neither
windows nor incremental evaluation have been considered.

The DRed algorithm [Gupta et al., 1993] for incremen-
tal Datalog update deletes all consequences of deleted facts
and then adds all rederivable ones from the remainder. It was
adapted to RDF streams in [Barbieri et al., 2010], where tu-
ples are tagged with an expiration time. Our more expressive
TMS approach makes time management more difficult.

[Ren and Pan, 2011] explored the use of TMS techniques
for incremental update in ontology streams. However, win-
dows and time reference were not considered, thus no tem-
poral management is needed, and the setting is monotonic.
Model update was also considered in the context of CTL.
In [Zhang and Ding, 2008], minimal change criteria were
identified and an update algorithm was presented.

Related to our work is also belief revision, which deals with
changing a belief set [Alchourrón et al., 1985] or knowledge
base [Katsuno and Mendelzon, 1991] to accommodate new
information without introducing inconsistency. In [Dixon and
Foo, 1993] it was shown how Assumption-based Truth Main-
tenance Systems (ATMS) can be simulated in the AGM logic
of belief [Gärdenfors, 1988] by means of an epistemic en-
trenchment relation (i.e., a total pre-order over sentences)
to encode justifications of beliefs. Belief revision and belief
update have also been studied in relation to logic programs
under the answer set semantics in [Delgrande et al., 2008]
and [Slota and Leite, 2014].
Outlook. We have presented a generic algorithm for incre-
mental answer update of logic programs for stream reasoning
with ASP like semantics, based on stream stratification and an
extension of TMS techniques by temporal data management.
Further issues concern instantiation of the algorithm for typi-
cal window functions and optimization, as well as identifying
program classes amenable to highly efficient answer update.

References
[Alchourrón et al., 1985] Carlos E. Alchourrón, Peter

Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. J.
Symb. Log., 50(2):510–530, 1985.

[Anicic et al., 2012] Darko Anicic, Sebastian Rudolph, Paul
Fodor, and Nenad Stojanovic. Stream reasoning and com-
plex event processing in ETALIS. Semantic Web J., 2012.

[Apt et al., 1988] Krzysztof R. Apt, Howard A. Blair, and
Adrian Walker. Towards a Theory of Declarative Knowl-
edge. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89–148. Mor-
gan Kaufmann Publishers, Inc., Washington DC, 1988.

[Babu and Widom, 2001] Shivnath Babu and Jennifer
Widom. Continuous queries over data streams. SIGMOD
Record, 3(30):109–120, 2001.

[Barbieri et al., 2010] Davide Francesco Barbieri, Daniele
Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Incremental reasoning on streams and rich
background knowledge. In ESWC 2010, pages 1–15, 2010.

[Beck et al., 2015] Harald Beck, Minh Dao-Tran, Thomas
Eiter, and Michael Fink. LARS: A logic-based framework
for analyzing reasoning over streams. In AAAI, 2015.

[Beierle and Kern-Isberner, 2000] Christoph Beierle and
Gabriele Kern-Isberner. Nichtmonotones Schließen I
- Truth Maintenance-Systeme. In Methoden wissens-
basierter Systeme, Computational Intelligence, pages
196–229. Vieweg+Teubner Verlag, 2000.

[Delgrande et al., 2008] James P. Delgrande, Torsten
Schaub, Hans Tompits, and Stefan Woltran. Belief
revision of logic programs under answer set semantics.
KR, pages 411–421, 2008.

[Della Valle et al., 2009] Emanuele Della Valle, Stefano
Ceri, Frank van Harmelen, and Dieter Fensel. It’s a
Streaming World! Reasoning upon Rapidly Changing In-
formation. IEEE Intelligent Systems, 24:83–89, 2009.

[Dixon and Foo, 1993] Simon Dixon and Norman Y. Foo.
Connections between the ATMS and AGM belief revision.
IJCAI, pages 534–539, 1993.

[Doyle, 1979] Jon Doyle. A Truth Maintenance System. Ar-
tif. Intell., 12(3):231–272, 1979.

[Elkan, 1990] Charles Elkan. A rational reconstruction of
nonmonotonic truth maintenance systems. Artif. Intell.,
43(2):219–234, 1990.

[Gärdenfors, 1988] Peter Gärdenfors. Knowledge in flux:
modeling the dynamics of epistemic states. MIT Press
Cambridge, Mass., 1988.

[Gebser et al., 2012] Martin Gebser, Torsten Grote, Roland
Kaminski, Philipp Obermeier, Orkunt Sabuncu, and
Torsten Schaub. Stream reasoning with answer set pro-
gramming. Preliminary report. In KR, pages 613–617,
2012.

[Gupta et al., 1993] Ashish Gupta, Inderpal Singh Mumick,
and V. S. Subrahmanian. Maintaining views incrementally.
ACM SIGMOD International Conference on Management
of Data, pages 157–166, 1993.

[Katsuno and Mendelzon, 1991] Hirofumi Katsuno and Al-
berto O. Mendelzon. On the difference between updating
a knowledge base and revising it. KR, pages 387–394,
1991.

[Ren and Pan, 2011] Yuan Ren and Jeff Z. Pan. Optimising
ontology stream reasoning with truth maintenance system.
In CIKM, pages 831–836, 2011.

[Rich and Knight, 1991] Elaine Rich and Kevin Knight. Ar-
tificial intelligence. McGraw-Hill, 1991.

[Slota and Leite, 2014] Martin Slota and João Leite. The
rise and fall of semantic rule updates based on se-models.
TPLP, 14(6):869–907, 2014.

[Zaniolo, 2012] Carlo Zaniolo. Logical foundations of con-
tinuous query languages for data streams. In Datalog,
pages 177–189, 2012.

[Zhang and Ding, 2008] Yan Zhang and Yulin Ding. CTL
model update for system modifications. J. Artif. Intell. Res.
(JAIR), 31:113–155, 2008.

2747

