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Abstract
Context-aware systems use data collected at run-
time to recognize certain predefined situations and
trigger adaptations. This can be implemented using
ontology-based data access (OBDA), which aug-
ments classical query answering in databases by
adopting the open-world assumption and includ-
ing domain knowledge provided by an ontology.
We investigate temporalized OBDA w.r.t. ontolo-
gies formulated in EL, a description logic that al-
lows for efficient reasoning and is successfully used
in practice. We consider a recently proposed tem-
poralized query language that combines conjunc-
tive queries with the operators of propositional lin-
ear temporal logic (LTL), and study both data and
combined complexity of query entailment in this
setting. We also analyze the satisfiability problem
in the similar formalism EL-LTL.

1 Introduction
Context-aware systems use data collected at runtime to rec-
ognize certain predefined situations and trigger adaptations.
For example, an operating system might be able to recognize
that a video application is out of user focus (e.g., by corre-
sponding sensors) and then adapt application parameters to
optimize the energy consumption of the system. A straight-
forward approach is to encode the situations into queries over
a database containing the sensor data. However, in general,
sensors do not completely describe the environment (e.g., to
date, sensors cannot capture the intentions of users), and usu-
ally additional knowledge about the behavior of the environ-
ment is available. For example, if the user has not been watch-
ing the video for a longer period of time because he is using
another application on a second screen, then the video does
not need to be displayed in the highest resolution.

Ontology-based data access [Poggi et al., 2008; Decker
et al., 1998] remedies this situation by adopting the open-
world assumption, where facts not present in the data are
assumed to be unknown rather than false, and by employ-
ing an ontology to encode background knowledge. This is
done using axioms of an appropriate ontology language, for
example a description logic (DL) [Baader et al., 2003]. In
this paper, we focus on ontologies in the lightweight DL EL,

which allows for efficient reasoning [Baader et al., 2005;
Lutz et al., 2009] and is successfully applied in practice (e.g.,
in large biomedical ontologies like SNOMED CT1). In this
setting, the data is collected into a fact base (or ABox) con-
taining assertions about individuals using unary and binary
predicates, called concepts and roles, respectively. Thus,
we can represent both static knowledge about active applica-
tions as well as dynamic knowledge about the current context:
VideoApplication(app1),NotWatching(user1). Background
knowledge is represented in the ontology (or TBox) using so-
called general concept inclusions (GCIs) like

VideoApplication u ∃hasUser.NotWatching

v ∃hasState.OutOfFocus,
saying that a video application whose user is currently not
watching the video is out of user focus. ABox and TBox to-
gether are called knowledge base. We can use a conjunctive
query (CQ) likeψ(x) := ∃y.hasState(x, y)∧OutOfFocus(y)
over this knowledge base to identify applications x that can
potentially be assigned a lower priority. However, complex
situations typically depend also on the behavior of the en-
vironment in the past. For example, the operating system
should not switch between configurations every time the user
is not watching for one second, but only after this has been
the case for a longer period of time.

For that reason, we investigate temporal conjunctive
queries (TCQs), originally proposed in [Baader et al., 2013;
2015]. They allow to combine conjunctive queries via the op-
erators of the propositional linear temporal logic LTL [Pnueli,
1977; Lichtenstein et al., 1985]. Hence, we can use the TCQ(

#− ψ(x)
)
∧
(

#− #−ψ(x)
)
∧
(

#− #− #− ψ(x)
)
∧(

¬
(
∃y.GotPriority(y) ∧ notEqual(x, y)

)
SGotPriority(x)

)
to obtain all applications that were out of user focus during
the three previous (#−) moments of observation, were prior-
itized by the operating system at some point in time, and the
priority has not (¬) changed since (S) then.2

The semantics of TCQs is based on temporal knowledge
bases (TKBs), which, in addition to the background knowl-
edge (which is assumed to hold globally, i.e., at every point in

1http://www.ihtsdo.org/snomed-ct/
2Although our formalism does not support it yet, priority values

can be represented if the underlying DL allows for so-called concrete
domains.
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rigid symbols TCQ entailment TCQ entailment EL-LTL satisfiability EL-LTL satisfiability
(data complexity) (combined complexity) (with global GCIs)

none P PSPACE PSPACE PSPACE
LB: [C+06], UB: Thm. 5 LB: [SC85] LB: [SC85], UB: Thm. 11 LB: [SC85]

only concepts CO-NP PSPACE NEXPTIME PSPACE
LB: Thm. 8 UB: Thm. 6 LB: Thm. 9

concepts and roles CO-NP CO-NEXPTIME NEXPTIME PSPACE
UB: Thm. 5 LB: Thm. 7, UB: Thm. 5 UB: Thm. 11 UB: Thm. 12

Table 1: Summary of the complexity results; [C+06] stands for [Calvanese et al., 2006], [SC85] for [Sistla and Clarke, 1985]

time), contains a sequence of ABoxes A0,A1, . . . ,An, rep-
resenting the data collected at specific points in time. We des-
ignate with n the most recent time of observation (the current
time point), at which the situation recognition is performed.

We also investigate the related temporalized formalism EL-
LTL, in which axioms, i.e., assertions or GCIs, are com-
bined using LTL-operators. This approach was first suggested
in [Baader et al., 2012].

In our setting, the axioms in the TKB do not explicitly refer
to temporal information, but are written in a classical (atem-
poral) DL; only the query is temporalized. In contrast, [Lutz
et al., 2008; Artale et al., 2007; 2014; Gutiérrez-Basulto et
al., 2014] extend classical DLs by temporal operators, which
then occur within the knowledge base. However, most of
these logics yield high reasoning complexities, even if the
underlying atemporal DL has tractable reasoning problems.
Lower complexities are only obtained by either considerably
restricting the set of temporal operators or the underlying DL.

Regarding temporal properties formulated over atemporal
DLs, ALC-LTL, a variant of EL-LTL over the more expres-
sive DL ALC, was first considered in [Baader et al., 2012].
This was the basis for introducing TCQs over ALC-TKBs in
[Baader et al., 2013], which was extended to SHQ in [Baader
et al., 2015]. However, reasoning inALC is not tractable, and
context-aware systems often need to deal with large quantities
of data and adapt fast. TCQs over several lightweight logics
have been regarded in [Borgwardt et al., 2015], but only over
a fragment of LTL without negation. In [Artale et al., 2007],
the complexity of LTL over axioms of several members of
the DL-Lite family of DLs has been investigated. However,
nothing is known about TCQs over these logics.

In this paper, we want to answer TCQs over TKBs formu-
lated in EL and in particular investigate both the combined
and the data complexity of the temporal query entailment
problem. Moreover, we determine the complexity of satis-
fiability of EL-LTL-formulae, and additionally consider the
special case where only global GCIs are allowed [Baader et
al., 2012]. As usual, we consider rigid concepts and roles,
whose interpretation does not change over time. In this re-
gard, we distinguish three different settings, depending on
whether concepts or roles (or both) are allowed to be rigid.
Since rigid concepts can be simulated by rigid roles [Baader
et al., 2012], only three cases need to be considered.

Our results are summarized in Table 1. The complexity
of EL-LTL is often lower than that of ALC-LTL, for which

satisfiability is EXPTIME-, NEXPTIME-, and 2-EXPTIME-
complete, respectively, in the three settings we consider
[Baader et al., 2012]. This partially confirms and refutes
the conjecture from [Baader et al., 2012] that EL-LTL is as
hard as ALC-LTL. Using only global GCIs, the complex-
ity matches that of (unrestricted) DL-Litekrom-LTL [Artale et
al., 2007]. Regarding TCQs, the complexity is even more re-
duced compared toALC (and SHQ), where TCQ entailment
is in EXPTIME, CO-NEXPTIME, and 2-EXPTIME, respec-
tively, w.r.t. combined complexity, and in CO-NP, CO-NP,
and EXPTIME, respectively, w.r.t. data complexity [Baader
et al., 2015]. The only lower bounds that directly apply
to the problems considered here are PSPACE-hardness of
LTL [Sistla and Clarke, 1985] and P-hardness of CQ entail-
ment in EL w.r.t. data complexity [Calvanese et al., 2006].

Our results are based on known techniques for ALC-LTL
and TCQs over ALC-TKBs [Baader et al., 2012; 2015], but
we had to significantly adapt them and to combine them with
new approaches, in particular for some of the hardness proofs
and for the PSPACE upper bounds. Full proofs of all results
can be found in the technical reports [Borgwardt and Thost,
2015a; 2015b].

2 EL and LTL
We introduce the formalisms underlying the temporal lan-
guages we consider in this paper.

The DL part focuses on the logic EL. Let NC, NR, NI be
sets of concept-, role-, and individual names, respectively.
Concepts are built from concept names using the constructors
conjunction (CuD), existential restriction (∃r.C for r ∈ NR),
and top concept (>). An axiom is either an assertion of the
form A(a) or r(a, b), where A ∈ NC, r ∈ NR, and a, b ∈ NI,
or a general concept inclusion (GCI) of the form C v D for
concepts C,D. An ABox is a finite set of assertions, a TBox
is a finite set of GCIs, and a knowledge base (KB) is a pair
〈T ,A〉 consisting of a TBox T and an ABox A.

An interpretation I has a non-empty domain ∆I and an
interpretation function ·I that assigns to every A ∈ NC a set
AI ⊆ ∆I , to every r ∈ NR a relation rI ⊆ ∆I × ∆I ,
and to every a ∈ NI an element aI ∈ ∆I . This function is
extended to concepts as follows: (C u D)I := CI ∩ DI ;
(∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧y ∈ CI}; >I := ∆I . An
interpretation I satisfies (or is a model of) A(a) if aI ∈ AI ;
r(a, b) if (aI , bI) ∈ rI ; C v D if CI ⊆ DI ; a set of axioms
or KB if it satisfies all its axioms. A KBK entails an axiom α
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(written K |= α) if every model of K is also a model of α.
The temporal component of our formalisms is based on

propositional LTL [Pnueli, 1977]. LTL-formulae are built
from a set of propositional variables P using conjunction
(φ ∧ ψ), negation (¬ψ), next (#φ), previous (#−φ), until
(φUψ), and since (φSψ). An LTL-structure I = (wi)i≥0 is
an infinite sequence of worlds wi ⊆ P . Validity of an LTL-
formula φ in I at time point i ≥ 0 (written I, i |= φ) is
defined inductively:

I, i |= p iff p ∈ wi (for p ∈ P )
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= #φ iff I, i+ 1 |= φ
I, i |= #−φ iff i > 0 and I, i− 1 |= φ
I, i |= φUψ iff there is k ≥ i such that I, k |= ψ

and I, j |= φ for all j with i ≤ j < k
I, i |= φSψ iff there is 0 ≤ k ≤ i, such that I, k |= ψ

and I, j |= φ, for all j with k < j ≤ i

An LTL-formula φ is satisfiable if there is an LTL-structure I
with I, 0 |= φ. Note that this logic is usually called Past-LTL
due to the operators #− and S. The presence of past operators
does not affect the complexity of the satisfiability problem
[Lichtenstein et al., 1985], but allows to write some formulae
more succinctly [Laroussinie et al., 2002]. As usual, one can
express other temporal operators such as eventually (3φ) and
always (2φ) in this logic.

3 Temporal Query Entailment in EL
As described in the introduction, in our temporal formalism
we can designate certain concept and role names as being
rigid, which means that their interpretation is not allowed to
change over time. For this purpose, we fix a set NRC ⊆ NC of
rigid concept names and a set NRR ⊆ NR of rigid role names.

Temporal conjunctive queries (TCQs) [Baader et al., 2015]
are constructed exactly as LTL-formulae, except that con-
junctive queries (CQs) [Abiteboul et al., 1995] take the place
of the propositional variables. A conjunctive query is of the
form ∃x1, . . . , xm.ψ, where x1, . . . , xm are variables and ψ
is a conjunction of atoms of the form A(t) or r(t, t′), where
A ∈ NC, r ∈ NR, and t, t′ are individual names or variables.
A Boolean TCQ does not contain free variables. A CQ-literal
is either a CQ or a negated CQ; and a union of conjunctive
queries (UCQ) is a disjunction of CQs.

The semantics of TCQs is also very similar to that of LTL-
formulae. However, instead of LTL-structures one has to
consider infinite sequences I = (Ii)i≥0 of interpretations.
Following [Baader et al., 2015], we make the constant do-
main assumption (i.e., the interpretations all have the same
domain ∆). Furthermore, we have to ensure that the rigid
names are respected; that is, we require that sIi = sIj holds
for all symbols s ∈ NI∪NRC∪NRR and i, j ≥ 0. Validity of a
TCQ φ in I at time point i ≥ 0 (again denoted by I, i |= φ) is
now defined exactly as for LTL in Section 2, with the obvious
exception of CQs. For these, we adopt the classical seman-
tics based on homomorphisms [Chandra and Merlin, 1977].
More precisely, the fact that I, i |= ψ for a CQ ψ is equiv-
alent to ψ being satisfied by Ii (written Ii |= ψ), which is

the case if there is a homomorphism π mapping the variables
and individual names of ψ into ∆ such that: π(a) = aIi for
all a ∈ NI; π(t) ∈ AIi for all concept atoms A(t) in ψ; and
(π(t), π(t′)) ∈ rIi for all role atoms r(t, t′) in ψ.

We now consider temporal knowledge bases (TKBs) of the
form K = 〈T , (Ai)0≤i≤n〉, where T is a TBox and the Ai
are ABoxes. As described in the introduction, T represents
the global knowledge about the application domain, whereas
the Ai contain data about different time points. A sequence
I = (Ii)i≥0 of interpretations as above satisfies (or is a model
of) K (written I |= K) if we have Ii |= T for all i ≥ 0, and
Ii |= Ai for all i, 0 ≤ i ≤ n. A Boolean TCQ φ is satisfiable
w.r.t. K if there is a model I of K such that I, n |= φ, and
it is entailed by K (written K |= φ) if for all models I of K
it holds that I, n |= φ. Recall that we are interested in the
current time point n, for which the most recent data (An) is
available.

For a (non-Boolean) TCQ φ, a mapping a of the free vari-
ables in φ to the individual names of K is a certain answer
to φ w.r.t. K if K |= a(φ), where a(φ) is obtained from φ
by replacing the free variables according to a. As usual, the
problem of computing all certain answers can be reduced to
exponentially many entailment tests. Therefore, we investi-
gate in the following the complexity of the TCQ entailment
problem in EL. We do this indirectly, via the satisfiability
problem, which has the same complexity as non-entailment.

We consider both data complexity, where the TBox T and
the TCQ φ are assumed to be fix and the complexity is mea-
sured only w.r.t. the size of the input ABoxes (Ai)0≤i≤n; and
combined complexity, where also the influence of T and φ is
taken into account. As described in the introduction, we fur-
ther distinguish the three cases where (i) no rigid names are
available (NRC = NRR = ∅); (ii) only rigid concept names
are allowed (NRR = ∅, but NRC 6= ∅); and (iii) also rigid role
names can be used (NRR 6= ∅).

We next state an auxiliary result about satisfiability of
(atemporal) conjunctions of CQ-literals. Note that, for this
case, it suffices to consider an ordinary KB instead of a TKB.

Lemma 1. W.r.t. combined complexity, deciding whether a
Boolean conjunction of CQ-literals ψ is satisfiable w.r.t. a
KB K = 〈T ,A〉 can be reduced to several P-tests, whose
number is polynomial in the number of conjuncts of ψ and
exponential in the size of the largest negated conjunct in ψ.

Proof Sketch. We can reduce this problem to the UCQ non-
entailment problem 〈T ,A ∪ A′〉 6|= σ1 ∨ . . . ∨ σm, where
A′ is obtained from instantiating the variables of the CQs oc-
curring positively in ψ with fresh individual names, and σi
are the CQs occurring negatively in ψ. Using the algorithm
in [Rosati, 2007], this can be solved by a series of polyno-
mial non-entailment tests, one for every possible CQ result-
ing from some σi by unifying some of the terms of σi. The
claim follows from the fact that there are at most exponen-
tially many such unifiers.

3.1 The Upper Bounds
In this section, we describe the general approach used in
[Baader et al., 2012; 2015] to solve the satisfiability prob-
lem. In the following, letK = 〈T , (Ai)0≤i≤n〉 be a TKB and
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φ be a Boolean TCQ. For ease of presentation, we assume
that all concept and role names occurring in (Ai)0≤i≤n or φ
also occur in T , and that all individual names occurring in φ
also occur in (Ai)0≤i≤n. These assumptions do not affect the
complexity results.

The main idea is to consider two separate satisfiability
problems—one in LTL and the other in EL—that together
imply satisfiability of φ w.r.t. K. The LTL part analyzes the
propositional abstraction φp of φ, which contains the propo-
sitional variables p1, . . . , pm in place of the CQs α1, . . . , αm
from φ (where each αi was replaced by pi). Furthermore,
let S ⊆ 2{p1,...,pm} be a set that specifies the worlds that are
allowed to occur in an LTL-structure satisfying φp. This con-
dition is formalized by the following LTL-formula:

φpS = φp ∧2

 ∨
X∈S

∧
p∈X

p ∧
∧
p∈X

¬p

 ,

where X := {p1, . . . , pm} \X is the complement of X ∈ S.
However, for checking satisfiability of φ w.r.t. K, it is not

sufficient to find such a set S and then test whether φpS is
satisfiable (at time point n). We must also ensure that S can
indeed be induced by a model of K in the following sense.

Definition 2. Let S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and
ι : {0, . . . , n} → {1, . . . , k}. S is r-satisfiable (w.r.t. ι andK)
if there are interpretations J1, . . . ,Jk, I0, . . . , In such that
• they share the same domain and respect rigid names;3

• the interpretations are models of T ;

• each Ji is a model of χi :=
∧

pj∈Xi

αj ∧
∧

pj∈Xi

¬αj ; and

• each Ii is a model of Ai and χι(i).
The existence of Ji ensures that the conjunction χi of CQ-

literals induced by Xi is satisfiable; a set S containing an Xi

for which this does not hold cannot be induced by a model
of K. The interpretations Ii represent the first n + 1 ele-
ments of such a model, which must additionally satisfy the
ABoxes Ai. The mapping ι chooses a world for each ABox.

We now call φp t-satisfiable (w.r.t. S and ι as above) if
there is an LTL-structure I = (wi)i≥0 with I, n |= φpS and
wi = Xι(i) for all i, 0 ≤ i ≤ n. Intuitively, I is the propo-
sitional abstraction of the model of φ w.r.t. K we are looking
for. The following was shown in [Baader et al., 2015] for
SHQ, and remains valid in our setting.
Lemma 3. φ is satisfiable w.r.t. K iff there are S and ι as
above such that S is r-satisfiable w.r.t. ι and K and φp is t-
satisfiable w.r.t. S and ι.

Since t-satisfiability is independent of the DL part, we can
also reuse the following result from [Baader et al., 2015].
Lemma 4. Checking t-satisfiability of φpS w.r.t. S and ι is
• in EXPTIME w.r.t. combined complexity, and
• in P w.r.t. data complexity.
Given this, we already obtain some of the upper bounds.
3This is defined as for sequences of interpretations.

Theorem 5. TCQ entailment in EL is

• in CO-NP w.r.t. data complexity and in CO-NEXPTIME
w.r.t. combined complexity even if NRR 6= ∅,
• in P w.r.t. data complexity if NRC = NRR = ∅.

Proof Sketch. Recall that we show the complementary results
by regarding TCQ satisfiability. Let K = 〈T , (Ai)0≤i≤n〉 be
a TKB and φ be a Boolean TCQ. For the first two results,
we can simply guess S and ι as required for Lemma 3; note
that S is of constant size in the size of the input ABoxes. By
Lemma 4, the required t-satisfiability test can be done within
the claimed time bounds. For the r-satisfiability test, we use a
technique from [Baader et al., 2015] that constructs an expo-
nentially large conjunction χS,ι of CQ-literals and TBox TS,ι
such that it remains to check satisfiability of χS,ι w.r.t. TS,ι.
Since the CQ-literals in χS,ι are essentially of the same size
as the CQs in φ, we can apply Lemma 1 to decide this prob-
lem via exponentially many EXPTIME-tests w.r.t. combined
complexity. Moreover, the number of conjuncts of χS,ι and
the size of TS,ι are linear in the size of the input ABoxes, and
thus we obtain an upper bound of P w.r.t. data complexity.

For the last result, observe first that in the absence of rigid
names the satisfiability tests of Definition 2 are largely inde-
pendent of each other. Hence, it suffices to define S as the set
of all sets Xj for which χj is satisfiable w.r.t. T . Likewise,
we consider, for each ABox Ai, the set ι′(i) of all indices j
of worlds Xj for which χj is satisfiable w.r.t. 〈T ,Ai〉, and
employ a modified t-satisfiability test w.r.t. these sets. This
results in a deterministic polynomial-time procedure.

It remains to consider the case where NRR = ∅, but possi-
bly NRC 6= ∅, under combined complexity (see Table 1). Note
that the satisfiability tests of Definition 2 are not independent
in this case. Nevertheless, we can guess polynomially many
additional data (see AR and Q¬R below) that allow us to sep-
arate these tests. We then combine these with the PSPACE-
procedure for LTL-satisfiability of [Sistla and Clarke, 1985]
in order to obtain the claimed upper bound.

We assume here that the sequence of input ABoxes consists
only of one empty ABox; this is without loss of generality
since the ABoxes can be encoded into the TCQ without af-
fecting the (combined) complexity [Baader et al., 2015]. We
thus consider a TKB K = 〈T , ∅〉 and a Boolean TCQ φ.

Before stating the main result, we first give some auxil-
iary definitions. Let ψ be a CQ that does not contain any
individual names and is tree-shaped (i.e., the directed graph
described by its atoms is a tree), and let x be the root of this
tree. Then Con(ψ) abbreviates the concept Con(ψ, x), where

Con(ψ, y) :=
l

A(y)∈ψ

A u
l

r(y,z)∈ψ

∃r.Con(ψ, z).

A subset B of the rigid concept names occurring in T is a
witness of ψ w.r.t. T if there are r1, . . . , r`, ` ≥ 0, such that
T |= (

d
B) v ∃r1. . . .∃r`.Con(ψ). Intuitively, if a model

of T contains an element satisfying
d
B, then ψ is satisfied.

We now consider all possible assertions over the individ-
ual names and the rigid concept names occurring in the in-
put, together with their negations. An ABox type AR is a set
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of such assertions such that A(a) ∈ AR iff ¬A(a) /∈ AR.
Given S = {X1, . . . , Xk} ⊆ 2{p1,...,pm}, we define the KBs
KiR := 〈T ,AR ∪ AQi

〉, 1 ≤ i ≤ k, where the ABox AQi

contains the CQs occurring positively in χi with the variables
replaced by fresh individual names. A tuple (AR, Q

¬
R), where

AR is an ABox type and Q¬R is a subset of {α1, . . . , αm}, is
r-complete (w.r.t. S) if the following hold:
(R1) For all i ∈ {1, . . . , k}, KiR has a model.

(R2) For all i ∈ {1, . . . , k} and pj ∈ Xi, we have KiR 6|= αj .
(R3) For all i ∈ {1, . . . , k}, all tree-shaped α ∈ Q¬R , and all

witnesses B of α w.r.t. T , we have KiR 6|= ∃x.B(x).
(R4) For all αj ∈ Qφ \Q¬R , we have pj ∈

⋂
S.

The idea is to fix the interpretation of the rigid names on all
named individuals and specify the CQs that are allowed to oc-
cur negatively in S via the guessed data (AR, Q

¬
R). (R1) and

(R2) ensure that exactly the queries specified by Xi, together
with the assertions from AR, can be satisfied w.r.t. T . (R3)
ensures that there is a model ofKiR that does not satisfy any of
the witnesses of the tree-shaped queries in Q¬R (the canonical
model [Lutz et al., 2009]). Finally, (R4) makes sure that only
the queries from Q¬R can occur negatively in any X ∈ S.

We can show that r-satisfiability of S is characterized by
the existence of such an r-complete tuple. To actually ob-
tain a PSPACE decision procedure from this result, we adapt
the PSPACE-Turing machine from [Sistla and Clarke, 1985]
that successively guesses propositional worlds and checks
whether these can be assembled into an LTL-structure sat-
isfying φp. We use a modified version of this Turing ma-
chine that first guesses a tuple (AR, Q

¬
R) as described above,

and then proceeds as before, but, for each guessed world Xi,
additionally checks whether the KB KiR satisfies Conditions
(R1)–(R4). For (R1), note that the negated assertions in AR

do not pose a problem, as they can be simulated using nomi-
nals and the bottom constructor [Baader et al., 2005]. More-
over, the non-entailment tests in (R2) and (R3) can be done
using only the positive assertions in AR. Finally, to check
whether a given set B is actually a witness of a tree-shaped
CQ α ∈ Q¬R , it suffices to do a reachability test in the com-
pletion graph of T [Baader et al., 2005].
Theorem 6. If NRR = ∅, but possibly NRC 6= ∅, then TCQ
entailment in EL is in PSPACE w.r.t. combined complexity.

3.2 What Makes It Hard
If NRR 6= ∅, we can show CO-NEXPTIME-hardness w.r.t.
combined complexity by adapting the proof of NEXPTIME-
hardness of satisfiability in ALC-LTL from [Baader et al.,
2012]. The latter reduces the 2n+1-bounded domino prob-
lem [Lewis, 1978; Börger et al., 1997] and the result already
holds if only concept names are allowed to be rigid. However,
ALC-LTL-formulae are built by replacing the propositional
variables in LTL-formulae by axioms of the more expressive
DL ALC, which may contain concept negation (¬) and dis-
junction (t). In a nutshell, the original proof represents the
positions in the 2n+1 × 2n+1 domino grid in two different
ways: for each position, there is a specific time point repre-
senting it, as well as a domain element xi. This dual repre-
sentation facilitates the encoding of the domino conditions.

0 1 2 3 4 · · ·

· · ·

t

Aψt

c C c c c T c C

ax1 ax3 A a¬x4 A

a¬x1 a¬x3 ax4

s s s

r r r

Figure 1: The ABoxes for (x1∨x3∨¬x4)∧. . . ; framed names
describe a possible extension to a model of φ w.r.t. Kψ .

We describe some interesting adaptations necessary to apply
the proof for the case of conjunctive queries and a global EL-
TBox; the detailed proof can be found in the technical report.
• Instead of the formula 2¬(> v ¬N), we use the TCQ

2(∃x.r(x, a) ∧ N(x)) to create the elements xi. This
connects them to a fixed individual a via the new rigid
role r and allows us to refer back to them later.
• Formulae of the form (> v A) ∨ (> v ¬A) are used

to express that A is either satisfied by all domain ele-
ments or by none. The second axiom can be expressed
by the negated CQ ¬∃x.A(x). The first axiom cannot
easily be expressed by a TCQ; however, for the hard-
ness proof it suffices to ensure that A is satisfied by
all elements xi, which can be identified via their r-
connection to a. Thus, we can replace the first axiom
by the CQ A(a) and the (global) GCI ∃r.A v A.

Theorem 7. If NRR 6= ∅, then TCQ entailment in EL is
CO-NEXPTIME-hard w.r.t. combined complexity.

The last remaining result concerns the data complexity of
TCQ entailment if rigid concept names are allowed. We show
NP-hardness of satisfiability by a reduction of the 3-SAT
problem [Karp, 1972], considering a propositional 3-CNF
formula ψ =

∧
0≤i<` li,1 ∨ li,2 ∨ li,3. We construct a TCQ φ

and a TKB Kψ = 〈T , (Aψt )0≤t<4`〉 such that ψ is satisfiable
iff φ is satisfiable w.r.t. Kψ . We use four ABoxes to repre-
sent each clause: one to identify the start of a new clause (via
C(c)), and the following three to encode the literals of this
clause via the individual names al (see also Figure 1):

Aψ4i := {C(c)}
Aψ4i+j := {r(ali,j , a¬li,j ), s(ali,j , c)}

Then, we enforce through

φ := 2
((
C(c)→

(
# T (c) ∨# # T (c) ∨# # #T (c)

))
∧ ¬∃x, y.r(x, y) ∧A(x) ∧A(y)

)
that one of the clause’s literals is satisfied (indicated by T (c)).
Using the rigid concept A, we express that a literal al and its
complement a¬l cannot both be true at the same time. Fi-
nally, we use the TBox T := {∃s.T v A} to connect the
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satisfaction of the literal of a clause (T (c)) with the truth of
the corresponding literal (A(al)).

Note that both φ and T are of constant size, and the size of
(Aψt )0≤t<4` is linear in the size of ψ.
Theorem 8. If NRC 6= ∅, then TCQ entailment in EL is
CO-NP-hard w.r.t. data complexity.

4 Temporal Subsumption in EL
We now consider a related temporal formalism based on EL,
where the atoms of the temporal formulae are not CQs,
but axioms [Baader et al., 2012]. More formally, EL-LTL-
formulae are defined exactly as LTL-formulae, except that in-
stead of propositional variables they contain assertions and
GCIs. As in Section 3, the semantics are given by infinite se-
quences of interpretations. Validity of an EL-LTL-formula φ
in I = (Ii)i≥0 at time point i ≥ 0 (written I, i |= φ)
is defined as in Section 2, with the exception of axioms α,
where we define I, i |= α iff Ii satisfies α. As in [Baader
et al., 2012], we investigate the satisfiability of EL-LTL-
formulae, i.e., deciding whether there is a sequence I such
that I, 0 |= φ. A corresponding entailment problem would be
the question whether I, 0 |= ψ always implies that I, 0 |= φ,
but this can easily be reduced to the unsatisfiability of ψ∧¬φ.
ALC-LTL-formulae [Baader et al., 2012] can be reformu-

lated as TCQs over ALC-TKBs [Baader et al., 2015]. How-
ever, this is not the case for EL: GCIs of the form > v A
cannot directly be simulated by TCQs; and conversely, cyclic
CQs like ∃x, y.r(x, y) ∧ r(y, x) cannot be expressed by EL-
LTL-formulae. Hence, these two satisfiability problems are
not directly comparable. Nevertheless, satisfiability of EL-
LTL-formulae turns out to be always harder than that of TCQs
(see Table 1). It does not make sense to consider data com-
plexity here because the assertions are part of the formula.

The proof techniques employed for EL-LTL-formulae are
similar to those we have presented in Section 3. For instance,
we can show NEXPTIME-hardness using a similar construc-
tion as in the proof of Theorem 7, which is even closer to that
of [Baader et al., 2012] and does not use rigid role names.
Theorem 9. If NRC 6= ∅, then satisfiability in EL-LTL is
NEXPTIME-hard.

For the upper bounds, we use the ideas from Theorem 5.
The r-satisfiability condition is simpler since we do not have
to consider ABoxes, and the χi are now conjunctions of EL-
literals, which are axioms or negated axioms. As in Lemma 1,
we first determine the complexity of satisfiability of such con-
junctions. The main idea is to instantiate negated GCIs and
to simulate negated assertions using nominals and the bottom
constructor to construct an EL++-KB that has a model iff the
original conjunction has a model. The former problem can be
decided in polynomial time [Baader et al., 2005].
Lemma 10. Satisfiability of conjunctions of EL-literals can
be decided in P.

This helps us to prove the following upper bounds.
Theorem 11. Satisfiability in EL-LTL is
• in NEXPTIME even if NRR 6= ∅,
• in PSPACE if NRC = NRR = ∅.

Proof Sketch. The first result is obtained exactly as in the
proof of Theorem 5, using the renaming technique from
[Baader et al., 2012] and Lemma 10.

For the second upper bound, observe once more that the
satisfiability tests of Definition 2 are independent in the ab-
sence of rigid concept and role names. Thus, we can again use
the PSPACE-Turing machine from [Sistla and Clarke, 1985],
where, in each step, we additionally execute a P-test accord-
ing to Lemma 10.

Given the rather negative results for EL-LTL in the pres-
ence of rigid symbols, we now consider EL-LTL with global
GCIs, as introduced in [Baader et al., 2012]. In this case, EL-
LTL-formulae are restricted to the form

(
2
∧
T
)
∧ ψ, where

T is a TBox and ψ is an EL-LTL-formula using only asser-
tions. This is also a special case of a Boolean TCQ ψ over the
TBox T , where the CQs in ψ do not contain any variables.

By an adaptation of the approach used in the proof of The-
orem 6, we can extend the complexity of PSPACE even to
the case where rigid roles are allowed. It suffices to guess an
ABox type, which must now contain also (negated) role asser-
tions for all rigid role names, together with a set of assertions
of the form ∃r.A(a) for a rigid role name r. Intuitively, they
specify the kinds of r-successors a must have at every time
point. Again, the existence of such an ABox type and as-
sertions characterizes the r-satisfiability of S, and we obtain
the following result by an adaptation of the PSPACE-Turing
machine from [Sistla and Clarke, 1985].

Theorem 12. Even if NRR 6= ∅, then satisfiability in EL-LTL
with global GCIs is in PSPACE.

5 Conclusions
We have characterized the computational complexity of two
recently proposed temporal query languages over ontologies
in EL. The data complexity of TCQ entailment implies that it
may be possible to apply the approach of [Lutz et al., 2009] if
no rigid names are allowed. But this is not a very interesting
case since one cannot formulate temporal dependencies.

On the positive side, we show that the combined com-
plexity of PSPACE inherited from LTL does not increase if
rigid role names are disallowed, and also in the case that the
query contains no variables and rigid role names are allowed.
Furthermore, if we make the reasonable assumption that all
relevant information about the rigid names (e.g., which ap-
plications belong to the concept VideoApplication) is avail-
able before the start of our context-aware system, then we do
not need to guess the ABox type AR. It remains to be seen
whether one can efficiently combine existing algorithms for
LTL [Gastin and Oddoux, 2001] and EL [Lutz et al., 2009].

Regarding the conjecture about EL-LTL from [Baader et
al., 2012], we have verified that EL-LTL has the same com-
plexity asALC-LTL if only rigid concept names are allowed.
However, if rigid role names are considered, then the com-
plexity decreases from 2-EXPTIME to NEXPTIME.

In future work, we want to investigate what happens if
we replace EL by DL-Lite. While satisfiability in DL-Lite-
LTL is PSPACE-complete in all cases, the complexity of TCQ
entailment over DL-Lite-TKBs remains open. Our hope is
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that TCQs can be rewritten into a first-order query over the
database resulting from viewing the ABox sequence under
the closed world assumption [Calvanese et al., 2006]. If the
size of the rewriting is not too large, this may yield efficient
algorithms for answering temporal queries. For a practical
application, an implementation should also be based on suit-
able windows of the data rather than the whole history. We
are also currently evaluating the utility of temporal query lan-
guages for situation recognition in operating systems.
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