
Fixed-Parameter Tractable Reductions to SAT for Planning∗

Ronald de Haan1, Martin Kronegger1, and Andreas Pfandler1,2
firstname.lastname@tuwien.ac.at

1Vienna University of Technology, Austria
2University of Siegen, Germany

Abstract

Planning is an important AI task that gives rise to
many hard problems. In order to come up with ef-
ficient algorithms for this setting, it is important
to understand the sources of complexity. For plan-
ning problems that are beyond NP, identifying frag-
ments that allow an efficient reduction to SAT can
be a feasible approach due to the great performance
of modern SAT solvers. In this paper, we use the
framework of parameterized complexity theory to
obtain a more fine-grained complexity analysis of
natural planning problems beyond NP. With this
analysis we are able to point out several variants
of planning where the structure in the input makes
encodings into SAT feasible. We complement these
positive results with some hardness results and a
new machine characterization for the intractability
class ∃∗∀k-W[P].

1 Introduction
Like many other formalisms in AI, planning in general is
highly intractable (many variants are complete for ΣP

2 or
even PSPACE). There are, however, several restricted settings
where planning is in NP, and can thus be solved by encod-
ing the problem into SAT and subsequently calling a SAT
solver. Due to the great performance of modern SAT solvers
in many practical settings [Sakallah and Marques-Silva, 2011;
Gomes et al., 2008; Malik and Zhang, 2009], this is often a fea-
sible approach. In the planning literature, the general approach
of employing SAT solvers has been used also in planning set-
tings that are beyond NP; e.g., see the approach presented by
Palacios and Geffner [2009] to compile away uncertainty.

We extend this SAT-encoding approach by means of the
framework of parameterized complexity theory. A classical
complexity analysis can only provide a coarse complexity
classification, that is based on the input size measured in bits
only. However, in virtually all cases one knows more about the
structure of the instance than is indicated in the raw bit size.
Using parameterized complexity, one can capture information

∗Supported by the Austrian Science Fund (FWF): P25518 and
P26200, and the German Research Foundation (DFG): ER 738/2-1.

about structure in the input by means of a parameter. This pa-
rameter can then be used to provide a multivariate complexity
analysis, that is sensitive to the structure of the input.

Recently, the idea of applying parameterized complexity
to extend the range of cases where SAT solvers can be used
to solve the problem has been applied to reasoning problems
that are beyond NP [Fichte and Szeider, 2013; Pfandler et al.,
2013]. In addition, theoretical tools have been developed that
allow us to indicate the boundaries of this approach [De Haan
and Szeider, 2014a; 2014b], i.e., to give evidence that the
SAT-encoding approach cannot be used in certain cases.

In this paper, we provide parameterized complexity results
for natural planning problems that are beyond NP. We point
out several variants of planning where structure in the input
admits the use of encodings into SAT as an efficient way to
solve the problem. In addition, we identify several planning
settings where the structure in the input does not suffice to
allow this approach of direct SAT-encodings. We hope that our
results may help initiate a structured investigation of the use
of parameterized complexity methods aimed at obtaining SAT-
encodings in the domain of planning. In addition, we expect
that our results can be used, as a stepping stone, to obtain
further parameterized complexity results for other reasoning
problems that are beyond NP, since the formalism of planning
is widely-known and intuitive to use. In particular, this holds
for showing membership results, as planning is an expressive
formalism in which other problems can often be encoded very
conveniently. The fact that all complexity classes discussed
in this work are characterized by different flavors of planning
problems can facilitate this considerably. Moreover, as a side
result, we develop a machine characterization of one of the
parameterized intractability classes for this setting. We believe
that this result will be useful in the future.
Main Contributions:
• We present completeness results for a variety of planning
problems and parameterized complexity classes – classically
all these problems are harder than NP, e.g., complete for ΣP

2 or
PSPACE. We show that two variants of planning under uncer-
tainty and planning with soft goal optimization are complete
for the classes para-NP, para-DP, and FPTNP[f(k)], respec-
tively. For these classes, the SAT approach offers potential
for practical algorithms. We contrast these results by showing
completeness for harder classes. Together, this gives a more
fine-grained picture of the (sources of) complexity.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2897

• This is the first work to characterize the parameterized
complexity classes para-NP, para-DP, FPTNP[f(k)], ∃k∀∗, and
∃∗∀k-W[P] by means of variants of a single formalism, i.e.,
planning. We hope that our homogeneous characterization of
these classes will facilitate future complexity analysis. Addi-
tionally, the methodology used in this work may be applied to
any KR formalism of high complexity.
• In addition, we present a novel machine characterization of
the complexity class ∃∗∀k-W[P]. We expect that this result is
especially useful for showing membership in this class.
Organization. After recalling the required basics in the next
section, we discuss the idea of parameterized reductions to
SAT in Section 3. In each of the Sections 4 to 8, we present a
natural variant of planning that captures a particular parame-
terized complexity class. Finally, we conclude in Section 9.

2 Preliminaries
We assume the reader to be familiar with the basics of com-
plexity theory and logic, such as classes from the Polynomial
Hierarchy (PH), e.g., ΣP

2 . For details we refer to textbooks on
the topic [Papadimitriou, 1994; Arora and Barak, 2009].
Planning. In this work we build upon the SAS+ formal-
ism (see, e.g., [Bäckström and Nebel, 1995]). Let V =
{v1, . . . , vn} be a finite set of variables over a finite domain
D. Furthermore, let D+ = D ∪ {u}, where u is a special
“undefined” value not present in D. Then Dn is the set of
total states and (D+)n is the set of partial states over V and
D. Clearly, Dn ⊆ (D+)n. The value of a variable v in a
state s ∈ (D+)n is denoted by s[v]. A SAS+ instance is a
tuple P = 〈V,D,A, I,G〉 where V is a set of variables, D is
a domain, A is a set of actions, I ∈ Dn is the initial state and
G ∈ (D+)n is the (partial) goal state. Each action a ∈ A has a
precondition pre(a) ∈ (D+)n and an effect eff(a) ∈ (D+)n.

We will frequently use the convention that a variable has
value u in a precondition/effect unless a value is explicitly
specified. Furthermore, by slight abuse of notation, we denote
actions and partial states such as preconditions, effects, and
goals as follows: Let a ∈ A, pi ∈ V , di ∈ D, and 1 ≤
i ≤ m ≤ n such that pre(a)[p1] = d1, . . . , pre(a)[pm] = dm.
Then we denote the precondition pre(a) by pre(a) = {p1 =
d1, . . . , pm = dm} (analogously for effects). For m′ ≤ n and
ej ∈ V with 1 ≤ j ≤ m′, we use a : {p1 = d1, . . . , pm =
dm} → {e1 = d′1, . . . , em′ = d′m′} as a shorthand to describe
that a has pre(a) = {p1 = d1, . . . , pm = dm} and eff(a) =
{e1 = d′1, . . . , em′ = d′m′}.

Let a ∈ A and s ∈ Dn. Then a is valid in s if for all
v ∈ V , either pre(a)[v] = s[v] or pre(a)[v] = u. The result
of a in s is a state t ∈ Dn defined such that for all v ∈ V ,
t[v] = eff(a)[v] if eff(a)[v] 6= u and t[v] = s[v] otherwise.
Let s0, s` ∈ Dn and let ω = 〈a1, . . . , a`〉 be a sequence of
actions (of length `). Then ω is a plan from s0 to s` if either
(i) ω = 〈〉 and ` = 0, or (ii) there are states s1, . . . , s`−1 ∈ Dn

such that for all 1 ≤ i ≤ `, ai is valid in si−1 and si is the
result of ai in si−1. A state s ∈ Dn is a goal state if for all
v ∈ V , either G[v] = s[v] or G[v] = u. An action sequence
ω is a plan for P if ω is a plan from I to a goal state.

In planning instances often so-called conditional effects are
permitted as effects. For a planning instance with n variables

and domain D, let 1 ≤ m1,m2 ≤ n. A conditional effect
is an effect of the form {p1 = d11, . . . , pm1 = d1m1

} . {e1 =

d21, . . . , em2 = d2m2
} with d1i , d

2
j ∈ D, 1 ≤ i ≤ m1 and

1 ≤ j ≤ m2. Without defining the semantics formally, a
conditional effect (of an executed action) ensures that the
effect {e1 = d21, . . . , em2

= d2m2
} only materializes if its

condition {p1 = d11, . . . , pm1
= d1m1

} is also satisfied.
Parameterized Complexity. Before we turn to parameter-
ized algorithms for SAT-encodings, we introduce some core
notions from parameterized complexity theory. For an in-
depth treatment we refer to other sources [Downey and Fel-
lows, 1999; 2013; Flum and Grohe, 2006; Niedermeier, 2006].
A parameterized problem L is a subset of Σ∗ × N for some
finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N, we call I
the main part and k the parameter. The following generaliza-
tion of polynomial time computability is commonly regarded
as the tractability notion of parameterized complexity theory.
A parameterized problem L is fixed-parameter tractable if
there exists a computable function f and a constant c such
that there exists an algorithm that decides whether (I, k) ∈ L
in time O(f(k) |I|c), where |I| denotes the size of I . Such
an algorithm is called an fpt-algorithm, and this amount of
time is called fpt-time. FPT is the class of all fixed-parameter
tractable decision problems. If the parameter is constant, then
fpt-algorithms run in polynomial time where the order of the
polynomial is independent of the parameter.

Parameterized complexity also generalizes the notion of
polynomial-time reductions. Let L ⊆ Σ∗ × N and L′ ⊆
(Σ′)∗ × N be two parameterized problems. An fpt-reduction
from L to L′ is a mapping R : Σ∗ × N → (Σ′)∗ × N from
instances of L to instances of L′ such that there exist some
computable function g : N → N such that for all (I, k) ∈
Σ∗×N: (i) (I, k) is a yes-instance ofL if and only if (I ′, k′) =
R(I, k) is a yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is
computable in fpt-time.

3 Parameterized Encodings into SAT
Problems that can be solved by means of a fixed-parameter
tractable (many-one) encoding into SAT are captured by the
class para-NP, that is defined as follows. Let C be a classi-
cal complexity class, e.g., NP. The parameterized complexity
class para-C is defined as the class of all parameterized prob-
lems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which
there exist an alphabet Π, a computable function f : N→ Π∗,
and a problem P ⊆ Σ∗ × Π∗ such that P ∈ C and for all
instances (x, k) ∈ Σ∗×N of L we have that (x, k) ∈ L if and
only if (x, f(k)) ∈ P [Flum and Grohe, 2003].

In addition to many-one fpt-reductions to SAT, we are also
interested in Turing fpt-reductions. A Turing fpt-reduction
from a problem P to SAT is an fpt-algorithm that has access to
a SAT oracle and that decides P . We are mainly interested in
fpt-algorithms that only use a small number of queries to the
SAT oracle (SAT calls). We let FPTNP[f(k)] denote the class
of all parameterized problems P for which there exists an
fpt-algorithm that decides if (x, k) ∈ P by using at most f(k)
many SAT calls, for some computable function f .

In order to provide evidence against the existence of
(many-one) fpt-reductions to SAT, one can show hardness

2898

para-ΣP
2 para-ΠP

2

∃∗∀k-W[P]

∃∗∀k-W[1]

para-NP

W[1]

W[P]

∀∗∃k-W[P]

∀∗∃k-W[1]

para-co-NP

co-W[1]

co-W[P]

para-∆P
2

FPTNP[f(k)]

para-DP

∃k∀∗ ∀k∃∗

FPT = para-P

Figure 1: Relevant parameterized complexity classes. Arrows
indicate inclusion relations. For a definition of the classes W[t]
and co-W[t], see, e.g., [Flum and Grohe, 2006]. For a definition
of the class para-∆P

2 , see, e.g., [Papadimitriou, 1994; Flum
and Grohe, 2003].

for para-ΣP
2 . Recent work in parameterized complexity theory

has resulted in additional complexity classes that can be used
to provide evidence for the non-existence of fpt-reductions to
SAT [De Haan and Szeider, 2014b]. The parameterized com-
plexity class ∃k∀∗ consists of all parameterized problems that
can be fpt-reduced to the problem ∃k∀∗-WSAT, which is a vari-
ant of quantified Boolean satisfiability that is based on truth as-
signments of restricted (Hamming) weight. The input for this
problem is a quantified Boolean formula (QBF) ϕ = ∃X∀Y ψ,
and an integer k. The parameter is k, and the question is
whether there is a truth assignment α to X of weight k such
that for all truth assignments β to Y it holds that α ∪ β satis-
fies ψ. There is evidence that problems that are hard for ∃k∀∗
do not allow an fpt-reduction to SAT or UNSAT [De Haan and
Szeider, 2014b]. Similarly, the intractability class ∃∗∀k-W[P]
has been defined based on an analogous restriction on the
weight of assignments for quantified Boolean circuits, a gen-
eralization of QBFs. Formally, the class ∃∗∀k-W[P] consists
of all parameterized problems that can be fpt-reduced to the
problem ∃∗∀k-WSAT(CIRC). The input for this problem is
a quantified Boolean circuit ϕ = ∃X∀Y C, and an integer k.
The parameter is k, and the question is whether there is a truth
assignment α to X such that for all truth assignments β to Y
of weight k it holds that α ∪ β satisfies the circuit C.

For an overview of parameterized complexity classes that
are relevant to the results in this paper, we refer to Figure 1.
For a more detailed discussion, we refer to previous work on
this topic [De Haan and Szeider, 2014b].

4 A para-NP-complete Variant

We start our analysis with a parameterized version of planning
with uncertainty in the initial state where the plan length is
polynomially bounded in the input size. Classically this prob-
lem is known to be ΣP

2-complete [Baral et al., 2000]. More
formally, we analyze the following problem:

PLANNING[UNCERTAINTY]
Instance: A planning instance P = 〈V, Vu, D,A, I,G〉 simi-
lar to a classical planning instance, but containing additional
variables Vu that are unknown in the initial state, i.e., for all
v ∈ Vu it holds that I(v) = u.
Parameter: |Vu|+ |D|.
Question: Is there a plan of polynomial length for P that works
for all complete initial states, i.e., each possible way of com-
pleting I with a combination of values for variables in Vu?

PLANNING[UNCERTAINTY] turns out to be para-NP-com-
plete and thus admits an fpt-reduction to SAT. In other words,
even though the problem is ΣP

2-complete from the classical
perspective, an encoding into SAT is feasible if the number
of unknown variables is moderately large, as long as we are
only interested in short, i.e., polynomially bounded, plans. In
addition, this means that we can characterize the class para-NP
by planning with uncertainty in the initial state if the degree
of uncertainty, i.e., the number of variables that are unknown,
and the size of the domain are considered as parameter.

Theorem 1. The problem PLANNING[UNCERTAINTY] is
para-NP-complete if the plan length is bounded by a poly-
nomial in the input size.

Proof. The basic idea of the membership proof is that we can
materialize all initial states in the transformation of the plan-
ning instance into SAT by an fpt-reduction. Let n be the input
size and m = p(n) be a bound on the plan length where p is
an arbitrary polynomial that bounds the plan length. To show
membership, recall that classical planning is NP-complete if
the plan length is at most m. Thus, for a classical planning
instance P we can construct a propositional formula ϕ[P, VA]
in polynomial time that is satisfiable if and only if there is a
plan of length at mostm for P, where VA contains all variables
representing actions. Due to the uncertainty in the initial state
in PLANNING[UNCERTAINTY], there is not a single initial
state, but rather a set of initial states I of cardinality |D||Vu|.
Now let P′ be an instance of PLANNING[UNCERTAINTY] and
I ∈ I. Then, let P′(I) denote the classical planning instance
obtained by instantiating the unknown variables in P′ with
the values of the corresponding variables in I . To show mem-
bership, we construct the formula ψ =

∧
I∈I ϕ[P′(I), VA] of

conjuncts that are variable-disjoint (except VA). Clearly, ψ is
satisfiable if and only if P′ is a yes-instance.

For para-NP-hardness, notice that the construction used in
a proof by Kronegger et al. [2013, Theorem 11] for SAS+

planning even holds if Vu = ∅.

5 A para-DP-complete Variant
The complexity class DP consists of all problems that can
be reduced to the problem SAT-UNSAT = { (ϕ,ψ) | ϕ ∈
SAT, ψ ∈ UNSAT }. The class para-DP is interesting as
at most two calls to a SAT solver are required to solve any
instance. Therefore, showing membership in para-DP can be
a positive result for hard problems. In what follows we will
describe a natural planning problem complete for this class.

We consider a variant of planning with uncertainty in the
initial state as described in Section 4. The crucial difference is

2899

that we ask whether an action a0 is essential. More formally,
we consider the following problem.

PLANNING[ESSENTIAL ACTION]
Instance: A planning instance with uncertainty in the initial
state P = 〈V, Vu, D,A, I,G〉 and an action a0 ∈ A.
Parameter: |Vu|+ |D|.
Question: Is a0 essential, i.e., is there a plan of polynomial
length for P that uses a0 and works for all complete initial
states, but there is no such plan for P without using a0?

We now show that this problem is para-DP-complete and thus
can be solved by two SAT-calls for polynomial plan length.
Theorem 2. The problem PLANNING[ESSENTIAL ACTION]
is para-DP-complete if the plan length is bounded by a poly-
nomial in the input size.

Proof. To establish hardness, we will show that we can en-
code an instance of the SAT-UNSAT problem into an instance
of PLANNING[ESSENTIAL ACTION]. For this, let (ϕ,ψ)
be a SAT-UNSAT instance. Recall that classical planning
is NP-complete if the plan length is bounded by a poly-
nomial in the input size. Therefore, there are two plan-
ning instances Pϕ = 〈Vϕ, Vu, Dϕ, Aϕ, Iϕ, Gϕ〉 and Pψ =
〈Vψ, Vu, Dψ, Aψ, Iψ, Gψ〉 with Vu = ∅ and with disjoint vari-
ables, actions, and domain such that Pϕ (resp., Pψ) has a plan
of polynomial length if and only if ϕ (resp., ψ) is satisfiable.
We use now the action a0 of verify that Pψ has indeed no plan.

From Pψ we construct an instance P′ψ as follows: Let the
set of actions A′ψ = Aψ ∪ {a0 : {} → Gψ} be defined
by adding to Aψ an additional action with empty precon-
dition that immediately fulfills the goal Gψ. Further, let
P′ψ = 〈Vψ, Vu, Dψ, A

′
ψ, Iψ, Gψ〉. We now combine Pϕ and

P′ψ to a single planning instance P∗ (with uncertainty in the
initial state). Notice that this can always be done as the in-
stances are disjoint. The instance of PLANNING[ESSENTIAL
ACTION] is then given by (P∗, a0). It is now easy to verify
that (i) there is a plan for P∗ and (ii) a0 is essential if and only
if ϕ is satisfiable and ψ is unsatisfiable.

Membership in para-DP can be shown as follows. Let
(P = 〈V, Vu, D,A, I,G〉, a0) be an instance of PLAN-
NING[ESSENTIAL ACTION] and k be a bound on the plan
length that is polynomial in the input size. W.l.o.g., we as-
sume that 0, 1 ∈ D. We have to check whether there is a plan
that uses a0 and that there is no plan without using a0. Recall
from the proof of Theorem 1 that we can construct in fpt-time
for an arbitrary instance P of PLANNING[UNCERTAINTY]
(parameterized by |Vu| + |D|) a propositional formula ϕ[P]
that is satisfiable if and only if P is a yes-instance.

To ensure that action a0 is indeed used, we create the in-
stance P′ = 〈V ∪ {va0}, Vu, D,A′, I ′, G′〉 where we intro-
duce the new variable va0 . Let I ′(va0) = 0, G′(va0) = 1,
I ′(v) = I(v) and G′(v) = G(v) for each v ∈ V . We obtain
A′ from A by adding va0 = 1 to the effect of action a0. Fur-
thermore, we create for the case where a0 must not be used
the instance P′′ = 〈V, Vu, D,A \ {a0}, I, G〉. The instance
of SAT-UNSAT is then given by (ϕ[P′], ϕ[P′′]). In the con-
struction we ensure that there is a plan of (of length at most k)
that uses action a0, and that there is no plan (of length at most
k) without using action a0.

6 An FPTNP[f(k)]-complete Variant
In this section, we investigate the following planning problem
with two different types of goals: (i) a hard goalGh that needs
to be satisfied, and (ii) a soft goal Gs for which the number
of variables satisfied according to Gs is to be maximized. We
call a plan optimal with respect to some given bound k on the
plan length if there does not exist another plan with length at
most k that satisfies more variables according to the soft goal
Gs. We analyze the problem of finding an optimal plan given
a planning instance P = 〈V,D,A, I,Gh, Gs〉 and a bound k
on the plan length, parameterized by |Gs|.

In general, finding an optimal plan for P given a bound k on
the plan length in polynomial time requires O(log |P|) many
SAT calls. We can find such a plan by performing binary
search on the number of fulfilled variables in the soft goal,
asking whether ≤ ` variables in the soft goal can be fulfilled.
We show that we can restrict the number of SAT calls to a
function of the number of variables in the soft goal, i.e., |Gs|.
We believe that this result indicates that the SAT approach is
still feasible for this (parameterized) problem. First, we show
that planning with soft goals can be solved in fpt-time using
dlog |Gs|e SAT calls. Second, we prove that the number of
required SAT calls cannot be bounded by a constant.

Proposition 3. Let P = 〈V,D,A, I,Gh, Gs〉 be a planning
instance with a hard goal Gh and a soft goal Gs, and let k be
an integer that is polynomial in the input size. Then finding a
plan of length at most k that is optimal for P with respect to k
(if it exists) can be done in fpt-time using dlog |Gs|e SAT calls.

Proof (sketch). The problem of deciding whether there is a
plan of length at most k that reaches some state s′ satisfying
the hard goal Gh and that agrees with the soft goal Gs on at
least u variables is in NP. Namely, one can guess such a plan,
and verify whether it satisfies the requirements. Therefore, any
instance of this problem can be encoded into an instance of
SAT in polynomial time. Moreover, from a satisfying assign-
ment (if one exists) for such a SAT instance, we can extract in
polynomial time a plan that satisfies the requirements. Then
we can find the maximum number u of variables contained in
the soft goal that can be fulfilled using dlog |Gs|e SAT calls,
by using binary search. Moreover, using the satisfying assign-
ments that are given by the SAT solver, we can find a plan that
is optimal for P with respect to length k.

In order to show that we cannot find such an optimal plan
in fpt-time using a constant number of SAT calls, we consider
the following parameterized decision problem.

PLANNING[SOFT GOAL]-PARITY
Instance: A planning instance P = 〈V,D,A, I,Gh, Gs〉 with
a hard goal Gh and a soft goal Gs, and an integer k.
Parameter: |Gs|.
Question: Does there exist a plan of length at most k that is
optimal for P (w.r.t. k), and that satisfies an odd number of
variables of the soft goal?

We show that this problem is complete for the class
FPTNP[f(k)]. It follows that if we could find an optimal plan
in fpt-time using a constant number of SAT calls (where the

2900

parameter is |Gs|), then the Polynomial Hierarchy would col-
lapse [Endriss et al., 2014, Proposition 18].

Theorem 4. The problem PLANNING[SOFT GOAL]-PARITY

is FPTNP[f(k)]-complete.

Proof (sketch). Membership in FPTNP[f(k)] follows directly
from Proposition 3. To show hardness, we reduce from the
problem SMALL-MAX-MODEL-PARITY. For this problem,
the input is a CNF formula ϕ, and a subsetX ⊆ Var(ϕ), where
Var(ϕ) denotes the set of propositional variables of ϕ. The
parameter is k = |X|. The question is whether the satisfying
assignment that sets the maximum number of variables x ∈
X to true, satisfies an odd number of variables in X . This
problem can straightforwardly be shown to be FPTNP[f(k)]-
complete, using results by Endriss et al. [2014, Theorem 15].
(Due to space limitations, we omit the proof.)

Let (ϕ,X) specify an instance of SMALL-MAX-MODEL-
PARITY, where ϕ has u clauses. We construct a planning
instance P = 〈V,D,A, I,Gh, Gs〉, with a hard goal Gh
and a soft goal Gs, and an integer k′ bounding the plan
length as follows. We let V = Var(ϕ) ∪ { zx | x ∈
Var(ϕ) } ∪ { yδ | δ is a clause of ϕ }, and D = {0, 1}. For
each variable x ∈ Var(ϕ), we introduce two actions: ax0 :
{} → {x = 0, zx = 1} and ax1 : {} → {x = 1, zx = 1}.
Moreover, for each clause δ in ϕ and each literal l in δ, we
introduce an action: aδl whose precondition requires all vari-
ables zx to have value 1 and requires the variable of l to be
set in such a way that δ is satisfied, and whose effect ensures
that yδ is set to 1. We let I(v) = 0 for all v ∈ V , Gh =
{ yδ = 1 | δ is a clause of ϕ }, and Gs = {x = 1 | x ∈ X }.
Finally, we let k′ = |Var(ϕ)|+ u.

The intuition behind this reduction is that the actions axi
can be used to enforce a truth assignment over the variables
in Var(ϕ), and that the actions aδl can be used to check that
such a truth assignment satisfies all clauses δ ofϕ. It is straight-
forward to verify that those plans consisting of k′ actions – an
action axi (for some i ∈ {0, 1}) for each x ∈ Var(ϕ), and an
action aδl (for some l ∈ δ) for each δ ∈ ϕ – correspond to
truth assignments over Var(ϕ) that satisfy ϕ. Moreover, only
plans of this form can satisfy the hard goal. Then, finding
such a plan that maximizes the number of fulfilled variables
in the soft goal corresponds to a satisfying truth assignment
that maximizes the number of satisfied variables in X . From
this, the correctness of the reduction follows.

7 An ∃k∀∗-complete Variant
In this section we reconsider planning with uncertainty in the
initial state as discussed in Section 4 and 5 with a different
parameter. This time we allow for an unbounded number of
unknown variables and parameterize by the bound k on the
plan length. It turns out that the problem does not retain its
full hardness although a feasible translation to SAT still seems
to be unlikely. To be more precise, we show that this problem
is ∃k∀∗-complete.

For membership we build upon the ∃∀-encoding of Rin-
tanen [2007] for planning instances with uncertainty in the
initial state and binary domain. There, a QBF of the form
∃X∀Y ψ, where ψ is a quantifier-free formula, is satisfiable if

and only if there is a plan whose length is bounded by a given
integer. Observe that X only contains variables representing
actions. Furthermore, for any satisfying truth assignment the
weight of X is equal to the plan length. Notice that this en-
coding assumes binary domains. Here, we consider planning
instances with an arbitrarily large domain. However, since
the domain is part of the input, the reduction also works for
arbitrarily large domains. Thus, the aforementioned encoding
together with the observations above allows to show member-
ship in ∃k∀∗. Note that other encodings could in principle also
be used for this purpose.
Corollary 5. Planning with uncertainty in the initial state
parameterized by the plan length is in ∃k∀∗.

Next we show hardness. Note that this reduction makes use
of conditional effects.
Theorem 6. Planning with uncertainty in the initial state
parameterized by the plan length is ∃k∀∗-hard.

Proof. We reduce from ∃k∀∗-WSAT over QBFs in 3DNF,
which is known to be ∃k∀∗-complete [De Haan and Szeider,
2014b]. Let (ϕ, k′) be an instance of ∃k∀∗-WSAT, where k′
is an integer, ϕ = ∃X∀Y ψ, and ψ =

∨
1≤i≤m

∧
1≤j≤3 li,j .

The variables of the planning instance P are V = X ∪
{c1, . . . , ck′} ∪ {e, g}. For every v ∈ X and 1 ≤ i ≤ k′

we introduce an action aiv : {v = ci = e = 0} → {v =
ci = 1}. Furthermore, we introduce two additional actions:
ae : {c1 = 1, . . . , ck′ = 1} → {e = 1}, and ag : {e = 1} →{
{l1,1 = l1,2 = l1,3 = 1} . {g = 1}, . . . , {lm,1 = lm,2 =

lm,3 = 1} . {g = 1}
}

. The set of actions A is then given by
A =

⋃
v∈X

⋃
1≤i≤k′{aiv} ∪ {ae, ag}. To obtain the instance

P, we set Vu = Y , D = {0, 1}, I = 0|V | and G = {g = 1}.
The intuition of this encoding is to first guess an assignment

α of weight k′ using k′ distinct actions aiv, then to fix this
assignment using action ae and finally to evaluate α according
to ϕ with the action ag. It is straightforward to check that
(ϕ, k′) is a yes-instance if and only if there is a plan of length
k = k′ + 2 for P.

8 An ∃∗∀k-W[P]-complete Variant
We now turn to a variant of planning with uncertainty in the
initial state, i.e., planning with bounded deviation. Let P =
〈V, Vu, D,A, I,G〉 be such a planning instance. W.l.o.g., we
assume 0 ∈ D which we call the base value for variables in
Vu. Here, the parameter describes the maximum number of
unknown variables that deviate from the base value. In other
words, in this setting, there can be many unknown variables but
only few of them have unexpected values – we however, do not
know which. More formally, the problem is defined as follows.

PLANNING[BOUNDED DEVIATION]
Instance: A planning instance P = 〈V, Vu, D,A, I,G〉 and
two integers k and d.
Parameter: d.
Question: Does there exist a plan of length at most k that
works for all complete initial states where at most d unknown
variables deviate from the base value?

Before we present the main result of this section we provide a
way of showing membership in ∃∗∀k-W[P] by means of Turing

2901

machines. In particular, we show that ∃∗∀k-W[P] contains
those parameterized decision problems that can be decided by
a certain class of alternating Turing machines.

An alternating Turing machine (ATM) with m tapes is a
6-tuple M = (S∃, S∀,Σ,∆, s0, F), where: S∃ and S∀ are
disjoint sets; S = S∃ ∪ S∀ is the finite set of states; Σ is
the alphabet; s0 ∈ S is the initial state; F ⊆ S is the set of
accepting states; and ∆ ⊆ S × (Σ ∪ {$,�})m × S × (Σ ∪
{$})m × {L,R,S}m is the transition relation. We use the
same notation as Flum and Grohe [Flum and Grohe, 2006,
Appendix A.1]; for further details, we refer to their textbook.

We consider the following restrictions on ATMs. An ∃∀-
Turing machine (or simply ∃∀-machine) is a 2-alternating
ATM (S∃, S∀,Σ,∆, s0, F), where s0 ∈ S∃. Let P be a pa-
rameterized problem. An ∃∗∀k-W[P]-machine for P is a ∃∀-
machine M such that there exists a computable function f and
a polynomial p such that: (i) M decides P in time f(k)p(|x|);
and (ii) for all instances (x, k) of P and each computation
path R of M with input (x, k), at most f(k) log |x| of the uni-
versal configurations of R are nondeterministic. We say that
a parameterized problem P is decided by some ∃∗∀k-W[P]-
machine if there exists a ∃∗∀k-W[P]-machine for P .
Theorem 7. If a parameterized problemQ is decided by some
∃∗∀k-W[P]-machine, then Q ∈ ∃∗∀k-W[P].

Proof (sketch). We describe a way of constructing, for each in-
stance (x, k) of Q, an instance (ϕ, k′) of ∃∗∀k-WSAT(CIRC)
that is a yes-instance if and only if (x, k) ∈ Q. Our construc-
tion is based on the proof of Cook’s Theorem [Cook, 1971].

We begin with some observations. Let M be an ∃∗∀k-W[P]-
machine forQ. We may assume without loss of generality that
for any nondeterministic transition of M, there are exactly two
possible ways of proceeding. Any run of M on input (x, k)
can be specified entirely by indicating what nondeterministic
choices M makes. Given (a representation of) these nonde-
terministic choices, determining whether this run of M is an
accepting run can be done in fpt-time in (x, k) – simply by
simulating M using the given choices. In other words, to de-
cide whether M accepts an input (x, k), we need to decide
whether there exists some sequence s1 of nondeterministic
choices for the existential phase of the computation, such that
for all sequences s2 of nondeterministic choices for the uni-
versal phase of the computation it holds that the run of M
on (x, k) that is specified by (s1, s2) is an accepting run.

By definition of ∃∗∀k-W[P]-machines, we know that there
is some computable function f and some constant c such that
for each input (x, k) with |x| = n, (i) M runs in time f(k)nc

and (ii) M makes at most f(k) logn nondeterministic choices
in the universal phase of the computation. Therefore, in par-
ticular, in the existential phase of the computation M makes
at most f(k)nc nondeterministic choices. We can encode all
possibilities for the 2f(k)n

c

many different possible combi-
nations of choices that M makes in the existential phase of
the computation using f(k)nc many existential variables of ϕ.
Moreover, since there are at most 2f(k) logn = nf(k) many
different possible combinations of choices that M makes in
the universal phase of the computation, we can encode these
possibilities using n universal variables, whose assignments
are restricted to set only k′ = f(k) many variables to true.

The circuit ϕ then simulates the behavior of M on in-
put (x, k) with the nondeterministic behavior given by (s1, s2)
as specified by the assignment to the variables. Since such a
simulation can be done in fpt-time, we know we can encode
this simulation in a circuit ϕ that can be constructed in fpt-
time. Then, (ϕ, k′) is a yes-instance of ∃∗∀k-WSAT(CIRC) if
and only if M accepts (x, k), which is the case if and only
if (x, k) ∈ Q.

The result for the other direction, i.e., if a parameter-
ized problem Q ∈ ∃∗∀k-W[P] then Q is decided by some
∃∗∀k-W[P]-machine, is omitted due to space limitations. Now
we are ready to present the main result of this section.

Theorem 8. The problem PLANNING[BOUNDED DEVIA-
TION] is ∃∗∀k-W[P]-complete if the plan length k is bounded
by a polynomial in the input size.

Proof. We describe an algorithm to solve the problem that can
be implemented by an ∃∗∀k-W[P]-machine. The algorithm
first guesses a sequence ω ofm actions fromA usingm log |A|
(binary) nondeterministic choices in the existential phase of
the computation. Then, in the universal phase, it verifies
whether this plan works for all cases where k of the unknown
variables deviate from the base value in the initial state. Each
such initial state can be specified using k log (|Vu| · |D|) non-
deterministic choices (in the universal phase), and for any
such initial state I , checking whether the ω reaches a goal
state from I can be done in polynomial time. This algorithm
is correct and can be implemented by an ∃∗∀k-W[P]-machine.
Then, by Proposition 7, the result follows.

To show hardness, we reduce from ∃∗∀k-WSAT(CIRC). In-
tuitively, in the reduction, we will emulate the evaluation of the
circuit by a planning problem. Here, the goal is to set the out-
put gate to true and the unknown variables are used to model
the universally quantified variables of the circuit. With help of
the actions we sequentially evaluate the output of the gates in
a fixed order to finally compute the value of the output gate
of the circuit. Recall that an instance of ∃∗∀k-WSAT(CIRC)
consists of a Boolean circuit C over two sets of disjoint input
variables X and Y , and an integer k′.

Since a circuit can be seen as an acyclic directed graph,
we may assume that the gates g1, . . . , gm are numbered in
such a way that for each gate gi, its inputs gj1 , . . . , gj` are
numbered in such a way that j1, . . . , j` < i. This numbering
gives a natural ordering of the gates, which ensures that all
input values for a gate are already computed if the output value
is to be determined. We create the set L = {l1, . . . , lm} of
variables. Then we introduce a new variable f and the action
af : {f = 0} → {f = 1}. Furthermore, for each variable
x ∈ X , we create the action ax : {f = 0} → {x = 1}. For
each gate gi, we create an action agi where:

pre(agi) = {f = 1, li−1 = 1}
eff(agi) = {li = 1} ∪ Γgi

Here Γgi depends on the type of gate gi and is obtained as
follows. For each gate gi we introduce the variable o(gi),
representing the unnegated output of gate gi. Let the unnegated
input gates of gate g be g′1, . . . , g

′
p, and the negated ones be

g′′1 , . . . , g
′′
l . To simplify the presentation, we assume that each

2902

variable in Y is also represented by a gate g, whose output is
represented as o(g). If g is an AND-gate we define:

Γgi =
{
{o(g′1) = · · · = o(g′p) = 1, o(g′′1) = · · · = o(g′′l) = 0}
. {o(g) = 1}

}
If g is an OR-gate, Γgi is defined analogously. Notice that the
effect in the set Γgi are conditional. Intuitively, executing the
actions ag1 , . . . , agm in order corresponds to evaluating the
circuit using the given values for the variables in X and Y .
Moreover, executing these actions is the only way to set o(go)
to 1, where go is the output gate of C.

To put things together, we set V = X ∪ L ∪ {f} ∪ {o(g) |
g is a gate in C}, Vu = Y , A = {af} ∪ {ax | x ∈ X} ∪
{ag | g is a gate in C}, I(v) = 0 for each v ∈ V , G =
{o(go) = 1}, where go is the output gate of C, k = m+ |X|,
and d = k′. The correctness of this reduction can be checked
straightforwardly.

9 Conclusion
For a variety of planning problems we have investigated the
limits of a reduction-based approach to SAT. In particular,
classes such as para-NP, para-DP, and FPTNP[f(k)] give hope
for an efficient transformation to SAT (as long as the param-
eters are of moderate size). We believe that our results for
different variants of planning provide a versatile toolbox for
showing membership in these classes. This is desirable be-
cause planning is an expressive formalism that allows for easy
encodings of other problems. Thus, our results help to ex-
plore the limits of efficient reducibility to SAT also for other
important AI problems different to planning.

For future work we plan to extend this complexity map to
other problems from different fields. It is also interesting to
investigate how the performance of problems from different
classes behaves in practice. Furthermore, it is desirable to find
natural problems for the more exotic classes in this complexity
landscape.

References
[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.

Computational Complexity – A Modern Approach. Cam-
bridge University Press, 2009.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11:625–656, 1995.

[Baral et al., 2000] Chitta Baral, Vladik Kreinovich, and
Raul Trejo. Computational complexity of planning and
approximate planning in the presence of incompleteness.
Artificial Intelligence, 122(1-2):241–267, 2000.

[Cook, 1971] Stephen A. Cook. The complexity of theorem-
proving procedures. In Proc. 3rd Annual Symp. on Theory
of Computing, pages 151–158, 1971.

[Downey and Fellows, 1999] R. G. Downey and M. R. Fel-
lows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[Endriss et al., 2014] Ulle Endriss, Ronald de Haan, and Ste-
fan Szeider. Parameterized complexity results for agenda
safety in judgment aggregation. In Proc. COMSOC 2014.
Carnegie Mellon University, 2014.

[Fichte and Szeider, 2013] Johannes Klaus Fichte and Stefan
Szeider. Backdoors to normality for disjunctive logic pro-
grams. In Proc. AAAI 2013, pages 320–327. AAAI Press,
2013.

[Flum and Grohe, 2003] Jörg Flum and Martin Grohe. De-
scribing parameterized complexity classes. Information
and Computation, 187(2):291–319, 2003.

[Flum and Grohe, 2006] Jörg Flum and Martin Grohe. Pa-
rameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2006.

[Gomes et al., 2008] Carla P. Gomes, Henry Kautz, Ashish
Sabharwal, and Bart Selman. Satisfiability solvers. In
Handbook of Knowledge Representation, volume 3 of Foun-
dations of Artificial Intelligence, pages 89–134. Elsevier,
2008.

[de Haan and Szeider, 2014a] Ronald de Haan and Stefan
Szeider. Fixed-parameter tractable reductions to SAT. In
Proc. SAT 2014, volume 8561 of Lecture Notes in Computer
Science, pages 85–102. Springer, 2014.

[de Haan and Szeider, 2014b] Ronald de Haan and Stefan
Szeider. The parameterized complexity of reasoning prob-
lems beyond NP. In Proc. KR 2014, pages 82–91. AAAI
Press, 2014.

[Kronegger et al., 2013] Martin Kronegger, Andreas Pfan-
dler, and Reinhard Pichler. Parameterized complexity of
optimal planning: A detailed map. In Proc. IJCAI 2013,
pages 954–961. AAAI Press, 2013.

[Malik and Zhang, 2009] Sharad Malik and Lintao Zhang.
Boolean satisfiability from theoretical hardness to prac-
tical success. Communications of the ACM, 52(8):76–82,
2009.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford Lecture Series in Mathemat-
ics and its Applications. Oxford University Press, 2006.

[Palacios and Geffner, 2009] Héctor Palacios and Hector
Geffner. Compiling uncertainty away in conformant plan-
ning problems with bounded width. Journal of Artificial
Intelligence Research, 35:623–675, 2009.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional Complexity. Addison-Wesley, 1994.

[Pfandler et al., 2013] Andreas Pfandler, Stefan Rümmele,
and Stefan Szeider. Backdoors to abduction. In Proc.
IJCAI 2013, pages 1046–1052. AAAI Press, 2013.

[Rintanen, 2007] Jussi Rintanen. Asymptotically optimal en-
codings of conformant planning in QBF. In Proc. AAAI
2007, pages 1045–1050. AAAI Press, 2007.

[Sakallah and Marques-Silva, 2011] Karem A. Sakallah and
João Marques-Silva. Anatomy and empirical evaluation of
modern SAT solvers. Bulletin of the European Association
for Theoretical Computer Science, 103:96–121, 2011.

2903

