An Extension-Based Approach to Belief Revision in Abstract Argumentation∗

Martin Diller, Adrian Haret, Thomas Linsbichler, Stefan Rümmele, and Stefan Woltran
{diller,haret,linsbichler,ruemmele,woltran}@dbai.tuwien.ac.at
Institute of Information Systems
Vienna University of Technology, Austria

Abstract

Argumentation is an inherently dynamic process. Consequently, recent years have witnessed tremendous research efforts towards an understanding of how the seminal AGM theory of belief change can be applied to argumentation, in particular for Dung’s abstract argumentation frameworks (AFs). However, none of the attempts has yet succeeded in handling the natural situation where the revision of an AF is guaranteed to be representable by an AF as well. In this work, we present a generic solution to this problem which applies to many prominent I-maximal argumentation semantics. In order to prove a full representation theorem, we make use of recent advances in both areas of argumentation and belief change. In particular, we utilize the concepts of realizability in argumentation and the notion of compliance as used in Horn revision.

1 Introduction

Argumentation has become a major research area in Artificial Intelligence (AI) over the last two decades [Bench-Capon and Dunne, 2007; Rahwan and Simari, 2009]. This is not only because of the intrinsic interest of this topic and recent applications (e.g. in legal reasoning [Bench-Capon et al., 2009] and E-Governance [Cartwright and Atkinson, 2009]) but also because there are fundamental connections between argumentation and other areas of AI, mainly non-monotonic reasoning.

The work by Dung [1995] on abstract argumentation, in particular, is usually seen as a significant landmark in the consolidation of the field of argumentation in AI. The central concern of abstract argumentation is the evaluation of a set of arguments and their relations in order to be able to extract subsets of the arguments, so called “extensions”, that can all be accepted together from some point of view. Dung’s argumentation frameworks (AFs), which are still the most widely used and investigated among the several argumentation formalisms, are directed graphs where nodes represent arguments and links correspond to one argument attacking another. The criteria or methods used to settle the acceptance of arguments, on the other hand, are called “semantics” (see [Baroni et al., 2011] for a recent overview).

Given that argumentation can be viewed as a process as well as a product, recent years have seen an increasing number of studies on different problems in the dynamics of argumentation frameworks [Baumann, 2012; Bisquert et al., 2011; 2013; Boella et al., 2009; Booth et al., 2013; Cayrol et al., 2010; Doutre et al., 2014; Kontarinis et al., 2013; Krümpelmann et al., 2012; Nouioua and Würbel, 2014; Sakama, 2014]. The problem we tackle here is how to revise an AF when some new information is provided. Along the lines of the AGM theory [Alchourrón et al., 1985; Gärdenfors, 1988], by revision we mean an operation that incorporates the new information while bringing minimal change to the extensions of the original AF.

To the best of our knowledge, this has first been considered for AFs explicitly in [Coste-Marquis et al., 2014a], where the problem of revision of AFs is defined as follows: given a semantics, an AF and a revision formula expressing how the status of some arguments has to be changed, find a set of AFs which satisfy the revision formula and whose extensions are as close as possible to the extensions of the input AF. Following the AGM approach, rationality postulates for a revision operator on AFs can be formulated and Coste-Marquis et al. [2014a] also provide a representation theorem. Such a result establishes a close link between obeying the postulates and exploiting a particular type of ranking on extensions of AFs in order to compute the output of revision. This approach is thus similar to the one by Katsumo and Mendelzon [1991].

In this work we study revision operators that produce a single AF as output. First, this is in accordance with the standard way of defining revision in the AGM theory where the result of revising an input theory by a revision formula is another theory. Second, revision yielding a single AF also makes concepts of iterated revision [Darwiche and Pearl, 1997; Spohn, 1988] amenable to argumentation. More specifically, we study two types of revision operators. The first type considers the new information represented as a propositional formula expressing the desired change in the extensions of the original AF. The second type is revision by an AF. Hence, the new information is restricted in the sense that it can only stem from another AF’s outcome. While the first type follows the framework of [Coste-Marquis et al., 2014a], the latter assumes that the knowledge to be incorporated (e.g. another agent’s beliefs) is in the form of an AF. It is more in line with work on Horn

∗Supported by the Austrian Science Fund (FWF) under grants I1102, P25518, P25521, W1255, and Y698.
revision [Delgrande and Peppas, 2015] where all involved formulas stem from the same fragment.

Our main contributions are as follows:

1. We derive full representation theorems for both mentioned types of revision; our results are, moreover, generic in the sense that they hold for a wide range of semantics including preferred, semi-stable, stage, and stable semantics.
2. For the revision-by-formula approach, we give novel notions of compliance [Delgrande and Peppas, 2015] in order to restrict the rankings. This is required to guarantee that the outcome of the corresponding operators can be expressed by an AF under a given semantics. To this end, exact knowledge about the expressiveness of argumentation semantics is needed. For most of the standard semantics, [Dunne et al., 2014] provides the necessary results.
3. In the revision-by-AF approach, we show that the concept of compliance can be dropped, thus standard revision operators satisfying all postulates like Dalal’s [1988] operator can be directly applied to revision of AFs. However, an additional postulate (again borrowed from [Delgrande and Peppas, 2015]) is needed for the representation theorem.

2 Preliminaries

We first recall basic notions of Dung’s abstract frameworks (the reader is referred to [Dung, 1995; Baroni et al., 2011] for further background), then present recent results from [Dunne et al., 2014] which we require for our results and finally define rankings as used in belief change of extensions.

We assume an arbitrary but finite domain \mathcal{A} of arguments. An argumentation framework (AF) is a pair $F = (A, R)$ where $A \subseteq \mathcal{A}$ is non-empty, and $R \subseteq A \times A$ is the attack relation. The collection of all AFs is given as $AF_{\mathcal{A}}$.

Given $F = (A, R)$, an argument $a \in A$ is defended (in F) by a set $S \subseteq A$ if for each $b \in A$ such that $(b, a) \in R$, there is a $c \in S$ with $(c, b) \in R$. A set T of arguments is defended (in F) by S if each $a \in T$ is defended by S (in F). A set $S \subseteq A$ is conflict-free (in F), if there are no arguments $a, b \in S$, such that $(a, b) \in R$. We denote the set of all conflict-free sets in F as $cf(F)$. A set $S \in cf(F)$ is called admissible (in F) if S defends itself. We denote the set of all admissible sets in F as $AF_{adm}(F)$. For $S \subseteq A$, the range of S (wrt. F), denoted S^+_F, is the set $S \cup \{a \mid \exists s \in S : (s, a) \in R\}$.

A semantics maps each $F \in AF_{\mathcal{A}}$ to a set of extensions $S \subseteq 2^A$. For the stable, preferred, stage, and semi-stable semantics respectively, the extensions are defined as follows:

- $S \in stb(F), \text{ if } S \in cf(F) \text{ and } S^+_F = A$;
- $S \in prf(F), \text{ if } S \in adm(F) \text{ and } \exists T \in adm(F) \text{ s.t. } T \supset S$;
- $S \in sig(F), \text{ if } S \in cf(F) \text{ and } \exists T \in cf(F) \text{ with } T^+_F \supset S^+_F$;
- $S \in sem(F), \text{ if } S \in adm(F) \text{ and } \exists T \in adm(F) \text{ s.t. } T^+_S \supset S^+_F$.

The signature Σ_σ of a semantics σ is defined as $\Sigma_\sigma = \{\sigma(F) \mid F \in AF_{\mathcal{A}}\}$, containing exactly those sets of extension which can be realized under σ. Exact characterizations of those sets for the aforementioned semantics have been given in [Dunne et al., 2014]. If S_1 and S_2 are two extensions such that $S_1 \neq S_2$, we say that S_1 and S_2 are \subseteq-comparable if $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$. We say that S_1 and S_2 are \subseteq-incomparable if they are not \subseteq-comparable. Some of our results will apply to semantics for which the following properties hold in terms of realizability:

Definition 1. A semantics σ is called proper I-maximal if for each $S \in \Sigma_\sigma$ it holds that (i) for any $S_1, S_2 \subseteq S$, $S_1 \subseteq S_2$ implies $S_1 = S_2$; (ii) $S' \subseteq S$ for any $S' \subseteq S$ with $S' \neq \emptyset$; and (iii) for any \subseteq-incomparable $S_1, S_2 \in 2^A$ it holds that $\{S_1, S_2\} \in \Sigma_\sigma$.

In words, an I-maximal [Baroni and Giacomin, 2007] semantics is proper if, for any AF F, we can realize any non-empty subset of $\sigma(F)$ under σ and on the other hand, for any pair of \subseteq-incomparable sets of arguments, we can find an AF having exactly these as extensions under σ.

The next observation follows from [Dunne et al., 2014].

Proposition 1. Preferred, stable, semi-stable and stage semantics are proper I-maximal.

Definition 2. Given a semantics σ, we define the function $f_{\sigma} : 2^A \rightarrow AF_{\mathcal{A}}$ mapping sets of extensions to AFs such that $f_{\sigma}(S) = F$ with $\sigma(F) = S$ if $S \in \Sigma_\sigma$ and $f_{\sigma}(S) = (\emptyset, \emptyset)$ otherwise.

Note that $S \in \Sigma_\sigma$ guarantees that we can find an AF which, when evaluated under σ results in S. We leave the exact specifications of such AFs open; canonical constructions for the semantics we consider can be found in [Dunne et al., 2014]. Such constructions may result in AFs with additional arguments to those contained in a $S \in \Sigma_\sigma$, although recent work on realizability in compact AFs [Baumann et al., 2014] could pave the way for constructions of AFs without new arguments. In general, f_{σ} is not unique. Nevertheless, throughout the paper we assume f_{σ} to be fixed for every σ.

By $\mathcal{P}_\mathcal{A}$ we denote the set of propositional formulas over \mathcal{A}, where the arguments in \mathcal{A} represent propositional variables. A set of arguments $E \subseteq \mathcal{A}$ can be seen as an interpretation, where $a \in E$ means that a is assigned true and $a \notin E$ means that a is assigned false. If a formula $\varphi \in \mathcal{P}_\mathcal{A}$ evaluates to true under an interpretation E, E is a model of φ. $[\varphi]$ denotes the set of models of φ. Moreover, $\varphi_1 \equiv \varphi_2$ if $[\varphi_1] = [\varphi_2]$.

A pre-order \preceq on 2^A is a reflexive, transitive binary relation on 2^A. If $E_1 \preceq E_2$ or $E_2 \preceq E_1$ for any $E_1, E_2 \in 2^A$, the pre-order is total. Moreover, for $E_1, E_2 \in 2^A$, $E_1 \prec E_2$ denotes the strict part of \preceq, i.e. $E_1 \preceq E_2$ and $E_2 \preceq E_1$. We write $E_1 \simeq E_2$ the case $E_1 \preceq E_2$ and $E_2 \preceq E_1$. An I-total pre-order \preceq' on 2^A is a pre-order on 2^A such that $E_1 \preceq E_2$ or $E_2 \preceq E_1$ for any pair E_1, E_2 of \subseteq-incomparable extensions. Finally, for a set of sets of arguments $S \subseteq 2^A$ and a pre-order \preceq, $\min(S, \preceq) = \{E_1 \in E \mid \exists E_2 \in S : E_2 \prec E_1\}$.

3 Representation Theorems

A key insight in belief change is the realization that any belief revision operator can be characterized using rankings on the possible worlds described by the language. Intuitively, the rankings can be thought of as plausibility relations on possible worlds. Revision by a formula φ then amounts to choosing the most plausible worlds among the models of φ. The fact that this strategy is sound with respect to the postulates is guaranteed by a representation result [Katsuno and Mendelzon, 1991].

2927
In our approach, subsets of $2^\mathbb{N}$ play the role both of extensions for AFs and models of propositional formulas, and will be the possible worlds that a revision operator chooses from. Consequently, we use rankings on $2^\mathbb{N}$ to characterize the class of revision operators for AFs. We employ two main types of rankings, introduced below.

Definition 3. Given a semantics σ, an \((I\text{-})faithful assignment\) maps every $F \in \mathcal{AF}_\mathbb{N}$ to an \((I\text{-})total pre-order \preceq_F on $2^\mathbb{N}$ such that, for any \((\subseteq\text{-}incomparable)} E_1, E_2 \in 2^\mathbb{N}$ and $F, F_1, F_2 \in \mathcal{AF}_\mathbb{N}$, it holds that:

$\begin{align*}
(i) \text{ if } E_1, E_2 \in \sigma(F), \text{ then } E_1 \approx E_2, \\
(ii) \text{ if } E_1, E_2 \notin \sigma(F), \text{ then } E_1 \nleq_F E_2, \\
(iii) \text{ if } \sigma(F_1) = \sigma(F_2), \text{ then } \preceq_{F_1} \leq \preceq_{F_2}.
\end{align*}$

The pre-order \preceq_F assigned to F by an \((I\text{-})faithful assignment\) is referred to as the \((I\text{-})faithful ranked associative with F.

Faithful assignments approximate the notion with the same name introduced by Katsuno and Mendelzon [1991]. I-faithful assignments differ in that they require the rankings to be I-total, thus allowing (but not requiring) them to be partial with respect to \subseteq-comparable pairs of extensions. Section 3.2 explains why we need to introduce this second type.

3.1 Revision by Propositional Formulas

We first consider revision of an AF by a propositional formula. Hence we are interested in operators of the form $* : \mathcal{AF}_\mathbb{N} \times \mathcal{P}_\mathbb{N} \rightarrow \mathcal{AF}_\mathbb{N}$ mapping an AF F and a consistent propositional formula φ to a revised AF $F * \varphi$. Intuitively, φ describes information which should be incorporated in F. To this end, the operator revises F such that the σ-extensions of F change according to the models of φ. We define the revision postulates adjusted to the AF scenario in a similar manner to [Coste-Marquis et al., 2014a].

$\begin{align*}
(\text{P}1) \sigma(F * \varphi) \subseteq [\varphi]. \\
(\text{P}2) \text{ If } \sigma(F) \cap [\varphi] \neq \emptyset \text{ then } \sigma(F * \varphi) = \sigma(F) \cap [\varphi]. \\
(\text{P}3) \text{ If } [\varphi] \neq \emptyset \text{ then } \sigma(F * \varphi) \neq \emptyset. \\
(\text{P}4) \text{ If } \varphi \equiv \psi \text{ then } \sigma(F * \varphi) = \sigma(F * \psi). \\
(\text{P}5) \sigma(F * \varphi) \cap [\psi] \subseteq \sigma(F * \varphi \land \psi). \\
(\text{P}6) \text{ If } \sigma(F * \varphi) \cap [\psi] \neq \emptyset \text{ then } \sigma(F * (\varphi \land \psi)) \subseteq \sigma(F * \varphi) \cap [\psi].
\end{align*}$

\(P1\) says that when we revise by φ, the extensions of the revision output should be among the interpretations that satisfy φ. \(P2\) specifies that if φ is consistent with F (in the sense that they share models), revision amounts to nothing more than taking the common models. \(P3\) says that if φ is a consistent formula, then revision by φ should also be consistent. \(P4\) guarantees irrelevance of syntax. \(P5\) and \(P6\) ensure that revision is performed with minimal change to the AF F. For further discussion on the motivation of the

1The restriction to consistent formulas is due to the fact that argumentation semantics usually are not capable of expressing the empty set of extensions. For semantics which can realize the empty set, such as the stable semantics, our results in this section apply even without this restriction.

postulates, see [Alchourrón et al., 1985; Gärdenfors, 1988; Katsuno and Mendelzon, 1991].

Due to reasons pointed out in the introduction we require the result of the revision to be a single AF. For this reason we face a similar challenge to that encountered in Horn revision [Delgrande and Peppas, 2015]. Specifically, it may be the case that a set of extensions Σ that is the desired outcome of the revision under a semantics σ cannot be realized under σ. To overcome this problem we use Σ_σ to define the following restriction on pre-orders, which we will need to obtain our representation theorem:

Definition 4. A pre-order \preceq is σ-compliant if for every consistent formula $\varphi \in \mathcal{P}_\mathbb{N}$ it holds that $\min([\varphi], \preceq) \in \Sigma_\sigma$.

Example 1. Consider the pre-order \preceq defined as $\{a, b, c\} \nleq \{a, c\} \nleq \{b\} \nleq \emptyset$. Now let $\varphi = \neg (a \land b \land c)$ and observe that $\min([\varphi], \preceq) = \{\{a\}, \{a, c\}, \{b\}\}$. From the results in [Dunne et al., 2014] we know that for $\sigma \in \{stb, pef, stg, sem\}$, $\{\{a\}, \{a, c\}, \{b\}\} \notin \Sigma_\sigma$, hence \preceq is not σ-compliant.

On the other hand let \preceq' be the pre-order defined as $\{a, b, c\} \nleq \{a\} \nleq \{a, b\} \nleq \{a, b, c\} \leq \emptyset$ followed by an arbitrary \prec'-chain of the remaining elements of $2^\mathbb{N}$. One can check that \preceq' is σ-compliant. For instance, $\min([\varphi], \preceq') = \{\{a\}, \{a, b\}, \{c\}\} \in \Sigma_\sigma$.

Note that for semantics considered in [Dunne et al., 2014], their results imply that checking whether a given pre-order is σ-compliant can be done in polynomial time. Using the notion of σ-compliance enables us to extend the AGM approach to capture the revision of argumentation frameworks under proper I-maximal semantics by propositional formulas.

Theorem 1. Let σ be a proper I-maximal semantics, $F \in \mathcal{AF}_\mathbb{N}$ and \preceq_F a σ-compliant and faithful ranking associated with F. Define an operator $* : \mathcal{AF}_\mathbb{N} \times \mathcal{P}_\mathbb{N} \rightarrow \mathcal{AF}_\mathbb{N}$ by

$F * \varphi = f_\sigma(\min([\varphi], \preceq_F))$.

Then $*_{\sigma}$ satisfies postulates P1 – P6.

Proof. First of all, by the definition of f_σ and due to the fact that \preceq_F is σ-compliant, we have that $\sigma(f_\sigma(\min([\varphi], \preceq_F))) = \min([\varphi], \preceq_F)$, hence $\sigma(F * \varphi) = \min([\varphi], \preceq_F)$. Therefore postulates P1 and P4 follow immediately.

If $\sigma(F) \cap [\varphi] \neq \emptyset$, it follows from \preceq_F being faithful that $\min([\varphi], \preceq_F) = \sigma(F) \cap [\varphi]$, satisfying P2.

P3 follows since \preceq_F is transitive and \mathbb{N} is finite and therefore if $[\varphi] \neq \emptyset$ then $[\varphi]$ has minimal elements, hence $\min([\varphi], \preceq_F) \neq \emptyset$.

P5 and P6 are trivially satisfied if $\sigma(F * \varphi) \cap [\psi] = \emptyset$. Assume $\sigma(F * \varphi) \cap [\psi] \neq \emptyset$ and, towards a contradiction, that there is some $E \in \min([\varphi], \preceq_F) \cap [\psi]$ with $E \nleq \min([\varphi \land \psi], \preceq_F)$. Since $E \in [\varphi \land \psi]$ there must be some $E' \in [\varphi \land \psi]$ with $E' \nleq_F E$, a contradiction to $E \in \min([\varphi], \preceq_F)$. Therefore $\sigma(F * \varphi) \cap [\psi] \subseteq \sigma(F * (\varphi \land \psi))$. To show that also $\sigma(F * (\varphi \land \psi)) \subseteq \sigma(F * \varphi \land \psi)$, assume $E \in \min([\varphi \land \psi], \preceq_F)$ and $E \nleq \min([\varphi], \preceq_F) \cap [\psi]$. Since $E \in [\varphi \land \psi]$, $E \nleq \min([\varphi], \preceq_F)$. Let $E' \in \min([\varphi], \preceq_F) \cap [\psi]$ (assumed to be nonempty). Then $E' \in [\varphi \land \psi]$ holds. As $E \in [\varphi \land \psi]$, $E' \nleq_E E'$. Hence $E \in \min([\varphi], \preceq_F)$ follows from $E' \in \min([\varphi], \preceq_F)$, a contradiction. \(\square\)
Theorem 2. Let $\ast_* : A F_{\sigma} \times P_{\alpha} \to A F_{\alpha}$ be an operator satisfying postulates $P_1 + P_5$ for a proper I-maximal semantics σ. Then, there exists a faithful assignment mapping every $F \in A F_{\alpha}$ to a faithful ranking \leq_F in 2^α such that \leq_F is σ-compliant and $\sigma(F \ast_\sigma \varphi) = \min\{\|\varphi\|, \leq_F\}$ for every $\varphi \in P_{\alpha}$.

Proof. For a set of interpretations S, we denote by $\mathfrak{S}(S)$ a formula with $\|S\| = S$. If the elements of $S = \{E_1, \ldots, E_n\}$ are given explicitly we also write $\mathfrak{S}(E_1, \ldots, E_n)$ for $\mathfrak{S}(S)$.

We define the binary relation \leq_F on 2^α as follows:

$E \leq_F E' \iff E \in \sigma(F \ast_\sigma \phi(E, E'))$.

We begin by showing that \leq_F is a total pre-order. It follows from P_4 and P_3 that $\sigma(F \ast_\sigma \phi(E, E'))$ is a non-empty subset of $\{E, E'\}$. Therefore \leq_F is total. Moreover, if $E = E'$ then $\sigma(F \ast_\sigma \phi(E)) = \{E\}$. Hence $E \leq_F E$ holds for each $E \in 2^\alpha$, i.e., \leq_F is reflexive.

In order to show transitivity of \leq_F, let $E_1, E_2, E_3 \in 2^\alpha$ and assume $E_1 \leq_F E_2$ and $E_2 \leq_F E_3$. By P_4 and P_3, $\sigma(F \ast_\sigma \phi(E_1, E_2, E_3))$ is a non-empty subset of $\{E_1, E_2, E_3\}$. First assume $\sigma(F \ast_\sigma \phi(E_1, E_2)) \cap \{E_1, E_2\} = \emptyset$. Then $\sigma(F \ast_\sigma \phi(E_1, E_2, E_3)) = \{E_3\}$. Knowing that $\sigma(F \ast_\sigma \phi(E_1, E_2)) = \sigma(F \ast_\sigma \phi(E_1, E_2, E_3)) = \sigma(F \ast_\sigma \phi(E_2, E_3))$, we obtain P_4 and P_6 that $\sigma(F \ast_\sigma \phi(E_1, E_2, E_3)) \subseteq \{E_1, E_2, E_3\}$. Thus, $E_1 \in \sigma(F \ast_\sigma \phi(E_1, E_2, E_3)) \cap \{E_1, E_2, E_3\}$. Also $E_2 \in \sigma(F \ast_\sigma \phi(E_1, E_2, E_3)) \cap \{E_1, E_2, E_3\}$. Hence $E_1 \in \sigma(F \ast_\sigma \phi(E_1, E_2, E_3))$.

Having shown that \leq_F is total, reflexive and transitive, it follows that \leq_F is a total pre-order. The following lemmata show that \ast_σ can indeed be simulated by \leq_F.

Lemma 1. Let $E_1, E_2 \in 2^\alpha$ such that $E_1 \leq_F E_2$. Then for all formulas $\varphi \in P_{\alpha}$, if $E_1 \in \{\varphi\}$ and $E_2 \in \sigma(F \ast_\sigma \varphi)$ then $E_1 \in \sigma(F \ast_\sigma \varphi)$.

Proof. Let φ be a formula such that $E_1 \in \{\varphi\}$ and $E_2 \in \sigma(F \ast_\sigma \varphi)$. Then from P_4 and P_6 it follows that $\sigma(F \ast_\sigma \varphi) \subseteq \{E_2\}$.

Lemma 2. For $\varphi \in P_{\alpha}$, $\min\{\|\varphi\|, \leq_F\} = \sigma(F \ast_\sigma \varphi)$ holds.

Proof. Let $\varphi \in P_{\alpha}$. Towards a contradiction assume that there is some $E_1 \in \min\{\|\varphi\|, \leq_F\}$ such that $E_1 \notin \sigma(F \ast_\sigma \varphi)$. Since $\|\varphi\| \neq 0$ it follows by P_3 that $\sigma(F \ast_\sigma \varphi) \neq 0$. Let $E_2 \in \sigma(F \ast_\sigma \varphi)$. Lemma 1 entails that $E_2 \leq_F E_1$. This also means, recalling that $E_1 \in \min\{\|\varphi\|, \leq_F\}$, that $E_2 \leq_F E_1$. But this means by the definition of \leq_F that $\sigma(F \ast_\sigma \varphi(\mathfrak{S}(E_1, E_2))) = \emptyset$, a contradiction to \ast_σ satisfying P_3.

From Lemma 2 it follows that \leq_F is σ-compliant. It remains to show that \leq_F is faithful wrt. F. If $\sigma(F) = 0$ this is trivially the case. Therefore assume $\sigma(F) \neq 0$. By P_2 we get $\sigma(F \ast_\sigma \phi(T)) = \sigma(F)$ (note that $|T| = 2^\alpha$). Hence $\sigma(F) = \min\{|T|, \leq_F\} = \min\{2^\alpha, \leq_F\}$, meaning that for $E_1, E_2 \in 2^\alpha$, $E_1 \leq_F E_2$ if $E_1, E_2 \in \sigma(F)$ and $E_1 \leq_F E_2$ if $E_1 \in \sigma(F)$ and $E_2 \notin \sigma(F)$. Therefore conditions (i) and (ii) from Definition 3 are fulfilled. Condition (iii) holds since \leq_F is defined with respect to the extensions of F, hence \leq_F is faithful wrt. F.

The attentive reader might have noticed that we did not make explicit use of the restriction to proper I-maximal semantics in the proofs above. It is rather used implicitly since, in general, rankings which are both faithful and σ-compliant only exist if σ fulfills property (ii) of proper I-maximality.

We can use the representation results obtained from Theorems 1 and 2 to define concrete operators via faithful and compliant rankings. For instance, the ranking \leq_F where the σ-extensions of F are the minimal elements and the remaining candidates in 2^α are ordered as a \prec-chain leads to a simple but natural operator for any semantics σ. The concrete contents of Σ_σ will be the crucial aspect to consider when defining more refined operators under a certain semantics σ.

3.2 Revision by Argumentation Frameworks

In this section we investigate operators $\ast_{\ast_*} : A F_{\alpha} \times A F_{\alpha} \to A F_{\alpha}$. Such operators map an AF F and an AF G to an AF $F \ast_{\ast_*} G$. The underlying concept of a model is given by the argumentation semantics σ. As before, we show a correspondence between a set of postulates and a class of rankings on 2^α. The revision postulates, in the manner of [Katsuno and Mendelzon, 1991], are formulated as follows:

(A-1) $\sigma(F \ast_{\ast_*} G) \subseteq \sigma(G)$.

(A-2) If $\sigma(F) \cap \sigma(G) \neq \emptyset$, then $\sigma(F \ast_{\ast_*} G) = \sigma(F) \cap \sigma(G)$.

(A-3) If $\sigma(G) = \emptyset$, then $\sigma(F \ast_{\ast_*} G) = \emptyset$.

(A-4) If $\sigma(G) = \{H\}$, then $\sigma(F \ast_{\ast_*} G) = \{F \ast_{\ast_*} H\}$.

(A-5) $\sigma(F \ast_{\ast_*} G) \cap \{H\} \subseteq \sigma(F \ast_{\ast_*} f_{\ast *}(\sigma(G) \cap \{H\}))$.

(A-6) If $\sigma(F \ast_{\ast_*} G) \cap \{H\} \neq \emptyset$, then $\sigma(F \ast_{\ast_*} f_{\ast *}(\sigma(G) \cap \{H\})) \subseteq \sigma(F \ast_{\ast_*} G)$. (Acy) If for $0 \leq i \leq n$, $(F \ast_{\ast_*} G_{n+1}) \cap \{G_i\} \neq \emptyset$ and $(F \ast_{\ast_*} G_0) \cap \{G_n\} \neq \emptyset$ then $\sigma(F \ast_{\ast_*} G_0) \cap \{G_n\} \neq \emptyset$.

Postulate (Acy) is borrowed from [Delgrande and Peppas, 2015]. Its addition to the set of postulates is motivated by the following problem. Suppose that for an AF F we have a
In the following we show that \preceq works. Given a revision operator I-faithful assignments, motivated by the way in which proper I-maximal semantics σ satisfies postulates A, E and related properties. Thus, we know that $\sigma(\{a\})$ is defined and $\sigma(G_0 \cap \sigma(G_0) \neq \emptyset)$. Hence there is an extension $E_0 \preceq F$ for all $E_0 \in \sigma(G_0)$.

Finally, from $\{F \cap G_0 \cap \sigma(G_0) \neq \emptyset\}$ it follows that there is some $E'' \in \sigma(G_0)$ with $E'' \preceq F$ for all $E'' \in \sigma(G_0)$ and $E'' \in \sigma(G_0)$. From transitivity of $\preceq F$ we get $E'' \preceq F$ for all $E'' \in \sigma(G_0)$. From transitivity of $\preceq F$ we get $E'' \preceq F$ for all $E'' \in \sigma(G_0)$.

Nonetheless, non-transitive cycles are something we want to avoid: since a natural reading of the rankings on $2^{\mathbb{A}}$ is as plausibility relations, we would like these rankings to be transitive, and it is thus undesirable to have revision operators that characterize non-transitive rankings. In order to prevent this situation we make use of Acyc.

The second detail that needs to be mentioned is our use of I-faithful assignments, motivated by the way in which proper I-maximal semantics work. Given a revision operator σ and $F \in AF_\mathbb{A}$, the natural way to rank two extensions E_1 and E_2 is by appeal to $F_\sigma \{E_1, E_2\}$: if $E_1 \in \sigma(F_\sigma \{E_1, E_2\})$, then E_1 is considered ‘more plausible’ than E_2 and it should hold that $E_1 \preceq F_\mathbb{A}$ E_2. However, by proper I-maximality of σ, $f_\sigma \{E_1, E_2\}$ exists only if E_1 and E_2 are \subseteq-incomparable. Thus if E_1 and E_2 are \subseteq-incomparable, σ might not have any means to adjudicate between E_1 and E_2, hence it is natural to allow them to be incomparable with respect to $\preceq F$.

Given this preliminaries, we can now state our main representation results.

Theorem 3. Let σ be a proper I-maximal semantics, $F \in AF_\mathbb{A}$ and $\preceq F$ an I-faithful ranking associated with F. Define an operator $\sigma \cdot F : AF_\mathbb{A} \times AF_\mathbb{A} \rightarrow AF_\mathbb{A}$ by:

$$F_\sigma \cdot G = f_\sigma(\min(\sigma(G), \preceq F)).$$

Then σ satisfies postulates $A \approx 1 \rightarrow A \approx 6$ and Acyc.

Proof. Since σ is proper I-maximal, any non-empty subset of $\sigma(G)$ (in particular, $\min(\sigma(G), \preceq F)$)} is realizable under σ. Thus $\sigma_\cdot F$ is well-defined and we do not need to add any extra condition on $\preceq F$, such as σ-compliance. Keeping this in mind, the proof that $A \approx 1 \rightarrow A \approx 6$ hold is entirely similar to Theorem 1. In the following we show that Acyc also holds.

Let G_0, G_1, \ldots, G_n be a sequence of AFs such that for all $i \in \{1, \ldots, n\}$, $(F_\sigma \cdot G_i) \capDe \sigma(G_{i+1}) \neq \emptyset$ and $(F_\sigma \cdot G_i) \capDe \sigma(G_0) \neq \emptyset$ holds. From $(F_\sigma \cdot G_i) \capDe \sigma(G_0) \neq \emptyset$ we derive by proper I-maximality of σ that $\min(\sigma(G_i), \preceq F) \capDe \sigma(G_0) \neq \emptyset$. Hence there is an extension $E_0 \preceq F_\mathbb{A}$ for all $E_0 \in \sigma(G_0)$.

Likewise we get from $(F_\sigma \cdot G_i) \capDe \sigma(G_0) \neq \emptyset$ that there is an extension $E_1 \preceq F_\mathbb{A}$ for all $E_1 \in \sigma(G_2)$, and from $(F_\sigma \cdot G_i) \capDe \sigma(G_0) \neq \emptyset$ that there is an extension $E_n \preceq F_\mathbb{A}$ for all $E_n \in \sigma(G_n)$. From transitivity of $\preceq F$ we get $E_n \preceq F_\mathbb{A}$ for all $E_n \in \sigma(G_n)$. Finally, from $(F_\sigma \cdot G_i) \capDe \sigma(G_0) \neq \emptyset$ it follows that there is some $E'' \in \sigma(G_0)$ with $E'' \preceq F_\mathbb{A}$ for all $E'' \in \sigma(G_0)$ and $E'' \in \sigma(G_n)$. Now from $E'' \preceq F_\mathbb{A}$ for all $E'' \in \sigma(G_n)$ it follows that $E'' \preceq F_\mathbb{A}$ for all $E'' \in \sigma(G_n)$.

Hence $(F_\sigma \cdot G_n) \capDe \sigma(G_0) \neq \emptyset$.

Theorem 4. Let $\sigma : AF_\mathbb{A} \times AF_\mathbb{A} \rightarrow AF_\mathbb{A}$ be an operator satisfying postulates $A \approx 1 \rightarrow A \approx 6$ and Acyc for a proper I-maximal semantics σ. There, then, exists an I-faithful assignment mapping every $F \in AF_\mathbb{A}$ on an I-faithful ranking $\preceq F$ on $2^{\mathbb{A}}$ such that $F_\sigma G = f_\sigma(\min(\sigma(G), \preceq F))$ for any $G \in AF_\mathbb{A}$.

Proof. Assume there is $\sigma : AF_\mathbb{A} \times AF_\mathbb{A} \rightarrow AF_\mathbb{A}$ satisfying postulates $A \approx 1 \rightarrow A \approx 6$ and Acyc, and take an $F \in AF_\mathbb{A}$. We construct $\preceq F$ in two steps. First we define a relation $\preceq' F$ on $2^{\mathbb{A}}$ by saying that for any two \subseteq-incomparable $E, E' \in 2^{\mathbb{A}}$:

$$E \preceq' F E' \quad \text{iff} \quad E \in \sigma(F_\sigma \cdot f_\sigma(\{E, E'\})).$$

The relation $\preceq' F$ is reflexive, as $A \approx 1$ and $A \approx 3$ imply that $E \in \sigma(F_\sigma \cdot f_\sigma(\{E, E'\}))$, but not necessarily total. In the next step we take $\preceq F$ to be the transitive closure of $\preceq' F$. In other words:

$$E \preceq F E' \quad \text{iff there exist } E_1, \ldots, E_n \text{ such that:}$$

$$E_1 = E, E_n = E' \text{ and } E_1 \preceq F \cdots \preceq F E_n.$$

The remainder of the proof shows that $\preceq F$ is the desired I-faithful ranking. First, notice that if $E_1 \preceq F E_2$ then $E_1 \preceq F E_2$. Hence $\preceq F$ is reflexive and, by construction, it is transitive, which makes it a pre-order on $2^{\mathbb{A}}$. Additionally, for any two \subseteq-incomparable extensions E_1, E_2, proper I-maximality of σ guarantees that $f_\sigma(\{E_1, E_2\})$ exists. By $A \approx 1$ and $A \approx 3$, $\sigma(F_\sigma \cdot f_\sigma(\{E_1, E_2\}))$ is a non-empty subset of $\{E_1, E_2\}$, therefore $E_1 \preceq F E_2$ or $E_2 \preceq F E_1$ and $\preceq F$ is I-total. Next we argue that $\preceq F$ is I-faithful ranking.

Due to proper I-maximality of σ, a set $\{E_1, E_2\}$ is realizable whenever E_1 and E_2 are \subseteq-incomparable. Thus, we usually write simply $\{E_1, E_2\}$ instead of $\sigma(f_\sigma(\{E_1, E_2\}))$.
Thus in the following we assume that $E_n \subseteq E$. It follows that $E_1 \in \sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\}$. Since $E_1 \in \sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\}$, for $i \in \{2, ..., n-1\}$, and $E_n \in \sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\}$, Applying Acyc, we get that $\sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\} \neq \emptyset$. From A5 and A6 it follows that $\sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\} = \sigma(F \ast_f \{E_1, E_2\}) \cap \{E_1, E_2\}$. Since $\{E_1, E_2\} \cap \{E_1, E_2\} = \{E_1\}$ we get by A44 that $\sigma(F \ast_f \{E_1, E_2\}) = \sigma(F \ast_f \{E_1\})$. Finally, using A1 and A3 we conclude that $\sigma(F \ast_f \{E_1\}) = \{E_1\}$, and thus $E_1 \in \sigma(F \ast_f \{E_1, E_2\})$, implying $E_1 \not\geq F E_n$.

Lemma 5. For any extensions E and E', if $E \not\geq F E'$ then $E \not\geq F E'$.

Proof. Suppose, on the contrary, that $E' \not\geq F E$. Then there exist $E_1, ..., E_n$ such that $E_1 = E'$, $E_n = E$ and $E_1 \not\geq F \cdots \not\geq F E_n$. Since we also have $E \not\geq F E'$, we can apply Lemma 4 to get $E_1 \not\geq F E_n$, a contradiction.

Lemma 6. If E_1 and E_2 are \subseteq-incomparable extensions and $E_1 \in \sigma(F)$, $E_2 \notin \sigma(F)$, then $E_1 \not\geq F E_2$.

Proof. By proper I-maximality of σ and A2 we get $\sigma(F \ast_f \{E_1, E_2\}) = \sigma(F) \cap \{E_1, E_2\} = \{E_1\}$. This implies that $E_1 \not\geq F E_2$, and by Lemma 5 $E_1 \not\geq F E_2$.

Lemma 7. For any two extensions E_1, E_2 and any $G \in AF_{\Sigma}$, if $E_1 \in \sigma(G)$, $E_2 \in \sigma(F \ast_g G)$ and $E_1 \not\geq F E_2$, then $E_1 \in \sigma(F \ast_g G)$.

Proof. Since $E_2 \in \sigma(F \ast_g G)$, by A1 we get that $E_2 \in \sigma(G)$. Thus E_1 and E_2 are both σ-extensions of G, and by proper I-maximality of σ, $\sigma(\{E_1, E_2\})$ exists. Given this, the rest of the proof is similar to the one for Lemma 1.

Lemma 8. For any $G \in AF_{\Sigma}$, $\min(\sigma(G), \not\geq F) = \sigma(F \ast_g G)$.

Proof. Keeping in mind that for any two σ-extensions E_1, E_2 of G, by proper I-maximality of σ, $E_1 \not\geq F E_2$ or $E_2 \not\geq F E_1$, the proof is similar to the one for Lemma 1.

Lemma 9. For any argumentation framework $G \in AF_{\Sigma}$, it holds that $\min(\sigma(G), \not\geq F) = \min(\sigma(G), \not\geq F)$.

Proof. Let $E_1 \in \min(\sigma(G), \not\geq F)$ and suppose there exists $E_2 \in \sigma(G)$ with $E_2 \not\geq F E_1$. By Lemma 5, this implies that $E_2 \not\geq F E_1$, a contradiction to $E_1 \in \min(\sigma(G), \not\geq F)$. It follows that $E_1 \not\geq F E_2$, thus $E_1 \in \min(\sigma(G), \not\geq F)$. Hence $E_1 \not\geq F E_2$ or $E_2 \not\geq F E_1$. We cannot have that $E_2 \not\geq F E_1$, since this would contradict the hypothesis that $E_1 \in \min(\sigma(G), \not\geq F)$. Therefore $E_1 \not\geq F E_2$. In both cases it follows that $E_1 \not\geq F E_2$, hence $E_1 \in \min(\sigma(G), \not\geq F)$.

Lemma 10. Let $E_n \in \min(\sigma(G), \not\geq F)$ and suppose there exists $E_n \in \sigma(G)$ with $E_n \not\geq F E_1$. By Lemma 5, this implies that $E_n \not\geq F E_1$, a contradiction to $E_1 \in \min(\sigma(G), \not\geq F)$. It follows that $E_1 \not\geq F E_n$, thus $E_1 \in \min(\sigma(G), \not\geq F)$.

Lemma 11. Let $E_n \in \min(\sigma(G), \not\geq F)$ and any $E_2 \in \sigma(G)$. If $E_2 = E_1$, it follows that $E_1 \not\geq F E_2$. If $E_2 \neq E_1$, then by proper I-maximality of σ, E_1 and E_2 are \subseteq-incomparable and thus $E_1 \not\geq F E_2$. We cannot have that $E_2 \not\geq F E_1$, since this would contradict the hypothesis that $E_1 \in \min(\sigma(G), \not\geq F)$. Therefore $E_1 \not\geq F E_2$. In both cases it follows that $E_1 \not\geq F E_2$, hence $E_1 \in \min(\sigma(G), \not\geq F)$.

Lemma 12. Let $E_n \in \min(\sigma(G), \not\geq F)$ and any $E_2 \in \sigma(G)$. If $E_2 = E_1$, it follows that $E_1 \not\geq F E_2$. If $E_2 \neq E_1$, then by proper I-maximality of σ, E_1 and E_2 are \subseteq-incomparable and thus $E_1 \not\geq F E_2$. We cannot have that $E_2 \not\geq F E_1$, since this would contradict the hypothesis that $E_1 \in \min(\sigma(G), \not\geq F)$.
Conclusion and Outlook We have presented a generic solution to the problem of revision for argumentation frameworks which applies to many prominent I-maximal argumentation semantics. The key to obtain our AGM-style representation theorems was the combination of recent advances from argumentation theory and belief change. We identify several directions for future work: (1) extend our results to semantics which are not proper I-maximal; (2) identify operators based on σ-compliant rankings for specific semantics σ; (3) analyze whether our insights can be extended to a broader theory of belief change within fragments; (4) apply our findings to other belief change operations. In particular, iterated belief revision seems to have natural applications in the argumentation domain and we believe that the understanding of revision yielding a single AF is fundamental for this purpose; (5) take the syntactic form of the AF into account. One possibility would be a two-step approach, where our abstract revision is the first step. Based on this result, a second step would revise the syntactic structure of the AF.

References

