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Abstract
The square of opposition is a structure involv-
ing two involutive negations and relating quanti-
fied statements, invented in Aristotle time. Redis-
covered in the second half of the XXth century,
and advocated as being of interest for understand-
ing conceptual structures and solving problems in
paraconsistent logics, the square of opposition has
been recently completed into a cube, which cor-
responds to the introduction of a third negation.
Such a cube can be encountered in very differ-
ent knowledge representation formalisms, such as
modal logic, possibility theory in its all-or-nothing
version, formal concept analysis, rough set theory
and abstract argumentation. After restating these
results in a unified perspective, the paper proposes a
graded extension of the cube and shows that several
qualitative, as well as quantitative formalisms, such
as Sugeno integrals used in multiple criteria aggre-
gation and qualitative decision theory, or yet belief
functions and Choquet integrals, are amenable to
transformations that form graded cubes of opposi-
tion. This discovery leads to a new perspective on
many knowledge representation formalisms, laying
bare their underlying common features. The cube
of opposition exhibits fruitful parallelisms between
different formalisms, which leads to highlight some
missing components present in one formalism and
currently absent from another.

1 Introduction
One may consider that the first attempt at modeling reasoning
tasks was the study of syllogisms, which started in Greek An-
tiquity, and was pursued across centuries, until Euler [1768]
and Gergonne [1816] [Faris, 1955] provided results establish-
ing those syllogisms that are valid, and those ones that are
not on a rigorouds basis [Marquis et al., 2014]. This hap-
pened long before the advent of artificial intelligence (AI).
At the same time, Aristotle and his school also introduced
the square of opposition [Parsons, 2008], a device that ex-
hibits different forms of opposition between universally or
existentially quantified statements that may serve as premises
of syllogisms. The oppositions in the square are the result

of the interplay between an “external” negation and an “in-
ternal” negation, both being involutive. The interest for this
square seems to vanish with the advent of modern logic at
the end of the XIXth century. A revival of interest for op-
position structures began to take place in the 1950’s when a
French logician, Robert Blanché [1953] discovered that the
square could be completed into a hexagon containing three
squares, which was echoing the organization of many con-
ceptual structures, such as, e.g., mathematical comparators,
or deontic modalities [Blanché, 1966]. This interest was con-
firmed later, when the square and hexagon structures were
found useful for solving questions, in particular in paracon-
sistent modal logic [Béziau, 2003; 2012] .

More recently, it was pointed out that a particular cubic ex-
tension of the square of opposition, involving a third negation,
can be encountered in different knowledge representation for-
malisms used in AI, namely modal logic, possibility theory in
its all-or-nothing version, formal concept analysis, rough set
theory and abstract argumentation [Dubois and Prade, 2012a;
Amgoud and Prade, 2013; Ciucci et al., 2014]. This state of
facts is quite striking since these formalisms have been devel-
oped independently of each other, and often with the goal of
addressing very different aspects or problems in knowledge
representation. The expected benefits of discovering such
analogies between formalisms that have different concerns,
are twofold. The discovery of this cubic structure of oppo-
sition at work inside a formalism may shed new light in its
understanding, and more importantly this may help discover
new components, neglected so far, in a formalism, while their
counterparts in another formalism are well-known and play
an important role.

The square and then the cube of opposition are structures
where the vertices are traditionally associated with statements
which are true or false or which exhibit binary-valued modal-
ities. In the following we shall show that it makes sense to
extend the square and the cube to graded structures. Then
we can envisage to study more formalisms from the cube of
opposition point of view, such as (graded) possibility theory,
qualitative multiple criteria aggregation operations, and more
generally Sugeno integrals; or more quantitative notions such
as belief functions or Choquet integrals.

The paper is organized as follows. Section 2 provides a
brief refresher on the square, hexagon, and cube of opposi-
tion. In Section 3, we exhibit a basic reading of the cube in
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terms of set indicators, closely related to Boolean possibil-
ity theory, and we show how complementary are the different
pieces of information displayed on the cube. In Section 4,
another basic reading in terms of relational composition is re-
called, which explains why modal logic, formal concept anal-
ysis, rough set theory and abstract argumentation are under-
lain by the cubic structure of opposition. Section 5 discusses
how the cube naturally extends to graded structures. This is
exemplified in Section 6 with multiple criteria aggregation
and Sugeno integrals, and in Section 7 with belief functions
and Choquet integrals.

2 Square and cube
The traditional square of opposition [Parsons, 2008] is built
with universally and existentially quantified statements in the
following way. Consider a statement (A) of the form “all P ’s
are Q’s”, which is negated by the statement (O) “at least a P
is not a Q”, together with the statement (E) “no P is a Q”,
which is clearly in even stronger opposition to the first state-
ment (A). These three statements, together with the negation
of the last statement, namely (I) “at least a P is a Q” can be
displayed on a square whose vertices are traditionally denoted
by the letters A, I (affirmative half) and E, O (negative half),
as pictured in Figure 1 (where Q stands for “not Q”).

Contraries
A: all P ’s are Q’s E: all P ’s are Q’s

Sub-alterns

Sub-contraries
I: at least a P is a Q O: at least a P is a Q

Su
b-

al
te

rn
s ContradictoriesContra

dictories

Figure 1: Square of opposition

As can be checked, noticeable relations hold in the square:
- (i) A and O (resp. E and I) are the negation of each other;
- (ii) A entails I, and E entails O (it is assumed that there

is at least a P for avoiding existential import problems);
- (iii) together A and E cannot be true, but may be false ;
- (iv) together I and O cannot be false, but may be true.
Blanché [1953; 1966] noticed that adding two vertices U

and Y defined respectively as the disjunction of A and E, and
as the conjunction of I and O, leads to a hexagon AUEOYI
that includes 3 squares of opposition, AEOI, YAUO, YEUI
each of them exhibiting the four types of relation above. Such
a hexagon is obtained each time we start with 3 mutually ex-
clusive statements, such as A, E, and Y [Dubois and Prade,
2012a]. Hexagons may be clearly of interest in AI for ar-
gumentation, rough set and formal concept analysis theories
[Amgoud and Prade, 2012; Ciucci et al., 2014]. However, we
leave them out of the scope of this study, due to space limita-
tion, for focusing on another extension of the square, namely
the cube of opposition.

Switching to first order logic notations, and negating the
predicates, i.e., changingP into¬P , andQ in¬Q leads to an-
other similar square of opposition aeoi, where we also assume

that the set of “not-P ’s” is non-empty. Then the 8 statements,
A, I, E, O, a, i, e, o may be organized in what may be called a
cube of opposition [Dubois and Prade, 2012a] as in Figure 2.
The front facet and the back facet of the cube are traditional
squares of opposition, where the thick non-directed segment
relates the contraries, the double thin non-directed segments
the sub-contraries, the diagonal dotted non-directed lines the
contradictories, and the vertical uni-directed segments point
to subalterns, and express entailments.

i: ∃x,¬P (x) ∧ ¬Q(x)

I:∃x, P (x)∧Q(x) O: ∃x, P (x) ∧ ¬Q(x)

o:∃x,¬P (x)∧Q(x)

a: ∀x,¬P (x)→ ¬Q(x)

A:∀x,P (x)→Q(x) E: ∀x, P (x)→ ¬Q(x)

e: ∀x,¬P (x)→ Q(x)

Figure 2: Cube of opposition of quantified statements

Assuming that there are at least a P ’s and at least a not-
P ’s entails that there are at least a Q’s and at least a not-Q’s.
Then, we have that A entails i, a entails I, e entails O, and E
entails o. Note also that vertices a and E, as well as A and e
cannot be true together (e.g., having both A and e true would
contradict that ∃x,¬Q(x)), while vertices i and O, as well as
I and o cannot be false together. Lastly note that there is no
logical link between A and a, E and e, I and i, or O and o.

Interestingly enough, it can be checked that Piaget’s
group of transformations I , N , R, C [Piaget, 1953] is at
work in the diagonal plans of the cube pictured in Figure
2. This group applies to any statement Φ(p, q, · · · ) map-
pings N(Φ(p, q, · · · )) = ¬Φ(p, q, · · · ), R(Φ(p, q, · · · )) =
Φ(¬p,¬q, · · · ), C(Φ(p, q, · · · )) = ¬Φ(¬p,¬q, · · · ), where
p, q denote literals, and I is the identity. Indeed, we have
a = R(A), o = N(a), o = C(a), and N ◦R ◦C = I . In this
view, two involutive negations are involved, an external one
N , an internal one R. Still considering the initial square, the
“internal” negation only pertains to Q, while a second “in-
ternal” negation pertains to P only, when moving from the
square to the cube. This is made clearer with the relational
view of the cube. Clearly the involution property of nega-
tion is crucial for getting the cube properties, as well as the
contrapositive property of the implication.

3 The relational cube
It has been recently noticed [Ciucci et al., 2014] that any bi-
nary relation R on a Cartesian product X ×Y (one may have
Y = X) gives birth to a cube of opposition, when applied to a
subset. We assume R 6= ∅. Let xR = {y ∈ Y | (x, y) ∈ R}.
R denotes the complementary relation (xRy iff (x, y) 6∈ R),
andRt the transposed relation (xRty if and only if yRx); yRt
is equivalently denoted Ry = {x ∈ X | (x, y) ∈ R}. More-
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over, it is assumed that ∀x, xR 6= ∅, which means that the re-
lation R is serial, namely ∀x,∃y such that (x, y) ∈ R. Simi-
larlyRt is also supposed to be serial, i.e., ∀y, Ry 6= ∅, as well
as R and its transpose, i.e. ∀x, xR 6= Y and ∀y, Ry 6= X .

Let T be a subset of Y and T its complement. We assume
T 6= ∅ and T 6= Y . The composition is defined in the usual
way R(T ) = {x∈X | ∃t∈T, (x, t) ∈ R}. From the relation
R and the subset T , one can define the four following subsets
of X (and their complements):

R(T ) = {x∈ X | T ∩ xR 6= ∅} (1)

R(T ) = {x∈X | xR ⊆ T} (2)

R(T ) = {x ∈ X | T ⊆ xR} (3)

R(T ) = {x ∈ X | T ∪ xR 6= X} (4)

These 4 subsets and their complements can be nicely orga-
nized into a cube of opposition (Fig.3). It can be checked that
set counterparts of the relations existing between the logical
statements of the vertices of the cube in Fig. 2 still hold:

i) diagonals in front and back facets link complements ;
ii) R(T ) ⊆ R(T ), R(T ) ⊆ R(T ), R(T ) ⊆ R(T ), and

R(T ) ⊆ R(T ) as well as R(T ) ⊆ R(T ), R(T ) ⊆ R(T ),
R(T )⊆R(T ), and R(T )⊆R(T ) thanks to the seriality hy-
potheses; these inclusions are pictured by arrows in Fig. 3;

iii)R(T )∩R(T ) = ∅, R(T )∩R(T ) = ∅, R(T )∩R(T ) =

∅, and R(T ) ∩ R(S) = ∅; these empty intersections corre-
spond to the thick lines in Fig. 3; moreover one may have
R(T ) ∪R(T ) 6= Y , etc.;

iv) R(T ) ∪ R(T ) = X , R(T ) ∪ R(T ) = X , R(T ) ∪
R(T ) = X , and R(T )∪R(T ) = X; moreover one may have
R(T ) ∩ R(T ) 6= ∅, etc.; these full unions corresponds to the
double thin lines in Fig. 3.

Conditions (iii)-(iv) hold also thanks to seriality.

i: R(T )

I: R(T ) O: R(T )

o: R(T )

a: R(T )

A: R(T ) E: R(T )

e: R(T )

Figure 3: Cube induced by a relation R and a subset T

The front facet of the cube fits well with the modal logic
reading of the square where R is viewed as an accessibility
relation defined on X × X , and T as the set of models of
a proposition p. Indeed, 2p (resp. 3p) is true in world x
means that p is true at every (resp. at some) possible world
accessible from x; this corresponds to R(T ) (resp. R(T ))

which is the set of worlds where 2p (resp. 3p) is true. More-
over, A entails I is axiom (D) of modal logic, known to re-
quire serial accessibility relations [Chellas, 1980]. Building a
modal logic including all modalities appearing as vertices of
the whole cube makes sense in epistemic logic. Then there
are two distinct modalities, one expressing what is known at
least (R(T )) and the other what is known at most (R(T ))
[Dubois et al., 2000]. The conjunction of these two modal-
ities is the basis for expressing “only knowing” [Levesque,
1990]. These two modalities also appear when modeling both
beliefs and desires [Dubois et al., 2013].

Other than the semantics of modal logics, there are a num-
ber of AI formalisms that exploit a relation: formal con-
cept analysis [Ganter and Wille, 1999], where the relation
is a formal context R ⊆ X × Y linking objects and their
properties, rough sets [Pawlak, 1991] that are induced by an
indiscernibility relation, or abstract argumentation based on
an attack relation between arguments [Dung, 1995]. For-
mal concepts are defined as pairs (S, T ) ⊆ X × Y such
as R(T ) = S and Rt(S) = T , which corresponds to the
use of Eq. (3). However, putting formal concept analysis
in the cube perspective, leads to consider the operators de-
fined by the three other equations as, well, which turns to
be fruitful [Dubois and Prade, 2012a; Ciucci et al., 2014;
Dubois and Prade, 2012b], e.g., Eq. (2) is at the basis of
the definition of independent sub-contexts [Dubois and Prade,
2012b]. Rough set upper and lower approximations are de-
fined from a relation R on X × X by means of Eq. (1) and
Eq. (2), where xR is the set of elements that are indiscernible
from x w.r.t. R; see [Ciucci et al., 2014] for a preliminary
discussion of the interest of considering the other equations
as well in settings extending rough sets beyond the starting
case where R is an equivalence relation. For abstract argu-
mentation, it is beneficial to consider the complement of the
attack relation between arguments, since then the counterpart
of a formal concept is a stable extension, and the different
subsets of arguments associated to the vertices of the cube
are worth of interest [Amgoud and Prade, 2012].

4 Cube of indicators. All-or-nothing possibility
Another simple, non relational, reading of the cube in terms
of set indicators, not considered until now, is also of interest.
Going back to the cube of Fig. 2 the entailments of the top
facet may be rewritten in terms of empty intersections of sets
of objects A, B, and their complements A, B, while the bot-
tom facets refer to non empty intersections. See Fig.4. Note
that we assume A 6= ∅, A 6= ∅, B 6= ∅, and B 6= ∅ here,
for avoiding the counterpart of the existential import prob-
lems, since now the sets A and B play symmetric roles in the
statements associated to the vertices of the cube.

It is worth noticing that the side facets of the cube of Fig. 4
exhibit the four basic comparison indicators between existing
between two sets A and B, namely what they have in com-
mon positively (S = A ∩ B), or negatively (T = A ∩ B),
how A differs from B (U = A ∩B), and how B differs from
A (V = A ∩ B). When comparing two subsets, considering
that a set indicator can be empty or not, we have 24 = 16
configurations that are summarized in Table 1.
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i: A ∩B 6= ∅

I: A ∩B 6= ∅ O: A ∩B 6= ∅

o:A ∩B 6= ∅

a: A ∩B = ∅

A: A ∩B = ∅ E: A ∩B = ∅

e:A ∩B = ∅

Figure 4: Cube of opposition of comparison indicators

configuration S = U = V = T =

A ∩ B A ∩ B A ∩ B A ∩ B
6= ∅ 6= ∅ 6= ∅ 6= ∅

1 A ∩ B 6= ∅, A 6⊆ B; 1 1 1 1
B 6⊆ A;A ∪ B 6= U

2 A ∩ B 6= ∅, A 6⊆ B; 1 1 1 0
B 6⊆ A;A ∪ B = U

3 B ⊂ A ⊂ U 1 1 0 1
4 B ⊂ A;A = U 1 1 0 0
5 A ⊂ B ⊂ U 1 0 1 1
6 A ⊂ B;B = U 1 0 1 0
7 A = B ⊂ U 1 0 0 1
8 A = B = U 1 0 0 0
9 A ∩ B = ∅;A ∪ B 6= U 0 1 1 1
10 A ∩ B = ∅;A ∪ B = U 0 1 1 0
11 A ⊂ U;B = ∅; 0 1 0 1
12 A = U;B = ∅ 0 1 0 0
13 A = ∅;B ⊂ U 0 0 1 1
14 A = ∅;B = U 0 0 1 0
15 A = B = ∅;U 6= ∅ 0 0 0 1
16 A = B = ∅ = U 0 0 0 0

Table 1: Respective configurations of two subsets

As can be seen in Table 1, lines 1 and 2 correspond to
situations of overlapping without inclusion, with coverage
(A ∪ B = U) or not. Lines 3, 4, 5 and 6 correspond to situ-
ations of inclusion, with coverage or not. Lines 7 and 8 cor-
respond to situations of equality, with coverage or not. Lines
9 and 10 correspond to situations of non overlapping, with
coverage or not. The last 6 lines correspond to pathological
situations whereA orB are empty, with coverage or not. This
shows that the four tests (indicators) in Table 1are jointly nec-
essary for describing all the possible situations pertaining to
the relative position of two subsets A and B, possibly empty,
in a referential U . Moreover, the following properties can also
be checked in Table 1.

- S ∪ T ∪ U ∪ V = U .
This means that the 4 sets cannot be simultaneously empty,

except if referential U is empty which is line 16 in Table 1.
- If A 6= ∅, B 6= ∅, A 6= U , B 6= U , we have

If A∩B = ∅ or A∩B = ∅, then A∩B 6= ∅ and A∩B 6= ∅.
This corresponds to lines 1, 2, 3, 5, 7, 9, 10 in Table 1.

This also corresponds to the 5 possible configurations of two
non-empty subsetsA andB (lines 1, 3, 5, 7, 9), first identified
by Gergonne [Gergonne, 1816; Faris, 1955] when discussing
syllogisms, plus two configurations (lines 2, 10) where A ∪
B = U (but where A 6= U , B 6= U).

One merit of the cube of Fig. 4 is that it becomes obvi-
ous that the cube of opposition encompasses an all-or-nothing
version of possibility theory, as noticed in a different way in

[Dubois and Prade, 2012a]. Indeed, let B = E (E 6= ∅,
E 6= U) represents the available evidence, namely, we know
that real world is in E. Then considering an event A, the
vertices A, I, a and i respectively corresponds exactly to
N(A) = 1 (defined by N(A) = 1 if A ⊆ E, and N(A) = 0
otherwise), Π(A) = 1 (defined by Π(A) = 1 if A ∩ E 6= ∅,
and Π(A) = 0 otherwise), ∆(A) = 1 (defined by ∆(A) = 1
if E ⊆ A, and ∆(A) = 0 otherwise), ∇(A) = 1 (de-
fined by ∇(A) = 1 if A ∪ E 6= U , and ∇(A) = 0 oth-
erwise), where N , Π, ∆, and ∇ are respectively strong ne-
cessity, weak possibility, strong possibility, and weak neces-
sity set functions. Moreover the following property holds
max(N(A),∆(A)) ≤ min(Π(A),∇) which just expresses
that if an event is strongly necessary, or strongly possible, it
should be both weakly possible and weakly necessary.

5 The graded cube and possibility theory
There are notions that are naturally a matter of degree like
uncertainty, similarity, satisfaction, or attack in argumenta-
tion. In the previous sections, everything was binary in the
square and in the cube of opposition. But it makes sense to
have graded modalities, graded possibility theory, more gen-
erally to have graded relations or fuzzy subsets in the previous
views. It would enable us to encompass graded extensions of
rough set theory, of formal concept analysis (like, e.g., the one
proposed in [Belohlavek, 2002]), or of abstract argumentation
[Dunne et al., 2011]. In the following, we define a graded ex-
tension of the cube of opposition, and then to show how it
applies to graded possibility theory, but also to other graded
settings such as multiple criteria aggregation and Sugeno inte-
grals on the one hand, and belief functions in evidence theory
on the other hand, leaving for further works the detailed study
of the other above-mentioned graded extensions.

Graded extensions for the cube should satisfy a multiple-
valued version of the square of opposition constraints (i)-(iv)
in Section 2 for the front and back facets, as well the entail-
ment constraints of the side facets, the mutual exclusiveness
constraints of the top facet, and the dual constraints of the
bottom facet. Let α, ι, ε, o, and α′, ι′, ε′, o′ be the grades in
[0, 1] associated to vertices A, I, E, O and a, i, e, o. Then,
given an involutive negation n, a symmetrical conjunction ∗,
and interpreting entailment in the many-valued case by the
inequality ≤ (conclusion being at least as true a premise), the
constraints for the front and back facets of the cube write

(i) α = n(o), ε = n(ι) and α′ = n(o′) and ε′ = n(ι′);

(ii) α ≤ ι, ε ≤ o and α′ ≤ ι′, ε′ ≤ o′;
(iii) α ∗ ε = 0 and α′ ∗ ε′ = 0;

(iv) n(ι) ∗ n(o) = 0 and n(ι′) ∗ n(o′) = 0.

Then, the constraints associated with the side facets are

(v) α ≤ ι′, α′ ≤ ι and ε′ ≤ o, ε ≤ o′;

and for the top and bottom facets, we have:

(vi) α′ ∗ ε = 0, α ∗ ε′ = 0;

(vii) n(ι′) ∗ n(o) = 0, n(ι) ∗ n(o′) = 0.
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The standard choice for an involutive negation is n(γ) =
1−γ. Several choices may be considered for the conjunction
operator ∗. Two choices of particular interest are ∗ = min,
such that min(γ, δ) = 0 iff γ = 0 or δ = 0, and Łukasiewicz
conjunction ∗ = max(0, ·+ · − 1), such that max(0, γ + δ−
1) = 0 iff γ ≤ n(δ) (and then min(γ, δ) ≤ 0.5).

Note that if ∗ is Łukasiewicz conjunction, then the top and
bottom conditions (vi-vii) are equivalent to the side ones (v).
Indeed, from α′ ∗ ε = 0, we get α′ ∗ n(ι) = 0 which holds iff
α′ ≤ ι. The other conditions are obtained in a similar way.
Only weaker results can be proved for ∗ = min: conditions
(v) are weaker than conditions (vi-vii). Indeed, min(α′, ε) =
0 implies α′ = 0 or ε = 0 and consequently α′ ≤ ι = n(ε).
On the other hand, α′ can be less or equal to ι with α 6= 0 and
ι 6= 1.

Such a graded cube can receive different instantiations.
One is in terms of (graded) possibility theory [Dubois and
Prade, 1998], as briefly indicated below. Assuming that the
normalized possibility distribution π : Ω → [0, 1], is also
such that 1 − π is normalized (i.e., ∃ω ∈ Ω, π(ω) = 0),
let us denote by ∆(A) = minω∈A π(ω) the strong possi-
bility degree of a proposition with set of models A, and by
∇(A) = 1 − ∆(A) its conjugate degree. We can instanti-
ate the gradual square of opposition by letting α′ = ∆(A),
ε′ = ∆(A), ι′ = ∇(A), o′ = ∇(A). Thanks to the dual-
ity between ∆ and ∇, and normalization of 1 − π, it can be
checked that valuations α′, ε′, ι′, o′ form a square of oppo-
sition for ∗ = min, and n(γ) = 1 − γ. In particular, since
∆(A) ≤ Π(A) and ∇(A) ≤ N(A), the constraints of the
side facets hold under the form (v). In agreement with epis-

i: ∇(A)

I: Π(A) O: Π(A)

o: ∇(A)

a: ∆(A)

A: N(A) E: N(A)

e: ∆(A)

Figure 5: Cube of opposition of possibility theory

temic logic, we can express that at least C is sure to a certain
extent (i.e., all elements out of C are somewhat impossible),
which is represented by the constraint N(C) ≥ γ > 0; and
that no statement more precise than D is sure (i.e., all ele-
ments in D are still possible to a certain extent), which is
represented by the constraint ∆(D) ≥ δ > 0. Note that
Nπ(C) = ∆1−π(C); however, the quantities Nπ(A) and
∆π(A) are fully independent of each other.

6 Weighted aggregations. Sugeno integrals
As already mentioned, apart from uncertainty, satisfaction is
usually a matter of degree. It is the case in multiple cri-

teria aggregation where objects are evaluated by means of
a set C of criteria i (where 1 ≤ i ≤ n). Let us denote
by fi the evaluation of a given object for criterion i, and
f = (f1, · · · , fi, · · · , fn). We assume here that ∀i, fi ∈
[0, 1]. fi = 1 means that the object fully satisfies criterion
i, while fi = 0 expresses a total absence of satisfaction. Let
πi ∈ [0, 1] represents the level of importance of criterion i.
The larger πi the more important the criterion. A double nor-
malization is assumed ∃i, πi = 1, and ∃j, πj = 0.

Simple qualitative aggregation operators are the weighted
min and the weighted max [Dubois and Prade, 1986b]. The
first one measures the extent to which all important criteria
are satisfied and corresponds to the expression

∧n
i=1 πi ⇒ fi,

while the second one
∨n
i=1 πi ∧ fi is optimistic and only re-

quires that at least an important criterion be highly satisfied.
Weighted min and weighted max correspond to vertices A
and I of the cube of Fig. 6. Then condition (i) of the front
square implies that s ⇒ t = (1 − s) ∨ t is the strong im-
plication associated with ∧ = min. As can be easily seen,
the cube of Fig. 6 is just a multiple-valued counterpart of the
initial cube of Fig. 2. While MINπ(f) =

∧n
i=1 πi ⇒ fi

is all the larger as all important criteria are more satisfied,
MINneg

π (f)) =
∧n
i=1(1 − πi) ⇒ (1 − fi) tolerates poor

evaluations (1− fi high) when criteria have low importance.
The aggregations of the front facet of the cube of Fig. 6 are
positive evaluations that focus on the high satisfaction of im-
portant criteria, while the aggregations of the back facet of
the cube are negative in the sense that they build their esti-
mates in terms of the lack of defect with respect to important
criteria. This constitutes two complementary points of view,
recently proposed in multiple criteria aggregation [Dubois et
al., 2012]. The cube of Fig. 6 satisfies all the properties (i-
vii) of a graded cube of opposition if ∗ = max(0, · + · − 1)
is Łukasiewicz conjunction.

i:
∨n
i=1(1− πi) ∧ (1− fi)

I:
∨n
i=1 πi ∧ fi O:

∨n
i=1 πi ∧ (1− fi)

o:
∨n
i=1(1− πi)∧fi

a:
∧n
i=1(1− πi)⇒ (1− fi)

A:
∧n
i=1 πi ⇒ fi E:

∧n
i=1 πi ⇒ (1− fi)

e:
∧n
i=1(1− πi)⇒fi

Figure 6: Cube of weighted qualitative aggregations
Sugeno integrals [1977] [Grabisch and Labreuche, 2010]

constitute an important family of qualitative aggregation op-
erators, which includes weighted minimum and maximum as
particular cases, and where subsets of criteria can be weighted
(and not only single criteria) in order to express synergy in-
side these subsets of criteria.A Sugeno integral is defined by∮

γ
(f) =

∨
A⊆C γ(A) ∧ ∧i∈Afi

where importance levels are assigned to subsets A of crite-
ria by means of a set function, called capacity, which is a
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mapping γ : 2C → L such that γ(∅) = 0, γ(C) = 1, and
if A ⊆ B then γ(A) ≤ γ(B). Possibility measures Π, or
necessity measures N are examples of capacities. Note also
that if f is the characteristic function of a subset F ⊆ C, then∮
γ
(f) = γ(F ).
The entailment from A to I in cube 5, which expresses

that N(A) ≤ Π(A) for any A, reflects the fact that N pro-
vides a pessimistic evaluation, while Π(A) is an optimistic
evaluation. In order to generalize this situation to any ca-
pacity γ, we need to introduce the pessimistic part γ∗ and
the optimistic γ∗ part of γ. For doing this, we need to de-
fine the conjugate γc(A) of capacity γ, that is the capac-
ity γc(A) = 1 − γ(A),∀A ⊆ C, where A is the comple-
ment of subset A. Due to the duality N(A) = 1 − Π(A),
N and Π are conjugate of each other. Then, let γ∗(A) =
min(γ(A), γc(A)) and γ∗(A) = max(γ(A), γc(A)), which
ensures that γ∗(A) ≤ γ∗(A). Note that γ∗(A) = 1 − γ∗(A)
(γ∗ and γ∗ are conjugate). We can now build the front facet of
the cube of Fig. 7, where γ∗ is used in vertices A and E, while
γ∗ appears in vertices I and O. It can be checked that this
facet satisfies all the properties (i)-(iv) of a graded square of
opposition for Łukasiewicz conjunction ∗ = max(0, ·+·−1).

The back facet of the cube of Fig. 7 is obtained by chang-
ing the integral operator

∮
γ

into a so-called desintegral oper-
ator [Dubois et al., 2012]

∮
↓
ν

(f) =
∮
1−νc(1 − f), where ν

is called an anti-capacity, since it is a decreasing set function
(then 1− νc is a capacity, where νc(A) = 1− ν(A)). Given
a pessimistic capacity γ, the associated anti-capacity ν is de-
fined as ν(A) = γ(A) from the complement (pessimistic)
capacity γ, itself defined in the following way. First, we need
to recall the inner qualitative Moebius transform γ] of a ca-
pacity γ defined as γ](E) = γ(E) if γ(E) > maxB(E γ(B)
and γ](E) = 0 otherwise. Then γ(A) = maxE⊆A γ](E)
(this is the qualitative counterpart of the definition of a belief
function from a mass function). We can now define the com-
plement γ] of γ] as γ](E) = γ](E) for all E. From which
we can define γ(A) = maxE⊆A γ](E) = maxE⊆A γ](E),
which makes it clear that γ(A) generalizes ∆(A) in possibil-
ity theory (indeed γ(A) = maxA⊆E γ](E)). Then

∮
↓
ν

(f) =∮
1−νc(1− f) =

∮
γ
(1− f) since 1− νc(A) = ν(A) = γ(A).

When γ is a necessity measure, ν(A) reduces to ∆(A) =
N1−π(A). Desintegrals generalize the qualitative aggrega-
tion operator MINneg

π which focuses on the defects of the
objects in the evaluation process. Then it can be checked that
all the properties (i)-(vii) of a graded cube of opposition for
Łukasiewicz conjunction ∗ = max(0, · + · − 1) are satisfied
in the cube of Fig. 7, which generalizes cube 6.

7 Cube of belief functions
In Shafer [1976]’s evidence theory, a belief function is de-
fined from a mass function m as Belm(A) =

∑
E⊆Am(E)

for A ⊆ U together with a dual plausibility function
Plm(A) = 1 − Belm(A) =

∑
E∩A6=∅m(E). It is as-

sumed that m(∅) = 0 and
∑
Em(E) = 1. The comple-

ment mass function m is defined as m(E) = m(E) [Dubois
and Prade, 1986a]. The normalization m(∅) = 0 forces

i:
∮
γ∗

(1− f)

I:
∮
γ∗

(f) O:
∮
γ∗

(1− f)

o:
∮
γ∗

(f)

a:
∮
γ∗

(1− f)

A:
∮
γ∗

(f) E:
∮
γ∗

(1− f)

e:
∮
γ∗

(f)

Figure 7: Cube induced by a Sugeno integral

m(U) = 0. The commonality function Q and its dual

Q

are then defined by Qm(A) =
∑
A⊆Em(E) = Belm(A)

while

Q

m(A) =
∑
E∩A6=∅m(E) = 1−Qm(A) = Plm(A).

It is easy to check that the transformation m → m reduces
to π → 1− π in case of nested focal elements (i.e. the
subsets E such as m(E) > 0). This indicates the per-
fect parallel with possibility theory, and cube 8 is the ex-
act counterpart of cube 5. Moreover, belief functions extend
to many-valued characteristic functions (fuzzy events) µA as
Belm(A) =

∑
Em(E) ·minu∈E µA(u), which is a particu-

lar case of a Choquet integral, just as the necessity of a fuzzy
eventMINπ(f) is a particular case of a Sugeno integral. It is
clear that in cube 8, the set functions extend to fuzzy events,
and more generally one may consider its extension to general
Choquet integrals.

i:

Q

m(A)

I: Plm(A) O: Plm(A)

o:

Q

m(A)

a: Qm(A)

A: Belm(A) E: Belm(A)

e: Qm(A)

Figure 8: Cube of opposition of evidence theory

8 Conclusion
We have seen that the cube of opposition makes sense in a
large variety of situations including qualitative graded and
quantitative settings. The 4 notions appearing in side facets
are only weakly related and are necessary for properly de-
scribing or evaluating a situation. The existence of the back
facet complements in a reversed manner what is going on in
the front square of opposition. Becoming aware of the ex-
istence of a cube of opposition in a given setting, may help
introducing new useful notions for having a complete cube
with four basic entities. It then makes a complete picture of
the considered theory, while many settings (modal logic, for-
mal concept analysis, rough sets, Sugeno integrals, ...) have
been considering only one or two of these entities until re-
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cently. The cube of opposition may also help to make fruitful
parallels between theories, or to hybridize them.

The auto-duality of probability (Prob(A) = 1−Prob(A))
prevents its direct association with the square and the cube
of opposition; the handling of upper and lower probabilities
(beyond belief functions) in this setting is an open question.
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