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Abstract
In a seminal paper, Lin and Reiter introduced the
notion of progression for basic action theories in
the situation calculus. Recently, Fang and Liu
extended the situation calculus to account for
multi-agent knowledge and belief change. In this
paper, based on their framework, we investigate
progression of both belief and knowledge in the
single-agent propositional case. We first present a
model-theoretic definition of progression of knowl-
edge and belief. We show that for propositional ac-
tions, i.e., actions whose precondition axioms and
successor state axioms are propositional formulas,
progression of knowledge and belief reduces to for-
getting in the logic of knowledge and belief, which
we show is closed under forgetting. Consequently,
we are able to show that for propositional actions,
progression of knowledge and belief is always
definable in the logic of knowledge and belief.

1 Introduction
In the area of reasoning about actions, a fundamental prob-
lem is projection, which is to determine whether a query
holds after a sequence of actions have occurred. A power-
ful solution to the projection problem is progression, which
updates the initial knowledge base (KB) according to the ef-
fects of actions, and then checks whether the query holds in
the resulting KB. Progression is widely used in planning and
high-level program execution. Lin and Reiter [1997] pointed
out STRIPS technology was a simple form of progression.
To tackle the problem of conformant planning, Cimatti et al.
[2004] used BDDs [Bryant, 1992] to represent KBs, and im-
plemented progression via forgetting in propositional logic.
Later, Bertoli et al. [2006] applied a similar idea in contingent
planning. Recently, Fan et al. [2012] proposed an interpreter
for first-order knowledge-based Golog with sensing via pro-
gression. The above works focus on world change. However,
we also need to handle knowledge and belief change resulting
from possibly nondeterministic actions in some scenarios.

For example, Alice is in a dark room with a computer, a
heater and their switches. Alice knows that both the com-
puter and the heater are on. Now, Alice wants to turn off
the heater, knowing that she might but improbably press the

wrong switch. Alice ends up pressing the wrong switch. As a
result, the computer rather than the heater is off, Alice knows
one of them is off and believes that the heater is off. After ob-
serving the heater is on, Alice revises her beliefs, and believes
that the heater is on.

The above example illustrates that it is necessary to con-
sider knowledge and belief change in some applications.
There are some representative frameworks that accommodate
knowledge and belief change. Scherl and Levesque [2003]
proposed an epistemic extension to the situation calculus.
Shapiro et al. [2011] integrated belief revision wrt accurate
sensing into the situation calculus. Delgrande and Levesque
[2012; 2013] furthered this work by considering nondeter-
minstic actions. Schwering and Lakemeyer [2014] extended
the framework of [Shapiro et al., 2011] to the case of only-
believing. In addition, Baltag and Smets [2008] proposed
a general framework for integrating belief revision into dy-
namic epistemic logics (DELs) [van Ditmarsch et al., 2007].
They proposed the action priority update operation: when up-
dating a plausibility model by an action plausibility model,
give priority to the action plausibility order. By incorporat-
ing action priority update into the situation calculus, Fang
and Liu [2013] developed a general framework for reasoning
about actions and change in multi-agent scenarios.

The above works focus on how to represent knowledge and
belief change. There also have been works on progression
of knowledge and/or belief in DELs or the situation calcu-
lus. Herzig et al. [2003] studied the progression of posi-
tive knowledge wrt deterministic actions in the single-agent
case. Laverny and Lang [2005a; 2005b] showed how to up-
date graded beliefs wrt noisy observation actions and non-
deterministic physical actions. However, their work is with
the epistemic closed-world assumption (ECWA) [Herzig et
al., 2003], i.e., if I cannot prove that I know φ, then I do
not know φ. Aucher [2011] gave a syntactic representation
of progression of multi-agent belief wrt epistemic actions in
DELs. Nevertheless, the approach is essentially model-based:
he made use of the so-called Kit-Fine formulas defined in
[Moss, 2007]. A Kit-Fine formula of depth n provides a com-
plete syntactic representation of the structure up to depth n of
a pointed Kripke model. Moreover, his approach allows false
beliefs. While these approaches are propositional, there are
also some first-order treatments. By appealing to the logic of
only-knowing [Levesque, 1990], which is an extension of the
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ECWA, Lakemeyer and Levesque [2009] studied progression
of only-knowing in the single-agent case. Belle and Lake-
meyer [2014] extended this work to the multi-agent case. Liu
and Wen [2011] explored progression of knowledge (but not
belief) under certain restrictions. However, they focused on
deterministic actions.

In this paper, based on Fang and Liu’s framework, we study
progression of both knowledge and belief wrt nondeterminis-
tic actions in the single-agent propositional case without mak-
ing the ECWA. We first present a model-theoretic definition
of progression of knowledge and belief. We show that for
propositional actions, i.e., actions whose precondition axioms
and successor state axioms are propositional formulas, pro-
gression of knowledge and belief reduces to forgetting in the
logic of knowledge and belief, which we show is closed un-
der forgetting. Thus we are able to show that for propositional
actions, progression of knowledge and belief is always defin-
able in the logic of knowledge and belief. Since Fang and
Liu’s framework handles belief change including belief revi-
sion and update, our belief progression subsumes both belief
revision and update.

This paper is organized as follows. Formal preliminaries
are given in Section 2. In Section 3, we study forgetting in the
logic of knowledge and belief. In Section 4, we investigate
the progression of knowledge and belief. Section 5 considers
progression for some special cases including epistemic ac-
tions and deterministic actions. Finally, Section 6 concludes
this paper.

2 Preliminaries
In this section, we present Baltag and Smets’ logic of
knowledge and belief. Then we introduce Fang and Liu’s
extension of the situation calculus, specify the components
of a single-agent basic action theory, and give the definition
of knowledge and belief in the extended situation calculus.
Finally, we introduce the assumptions we make in this paper.

2.1 The logic of knowledge and belief
Baltag and Smets gave the logic of knowledge and belief
LKB based on plausibility models. The logic is obtained
from the propositional language by adding a syntactic rule:
if φ is a formula, then both Kφ and Bφ are formulas, where
K and B are modal operators. Kφ (resp. Bφ) is read as “the
agent knows (resp. believes) φ”.

The semantic models are plausibility models, which are
based on the concept of locally well-preordered relations.

Definition 2.1 A preorder ≤ is a reflexive and transitive bi-
nary relation. We use ∼ for the associated comparability re-
lation, i.e., s ∼ t iff s ≤ t or t ≤ s. The comparability
class for an element s, written [s], is the set {t | s ∼ t}. We
say that ≤ is locally well-founded if every non-empty subset
of every comparability class has a least element. A locally
well-preordered relation is a locally well-founded preorder.

As usual, s ≤ t is read as “s is at least as plausible as t”,
and s ∼ t is read as “s and t are comparable” or “s and t are
alternatives”. We use s→ t to denote that t is a least element
of [s], and read it as “t is a most plausible alternative to s”.

We fix a finite set of propositions P = {p1, · · · , pn}.

Definition 2.2 A plausibility model is a tuple (S,≤, V ),
where S is a non-empty set of possible worlds, ≤ is a lo-
cally well-founded relation on S, and V : P → 2S assigns a
subset of S to each proposition. A plausibility state is a pair
(W, s), where W is a plausibility model and s is a world of
S, called the actual world.

Definition 2.3 Let (W, s) be a plausibility state where W =
(S,≤, V ). We interpret formulas in LKB by induction:
• W, s |= p iff s ∈ V (p);
• W, s |= ¬φ iff W, s 6|= φ;
• W, s |= φ ∧ ψ iff W, s |= φ and W, s |= ψ;
• W, s |= Kφ iff for every t s.t. s ∼ t, W, t |= φ;
• W, s |= Bφ iff for every t s.t. s→ t, W, t |= φ.

Thus, the agent knows φ in s if φ holds in all alternatives to
s, and she believes φ in s if φ holds in all the most plausible
alternatives to s. We use > and ⊥ for true and false respec-
tively. We write K̂φ .

= ¬K¬φ and B̂φ .
= ¬B¬φ. We say that

a formula in LKB is objective if it does not contain any K or
B operators.

The notion of knowledge is S5 knowledge (i.e., knowledge
is truthful and both positively and negatively introspective),
the notion of belief is KD45 belief (i.e., belief is consistent
and introspective), and knowledge entails belief. That is, the
following formulas are valid:
• Kφ ⊃ φ; Kφ ⊃ KKφ; ¬Kφ ⊃ K¬Kφ;
• ¬B⊥; Bφ ⊃ BBφ; ¬Bφ ⊃ B¬Bφ; Kφ ⊃ Bφ.
Finally, we introduce a normal form for formulas in LKB ,

and prove two fundamental properties.

Definition 2.4 An extended term is a formula of the form θ∧
Kψ ∧

∧
i K̂ηi ∧Bϕ∧

∧
i B̂ξi, where θ, ψ, ϕ, ηi and ξi are all

objective, and the number of ηi’s or ξi’s is not zero.

Theorem 2.1 Every formula φ in LKB can be equivalently
reduced to a formula without nested modalities, whose size is
no more than that of φ.

Proof: We apply the following transformation rules, none of
which increases the size of the formula. Here Oi are K or B.

1. ¬(φ ∧ ψ)≡¬φ ∨ ¬ψ, ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ;

2. O(φ ∧ ψ) ≡ Oφ ∧Oψ, Ô(φ ∨ ψ) ≡ Ôφ ∨ Ôψ;

3. O1(φ∨O2ψ) ≡ O1φ∨O2ψ, O(φ∨ Ôψ) ≡ Oφ∨ Ôψ;

4. Ô(φ∧Oψ) ≡ Ôφ∧Oψ, Ô1(φ∧ Ô2ψ) ≡ Ô1φ∧ Ô2ψ;

5. ¬Oφ ≡ Ô¬φ, OÔφ = Ôφ, ÔOφ = Oφ;

6. O1O2φ = O2φ, Ô1Ô2φ = Ô2φ.

Theorem 2.2 Every formula φ in LKB can be equivalently
transformed to a disjunction of extended terms, whose size is
at most 2l+4, where l is the size of φ.

Proof: By Theorem 2.1, φ can be converted to a formula
without nested modalities. We then apply the distributive law
of ∨ over ∧ until we get a disjunction of conjunction of objec-
tive and modal formulas. We make each disjunct an extended
term by adding >, K>, K̂>, B>, and/or B̂> conjuncts when
necessary.
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2.2 The situation calculus with plausibility orders
The situation calculus [Reiter, 2001] is a many-sorted first-
order language suitable for describing dynamic worlds. There
are three disjoint sorts: action for actions, situation for sit-
uations, and object for everything else. A situation calculus
language has the following components: a constant S0 denot-
ing the initial situation; a binary function do(a, s) denoting
the successor situation to s resulting from performing action
a; a binary predicate s @ s′ meaning that situation s is a
proper subhistory of s′; a binary predicate Poss(a, s) mean-
ing that action a is possible in situation s; a finite number of
action functions; a finite number of relational and functional
fluents, i.e., predicates and functions taking a situation term
as their last argument, which denote relations and functions
whose values vary from situation to situation; and a finite
number of situation-independent predicates and functions.

The situation calculus has been extended to accommodate
knowledge, belief and nondeterministic actions by Fang and
Liu. They incorporated plausibility order and action prior-
ity update into the situation calculus. For an agent, there are
plausibility orders on the set of situations and that of actions.
To model plausibility order, they introduced a special fluent
B(s′, s) 1, which means that the agent considers situation s′
at least as plausible as s. Similarly, they introduced a special
predicate A(a′, a, s), meaning that the agent considers that a′
is executed at least as plausible as that a is executed in situa-
tion s, to represent action plausibility orders.

We introduce the following abbreviations:

1. Init(s) .
= ¬(∃a, s′).s = do(a, s′);

2. Exec(s)
.
= (∀a, s∗).do(a, s∗) v s ⊃ Poss(a, s∗);

3. K(s′, s)
.
= B(s′, s) ∨B(s, s′).

Intuitively, Init(s) says s is an initial situation, and Exec(s)
means s is an executable situation, i.e., an action history in
which it is possible to perform the actions one after the other.
K(s′, s) states that the agent considers s′ comparable to s.

Using a second-order formula, we define an abbreviation
Lwf(s) saying that B(s′, s) is locally well-founded:

Lwf(s) .
= ∀P.∀s′(P (s′) ⊃ K(s′, s)) ∧ ∃s′′P (s′′) ⊃

∃s′′′(P (s′′′) ∧ ∀s∗(P (s∗) ⊃ B(s′′′, s∗)))

Similarly, we can define an abbreviation Alwf(a, s) which
says that A(a′, a, s) is locally well-founded.

Based on Fang and Liu’s approach, a single-agent domain
is specified by a basic action theory (BAT) of the form:

D = Σ∪Dap ∪Dss ∪Daa ∪Duna ∪DS0
∪BInit, where

1. Σ are the foundational axioms:

• do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′2;
• (¬s @ S0) ∧ (s @ do(a, s′) ≡ s v s′);
• ∀P.∀s[Init(s)⊃P (s)] ∧ ∀a, s[P (s)⊃P (do(a, s))]

⊃ (∀s)P (s);

1The B fluent taking two situation arguments is enough for the
single-agent case although the original B fluent takes three situation
arguments. The following A predicate is similar.

2Throughout this paper, free variables are assumed to be univer-
sally quantified from outside.

• B(s′, s) ⊃ [Init(s) ≡ Init(s′)].

A model of these axioms consists of a forest of isomor-
phic trees rooted at the initial situations, which can be
B-related to only initial situations.

2. Dap is a set of action precondition axioms (APAs), one
for each action α, of the form Poss(α(~x), s) ≡ Πα(~x, s).

3. Dss is a set of successor state axioms (SSAs), one for
each fluent F (including the B fluent), of the form
F (~x, do(a, s)) ≡ ΦF (~x, a, s). These embody a solu-
tion to the frame problem [Reiter, 1991]. It includes the
SSA for the B fluent as follows:

B(s′′, do(a, s)) ≡ ∃s′, a′.s′′ = do(a′, s′)∧
Poss(a, s) ∧ Poss(a′, s′)∧
[A(a′, a, s) ∧ ¬A(a, a′, s) ∧K(s′, s)∨
A(a′, a, s) ∧A(a, a′, s) ∧B(s′, s)]

Intuitively, after action a is performed in situation s,
the agent considers situation s′′ at least as plausible as
do(a, s) iff s′′ is the result of doing some action a′ in
some situation s′, a is possible in s, a′ is possible in s′,
and either the agent considers a′ more plausible than a
and s′ comparable to s, or she thinks that a′ and a are
equally plausible and s′ is at least as plausible as s.
Thus theA predicate acts on the B-fluent via the SSA for
the B-fluent. This is a dynamic generalization of AGM
revision, giving priority to the new information (i.e., to
actions) over previous beliefs.

4. Daa is a set of action plausibility axioms, one for each
action function α, of the formA(a,α(~x),s)≡Ψα(a,~x,s).

5. Duna is the set of unique names axioms for actions.

6. DS0 , called the initial KB, is a set of sentences uniform
in S0. We will make this more precise in Section 2.3.

7. BInit consists of axioms stating that B is locally well-
preordered in initial situations.

• Reflexivity: Init(s) ⊃ B(s, s);
• Transitivity: Init(s)∧B(s′,s)∧B(s′′, s′)⊃B(s′′, s);
• Locally well-founded: Init(s) ⊃ Lwf(s).

8. D |= AExec, which consists of axioms stating that A is
locally well-preordered in executable situations.

• Exec(s) ⊃ A(a, a, s);
• Exec(s) ∧A(a′, a, s) ∧A(a′′, a′, s) ⊃ A(a′′, a, s);
• Exec(s) ⊃ Alwf(a, s).

Throughout the paper, we use D for a BAT of this form.
Then we can show that B is locally well-preordered in all

executable situations.

Theorem 2.3 D |= Exec(s) ⊃ Lwf(s).

We give the definition of mental attitudes knowledge and
belief in the situation calculus. We begin with the MPB rela-
tion derived from the B fluent:

Definition 2.5 MPB(s′, s)
.
= ∀s′′.K(s′′, s) ⊃ B(s′, s′′).

Intuitively, MPB(s′, s) means that according to the agent,
s′ is a most plausible situation in the comparability class of s.
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Figure 1: The example

Definition 2.6 (Knowledge and belief) Let φ(s) be a for-
mula with a single free variable s.

1. The agent knows φ in situation s:
K(φ, s)

.
= ∀s′.K(s′, s) ⊃ φ(s′);

2. The agent believes φ in situation s:
B(φ, s)

.
= ∀s′.MPB(s′, s) ⊃ φ(s′).

The desired properties of knowledge and belief also hold
in executable situations, e.g., the truth axiom:

D |= Exec(s) ∧K(φ, s) ⊃ φ(s).

Example 1 We now formalize the example from the intro-
duction. Assume that the observation action might be inac-
curate. Let c(s) (resp. h(s)) denote that the computer (resp.
heater) is on in situation s, αc (resp. αh) denote the action
of flipping the switch for the computer (resp. heater), and oh
(resp. o¬h) denote the action of observing h (resp. ¬h) holds.
The axioms are:
• Poss(αh, s) ≡ Poss(αc, s) ≡ >;
• Poss(oh, s) ≡ h(s); Poss(o¬h, s) ≡ ¬h(s);
• A(a′, a, s) ≡ a = a′ ∨ a′ = αh ∧ a = αc

∨ a′ = oh ∧ a = o¬h;
• h(do(a, s)) ≡ h(s) ∧ a 6= αh ∨ ¬h(s) ∧ a = αh;
• c(do(a, s)) ≡ c(s) ∧ a 6= αc ∨ ¬c(s) ∧ a = αc.
• K(c ∧ h, S0).
After executing action αc and αh in S0, Sαc and Sαh are

two new situations, and the latter is more plausible than the
former since Alice believes she ends up pressing the right but-
ton. At the next level, Soh and S′o¬h are two new situations,
and the order relation changes. This is because Alice consid-
ers truth of h more plausible than falsity of h. The above is
illustrated with Figure 1.

2.3 Assumptions, terminology and notations
In this paper, we study the progression in the propositional
case. So we shall assume:

1. All ordinary fluents are propositional fluents, i.e., unary
predicates whose only argument is of sort situation.

2. All action functions take no arguments.
3. For each APA whose form is Poss(α, s) ≡ Πα(s),

Πα(s) is uniform in s and does not use the B fluent.
Each SSA is similar. Thus all the actions are proposi-
tional actions.

4. Except for the equality predicate, the language has no
situation-independent predicates and functions.

Let Lsc be a situation calculus language. We use L to de-
note the situation-suppressed language to Lsc, i.e., the lan-
guage obtained from Lsc by removing the sort situation and
theB fluent, and removing the situation argument from every
ordinary fluent. We use L′ to denote the primed version of L,
i.e., for each ordinary fluent F (s), there is a proposition F ′ in
L′. We let L∗ denote the union of L and L′. Intuitively, we
can use L to talk about a situation σ, and use L′ to talk about
a successor situation of σ. For a language L, say L, L′, or L∗,
we use LKB to denote the language with K and B operators
based on L.

Often, we need to restrict our attention to formulas that
refer to a particular situation. For this purpose, we give the
definition of uniform formulas as follows:

Definition 2.7 (Uniform formulas) Let σ be a fixed situa-
tion term and F a fluent. Then the formulas uniform in σ
are the smallest set of formulas in Lsc satisfying:

φ ::= F (σ) | ¬φ | (φ ∧ φ) | K(φ, σ) | B(φ, σ)

We use φ[σ] to denote that φ is uniform in σ.

Let φ be a formula, µ and µ′ two expressions. We denote
by φ[µ/µ′] the result of replacing every occurrence of µ in
φ with µ′. We use sitM to denote the domain of an Lsc-
structure M for sort situation. Let α be an action. We denote
by Sα the situation term do(α, S0).

3 Forgetting in knowledge and belief
Zhang and Zhou [2009] studied forgetting in single-agent S5
modal logic. In this section, we extend the definition of for-
getting to LKB , and show that it is always definable in LKB
and computable.

Let X range over subsets of P . We start by introducing
forgetting in propositional logic.

Definition 3.1 Let φ be a formula in L. forget(φ,X) is de-
fined by induction on X as follows:

• forget(φ, ∅) .
= φ;

• forget(φ, {p}) .
= φ[p/>] ∨ φ[p/⊥];

• forget(φ,X ∪ {p}) .
= forget(forget(φ, {p}), X).

To define forgetting in LKB , we extend the concept of X-
bisimulation from [Zhang and Zhou, 2009].

Definition 3.2 Let (W, s) and (W ′, s′) be two plausibility
states where W =(S,≤, V ) and W ′=(S′,≤′, V ′). An X-
bisimulation between (W, s) and (W ′, s′) is a relation R ⊆
S×S′ s.t. R(s, s′), and wheneverR(t, t′), we have:

atoms t ∈ V (p) iff t′ ∈ V ′(p) for all p 6∈ X;

forth∼ For all u s.t. t ∼ u, there is u′ s.t. t′ ∼′ u′ and
R(u, u′);

forth→ For all u s.t. t → u, there is u′ s.t. t′ →′ u′ and
R(u, u′);

back∼ For all u′ s.t. t′ ∼′ u′, there is u s.t. t ∼ u and
R(u, u′);
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back→ For all u′ s.t. t′ →′ u′, there is u s.t. t → u and
R(u, u′).

We say that (W, s) and (W ′, s′) are X-bisimilar, written
(W, s)↔X(W ′, s′), if there is an X-bisimulation between
(W, s) and (W ′, s′). For simplicity, we write↔ for↔∅.

Below we define forgetting in LKB .

Definition 3.3 Let φ be a formula in LKB . A formula ψ is a
result of forgetting X from φ, written kbforget(φ,X) ≡ ψ,
if for any plausibility state (W, s), (W, s) is a model of φ iff
there exists a model (W ′, s′) of ψ s.t. (W, s)↔X(W ′, s′).

Next, we analyze basic properties of forgetting. We say
a formula φ irrelevant to an atom p, if it is equivalent to a
formula which does not contain any occurrence of p.

Proposition 3.1 Let φ be a formula in LKB and
kbforget(φ,X) ≡ ψ. Then, φ |= ψ and for any η irrel-
evant to every p ∈ X , φ |= η iff ψ |= η.

Proposition 3.2 • If φ is an objective formula in LKB ,
then kbforget(φ,X) ≡ forget(φ,X);

• If kbforget(φi, X) ≡ ψi (i = 1, 2), then
kbforget(φ1 ∨ φ2, X) ≡ ψ1 ∨ ψ2.

The following proposition shows that extended terms are
closed under forgetting.

Proposition 3.3 Let φ be an extended term θ∧Kψ∧
∧
i K̂ηi∧

Bϕ ∧
∧
i B̂ξi. Let forget(θ ∧ ψ,X) ≡ θ′, forget(ψ,X) ≡ ψ′,

forget(ηi ∧ ψ,X) ≡ η′i, forget(ϕ ∧ ψ,X) ≡ ϕ′,
forget(ξi∧ψ∧ϕ,X) ≡ ξ′i. Then kbforget(φ,X) ≡ θ′∧Kψ′∧∧
i K̂η′i ∧ Bϕ′ ∧

∧
i B̂ξ′i.

Since every formula in LKB can be equivalently trans-
formed to a disjunction of extended terms, by Propositions
3.2 and 3.3, we have:

Theorem 3.1 Forgetting in LKB is always definable in LKB
and computable.

4 Progression of knowledge and belief
In this section, we begin with the definition of progression of
knowledge and belief. Then we introduce the construction of
the combination formula of an extended term wrt a proposi-
tional action, which contains information about the past and
the present. Next, we show that progression of knowledge
and belief reduces to forgetting in the combination formula.
The forgetting operation eliminates all past information and
preserves information about the present. Thus we are able
to give a complete syntactic representation of progression of
knowledge and belief for propositional actions in LKB .

4.1 Definition of progression
Intuitively, a progression of DS0

wrt an action α should be a
set of sentences DSα with the following properties: 1. just as
DS0

is uniform in S0, DSα should be uniform in Sα; 2. for
all queries uniform in Sα, the old theory D is equivalent to
the new theory (D −DS0) ∪ DSα .

To define progression, we first adapt the concept of bisim-
ulation from the logic of knowledge and belief, and define a

similarity relation between Lsc-structures. Roughly, a bisim-
ulation is a relation between situations of two Lsc-structures
where related situations agree on all ordinary fluents and have
matching accessibility possibilities.

Definition 4.1 Let M and M ′ be Lsc-structures with the
same domains for actions. Let γ ∈ sitM and γ′ ∈ sitM

′
.

We write M,γ ∼ M ′, γ′ if there is a bisimulation R ⊆
sitM × sitM ′ s.t. γRγ′, and whenever δRδ′, we have:

1. M, δ ≡ M ′, δ′, denoting that M, δ and M ′, δ′ agree on
all ordinary fluents, that is, for every ordinary fluent F ,
M |= F (δ) iff M ′ |= F (δ′).

2. For all ρ s.t. KM(δ, ρ), there is ρ′ s.t. KM ′(δ′, ρ′) and
ρRρ′, (the forth condition for the K relation), here KM

is the denotation of the K relation in M .
3. For all ρ s.t. MPBM(δ, ρ), there is ρ′ s.t. MPBM

′
(δ′, ρ′)

and ρRρ′, (the forth condition for the MPB relation).

4. For all ρ′ s.t. KM ′(δ′, ρ′), there is ρ s.t. KM(δ, ρ) and
ρRρ′, (the back condition for the K relation).

5. For all ρ′ s.t. MPBM
′
(δ′, ρ′), there is ρ s.t. MPBM(δ, ρ)

and ρRρ′, (the back condition for the MPB relation).

We write M ∼Sα M ′ if M,SMα ∼ M ′, SM
′

α . Following
the definition of progression in [Liu and Wen, 2011], we have:
Definition 4.2 (Progression) Let DSα be a set of sentences
uniform in Sα. DSα is a progression of DS0

wrt α if D |=
DSα , and for every model M of (D−DS0

)∪DSα , there is a
model M ′ of D s.t. M ∼Sα M ′.

Then it is straightforward to prove:

Theorem 4.1 Let DSα be a progression of DS0 wrt α. Then
for every φ uniform in Sα, D |= φ iff (D−DS0)∪DSα |= φ.

So for any query about Sα, the old theory D and the new
theory (D −DS0) ∪ DSα are equivalent.

We now introduce some notations used in the rest of
this section. The APA for any action a is in the form of
Poss(a, s) ≡ Πa[s], and the SSA for any ordinary fluent F
is in the form of F (do(a, s)) ≡ ΦF (a)[s]. Let α be an ac-
tion. We let Poss∗(α) denote Πα, i.e., the situation-supressed
formula of Πα[s]. We let Dss(α) denote the instantiation of
Dss wrt α, i.e., the set of sentences F (do(α, s)) ≡ ΦF (α)[s].
We use D∗ss(α) to denote the set of sentences F ′ ≡ ΦF (α),
and PSS(α) to denote Poss∗(α) ∧ D∗ss(α). For a set A of ac-
tions, we write Poss∗(A)

.
=
∨
a∈A Poss∗(a), and PSS(A)

.
=∨

a∈A PSS(a).

Definition 4.3 The comparability class of α in S0, denoted
by [α], is the set {a | D |= A(a, α, S0) ∨ A(α, a, S0)}. We
divide [α] into layers as follows:

1. [α]0 = Min([α]) where Min(A) =
{a | D |= ∀a′ ∈ A.A(a, a′, S0)};

2. [α]k = Min([α]−
⋃
i<k[α]i) where k > 0.

We let [α]<k=
⋃
i<k[α]i, and pd(α) = max{k | [α]k 6= ∅}.

Intuitively, [α]k is the k-th layer of [α], i.e., the set of ac-
tions of [α] with plausibility degree k, [α]<k is the set of ac-
tions of [α] with plausibility degree less than k, and pd(α) is
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the maximum plausibility degree of actions of [α]. For situa-
tions, we can define similar concepts.

Definition 4.4 Let M |= D and α an action possible in
S0. We define [α]M as [α]k if M |= K̂(Poss∗([α]k), S0) ∧
K(¬Poss∗([α]<k), S0).

Intuitively, [α]M is the innermost layer of [α] which con-
tains an action the agent knows possibly executable. Since S0

is comparable to itself, M |= K̂(Poss∗([α]), S0). So [α]M =
[α]k for some k no more than the plausibility degree of α.

Finally, the world state of any situation can be represented
by a minterm of ~F , i.e., a conjunction of literals of ~F where
each proposition appears exactly once. We use mt(~F ) to de-
note the set of minterms of ~F . Let A be a set of actions. We
use psK(A) and psB(A) to denote the following formulas,
respectively:

1.
∧
λ∈mt(~F ),a∈A[K̂(λ ∧ Poss∗(a)) ⊃ K̂(λ ∧ PSS(a))];

2.
∧
λ∈mt(~F ),a∈A[B̂(λ ∧ Poss∗(a)) ⊃ B̂(λ ∧ PSS(a))].

Intuitively, psK(A) says that for any action a ∈ A, if the
agent knows it is possible that the precondition of a holds,
then she knows it is possible that the effect of a takes place
in the same world state. The meaning of psB(A) is similar
except that “knows” is replaced by “believes”.

4.2 Combination formula
We now define the extended plausibility model for a model
M of BAT wrt an action α.

Definition 4.5 Let M |= D −DS0
, and α an action possible

in S0. The extended plausibility model of M wrt α, denoted
by Wα = (S,≤, V ), is as follows:

• S: the set of situations of M comparable to SMα ;

• ≤: the restriction of BM to S;

• V : the valuation on S. For each ordinary fluentF , action
a, initial situation s, do(a, s) ∈ V (F ) iff M |= F (s),
and do(a, s) ∈ V (F ′) iff M |= F (do(a, s)).

We now analyze the formulas satisfied by the extended plau-
sibility models of models of extended terms.

Lemma 4.1 Let φ = θ ∧ Kψ ∧
∧
i K̂ηi ∧ Bϕ ∧

∧
i B̂ξi be

an extended term and α an action. Let M |= (D − DS0
) ∪

{φ(S0),Poss(α, S0)}, and [α]k = [α]M . Then (Wα, S
M
α )

satisfies the following formulas:

1. φobj=θ ∧ PSS(α);

2. φK=K(ψ∧PSS([α]))∧psK([α])∧
∧
ψ∧ηi|=Poss∗([α])K̂ηi;

3. φkB =B(PSS([α]k)) ∧ K(¬Poss∗([α]<k)) ∧ psB([α]k) ∧∧
ψ∧ϕ∧ξi|=Poss∗([α])[¬Bϕ ∨ B¬ξi ⊃

K̂(ϕ ∧ ξi ∧ ¬Poss∗([α]k))].

Intuitively, the first formula says that the actual situation
satisfies θ together with the precondition and effect of the
actual action α. The second formula states the following.
Firstly, the agent knows ψ and the disjunction of the pre-
conditions and effects of alternatives to α. Secondly, for any

alternative a to α, if the agent knows it is possible that the
precondition of a holds, then she knows it is possible that the
effect of a takes place in the same world state. Thirdly, for
each initial possibility ηi, it remains a possibility if ψ ∧ ηi
entails the disjunction of the preconditions of alternatives to
α.

The third formula states the following. Firstly, the agent
believes the disjunction of the preconditions and effects of
actions in [α]k, and knows that no action with plausibility
degree less than k is possible. Secondly, for any action a in
[α]k, if the agent believes it possible that the precondition of
a holds, then she believes it possible that the effect of a takes
place in the same world state. Thirdly, for each initial belief
possibility ξi such that ψ ∧ ϕ ∧ ξi entails the disjunction of
preconditions of alternatives toα, if the agent does not believe
ϕ or believes ¬ξi, then the agent knows it is possible that
ϕ and ξi hold but no action in [α]k is possible. The reason
is this. Since ψ ∧ ϕ ∧ ξi entails Poss∗([α]), there exists an
alternative situation do(α′, s′) to the situation do(α, s) such
that s′ is a most plausible alternative to s and satisfies ψ ∧
ϕ ∧ ξi. If the agent does not believe ϕ or believes ¬ξi, then
do(α′, s′) cannot be a most plausible alternative to do(α, s),
thus no action in [α]k is possible in s′.

Based on the above formulas, we now define the combina-
tion formula of an extended term and an action.

Definition 4.6 Let φ = θ∧Kψ∧
∧
i K̂ηi∧Bϕ∧

∧
i B̂ξi be an

extended term, and α an action. We call φ′ = φobj ∧φK ∧φB

the combination formula of φwrt α, where φB =
∨pd([α])
k=0 φkB.

Combination formulas have two important properties below:

Lemma 4.2 Let M |= D −DS0 . Then for any ψ ∈ L, M |=
ψ[Sα] iff Wα, S

M
α |= ψ′.

Lemma 4.3 Let DS0 be φ[S0] where φ is an extended term,
α an action, and φ′ the combination formula of φ wrt α. Then
for any model M ′ of D − DS0 such that its extended plausi-
bility state W ′α, S

M ′

α |= φ′, there exists a model M of D s.t.
M ∼Sα M ′.
Proof sketch: Suppose that M |= Poss(α, S0). Let W ′α =
(S′,≤′, V ′). We construct M as follows. M and M ′ have
the same domains for actions. Firstly, all initial situations of
M are S′, and let S0 is S′M

′

α . For situations of M , we use
tM to denote the correspond world t′ of S′. Similarly, for
those ofM ′, we use tM

′
to denote t′. For any ordinary fluent,

M |= F (tM ) iff t′ ∈ V (F ). And BM (tM , uM ) iff t′ ≤′ u′.
Secondly, for every ηi, if ψ ∧ ηi ∧ ¬Poss∗([α]) is consistent,
we add a ψ ∧ ηi ∧¬Poss∗([α])-situation into M , and let it be
equally plausible to elements of [S0]1. Thirdly, there are two
cases. (1) W ′α, S

M ′

α |= ¬Bϕ. Then for all ξi, either ψ ∧ ϕ ∧
ξi∧¬Poss∗[α] is consistent, or there exists a world satisfying
ψ∧ϕ∧ξi∧¬Poss∗([α]k). For the first case, we add a ψ∧ϕ∧
ξi∧¬Poss∗([α])-situation intoM , and let it be more plausible
than all situations in [S0]. For the second case, we let any
ψ∧ϕ∧ξi∧¬Poss∗([α]k)-situation be more plausible than all
situations in [S0]. (2) W ′α, S

M ′

α |= Bϕ. Then for all ξi, either
ψ∧ϕ∧ξi∧¬Poss∗([α]) is consistent, or ifW ′α, S

M ′

α |= B¬ξi,
then there exists a ψ ∧ ϕ ∧ ξi ∧ ¬Poss∗([α]k)-world. For the
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first case, we add a ψ∧ϕ∧ξi∧¬Poss∗([α]k)-situation intoM ,
and let it be equally plausible to [S0]0. For the second case,
we let any ψ ∧ ϕ ∧ ξi ∧ ¬Poss∗([α]k)-situation be equally
plausible to [S0]0. Then we can show that M |= φ[S0].

We now construct a relation between the situations of M
and those ofM ′ as follows: R = {(do(a, tM ), do(a′, uM

′
)) |

M |= K(do(a, tM ), SMα ),M ′ |=K(do(a′, uM
′
), SM

′

α ) and
M, tM ≡ M ′, uM

′}. Obviously (SMα , S
M ′

α ) ∈ R. We now
proveR is a bisimulation between M and M ′. Here we only
prove the back condition for the K relation. Suppose that
R(do(a, tM ), do(a′, uM

′
)) and KM ′((a′′, vM

′
), do(a′, uM

′
)).

Since W ′α, S
M ′

α |= psK([α]), W ′α, do(a
′′, vM

′
) |= Poss∗(a′′)

and do(a′′, vM
′
) ∼′ SM ′α , there exists a state w ∼′ SM ′α s.t.

W ′α, w |= Poss∗(a′′), and w and do(a′′, vM
′
) agree on all

propositions in ~F . We can show that KM (do(a′′, wM ),

do(a, tM )) andR(do(a′′, wM ), do(a′′, vM
′
)).

4.3 Representing progression
By Lemmas 4.1, 4.2 and 4.3, we have the following theorem
which shows that for an extended term and an action, pro-
gression of knowledge and belief reduces to forgetting in the
combination formula.
Theorem 4.2 Let DS0

be φ[S0] where φ is an extended term,
α an action, and φ′ the combination formula of φ wrt α. Let
kbforget(φ′, ~F ) ≡ ψ. Then ψ[~F ′/~F ][Sα] is a progression of
DS0 wrt α.
Example 2 Continuing with Example 1, initially we have
K(c ∧ h, S0), which we expand into an extended term φ =

> ∧K(c ∧ h) ∧ K̂> ∧ B> ∧ B̂>. We compute the combina-
tion formula of φ wrt αc as follows:
• PSS(αc) ≡ (c′ ↔ ¬c) ∧ (h′ ↔ h);
• PSS(αh) ≡ (c′ ↔ c) ∧ (h′ ↔ ¬h);
• φobj ≡ (c′ ↔ ¬c) ∧ (h′ ↔ h);
• φK ≡ K(c ∧ h ∧ (PSS(αc) ∨ PSS(αh))∧

[K̂(c ∧ h) ⊃ K̂(c ∧ h ∧ PSS(αc))]∧
[K̂(c ∧ h) ⊃ K̂(c ∧ h ∧ PSS(αh))] ∧ K̂>

≡ K(c∧h∧(¬c′∧h′∨c′∧¬h′))∧K̂(¬c′∧h′)∧K̂(c′∧¬h′);
• Since Poss∗(αc) ≡ >, φ1B ≡ ⊥ and φ0B
≡ B(PSS(αh))∧K>∧[B̂(c∧h) ⊃ B̂(c∧h∧PSS(αh))]∧

[¬B> ∨ B⊥ ⊃ K̂(> ∧> ∧⊥)]

≡B[(c′↔c)∧(h′↔¬h)]∧[B̂(c∧h)⊃ B̂(c∧h∧c′∧¬h′)].
So the combination formula φ′ = φobj ∧ φK ∧ φ0B ≡
¬c′ ∧ h′ ∧K(c ∧ h ∧ (c′ ∧ ¬h′ ∨ ¬c′ ∧ h′)) ∧ B(c′ ∧ ¬h′).

Forgetting c and h from the above formula, we get:
¬c′ ∧ h′ ∧K(c′ ∧ ¬h′ ∨ ¬c′ ∧ h′) ∧ B(c′ ∧ ¬h′), since
• forget(c ∧ h ∧ ¬c′ ∧ h′, {c, h}) ≡ ¬c′ ∧ h′;
• forget(c ∧ h ∧ (c′ ∧ ¬h′ ∨ ¬c′ ∧ h′), {c, h})

≡ c′ ∧ ¬h′ ∨ ¬c′ ∧ h′;
• forget(c ∧ h ∧ c′ ∧ ¬h′, {c, h}) ≡ c′ ∧ ¬h′.
Thus (¬c ∧ h ∧K(c ∧ ¬h ∨ ¬c ∧ h) ∧ B(c ∧ ¬h))[Sαc ] is

a progression of DS0
wrt αc. It says: the computer is off but

the heater is on, Alice knows that only one of them is on, and
she believes that the computer is on but the heater is off.

Since every formula in LKB can be equivalently trans-
formed to a disjunction of extended terms, by Theorem 4.2,
we get the main result of this paper:
Corollary 4.1 In the single-agent propositional case, pro-
gression of knowledge and belief for propositional actions is
always definable in LKB and computable.

We remark that, in the single-agent propositional case, this
result is more general than the one obtained by Liu and Wen
[2011] . Firstly, they considered knowledge but did not con-
sider belief. Secondly, they only handled deterministic ac-
tions. Thirdly, for sensing actions, they required that the ini-
tial KB should not contain negative knowledge.

Finally, we analyze the size of progression. By the size of
an action α, we mean the size of the formula PSS([α]).
Theorem 4.3 Let α be an action. Then there exists a pro-
gression wrt α with size at most 22

3n+34l+4m2

, where l is the
size of DS0

, m is the size of α, and n is the number of fluents.
Proof: Firstly, let φ be an extended term of size p, we
estimate the size of the progression of φ. Let φ′ be the
combination formula. The size of φ′ is ≤ 2n+16nm +
2n+2m + 2p2m + 6pm + m2 ≤ 23np2m2. Converting φ′
into a disjunction of extended terms, we get a formula of size
≤ 22

3np2m2+4. Then forget all propositions from ~F ; the re-
sult has size ≤ 22

3n+2p2m2

. We can convert DS0
into a dis-

junction of extended terms, whose size is ≤ 2l+4. So there
exists a progression of DS0

whose size is ≤ 22
3n+34l+4m2

.
Thus the size of progression is double exponential in the

size of the initial formula and the number of fluents but single
exponential in the size of the action.

5 Some special cases
In general, the combination formula is too complicated. In
this section, we consider computing progression for some
simple cases including epistemic actions and deterministic
actions. For these cases, we can implement progression via
some techniques of knowledge compilation, e.g., BDDs, to
maintain the size of progressed KBs to a reasonable level.

5.1 Epistemic actions
Definition 5.1 An action α is an epistemic action possible in
S0, if for every ordinary fluent F and action a ∈ [α], we have
Dss(a) |= F (do(a, s)) ≡ F (s) .

Intuitively, α is an epistemic action if all alternatives to α
in S0 do not affect the world. The form of progression for
epistemic actions is simpler than in the general case.

Theorem 5.1 LetDS0
be φ[S0] where φ = θ∧Kψ∧

∧
i K̂ηi∧

Bϕ ∧
∧
i B̂ξi is an extended term, and α an epistemic action

possible in S0. Let φ′ = φobj ∧ φK ∧ φB , where φB =∨pd([α])
k=0 φkB, and
1. φobj=θ ∧ Poss∗(α);

2. φK=K(ψ ∧ Poss∗([α])) ∧
∧
ψ∧ηi|=Poss∗([α])K̂ηi;

3. φkB =B(Poss∗([α]k)) ∧K(¬Poss∗([α]<k)) ∧∧
ψ∧ϕ∧ξi|=Poss∗([α])[¬Bϕ ∨ B¬ξi ⊃

K̂(ϕ ∧ ξi ∧ ¬Poss∗([α]k))].
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Then φ′[Sα] is a progression of DS0 wrt α.

Epistemic actions do not change the world state. So two
formulas psK(A) and psB(A) and the instantiations of Dss
for epistemic actions are superfluous. Hence, we have: for
epistemic actions, the size of progression is one exponential
lower than in the general case:

Theorem 5.2 Let α be an epistemic action. Then there exists
a progression wrt α with size at most 4l+4m2, where l is the
size of DS0

and m is the size of α.

Example 3 Continuing with Example 2, we have DSαc ≡
φ[Sαc ] where φ = ¬c∧h∧K(c∧¬h∨¬c∧h)∧ K̂>∧B(c∧
¬h) ∧ B̂>. The progression of φ wrt oh is as follows:

• φobj ≡ ¬c ∧ h ∧ h ≡ ¬c ∧ h;

• φK ≡ K((c ∧ ¬h ∨ ¬c ∧ h) ∧ (h ∨ ¬h))
≡ K(c ∧ ¬h ∨ ¬c ∧ h);

• φ0B ≡ Bh∧K>∧ [¬B(c∧¬h)∨B⊥ ⊃ K̂(c∧¬h∧¬h)]

≡ Bh ∧ K̂(c ∧ ¬h);

• φ1B ≡ B¬h∧K¬h∧ [¬B(c∧¬h)∨B⊥ ⊃ K̂(c∧¬h∧h)]
≡ K¬h;

So the progression φ′ = φobj ∧ φK ∧ (φ0B ∨ φ1B)

≡ ¬c ∧ h ∧K(c ∧ ¬h ∨ ¬c ∧ h) ∧ [Bh ∧ K̂(c ∧ ¬h) ∨K¬h]

≡ ¬c ∧ h ∧K(c ∧ ¬h ∨ ¬c ∧ h) ∧ Bh ∧ K̂¬h.
ThusDSoh = (¬c∧h∧K(c∧¬h∨¬c∧h)∧Bh∧K̂¬h)[Soh ]

is a progression of DSαc wrt oh. It says: neither the objective
world nor Alice’s knowledge changes, but Alice changes her
beliefs, and believes that the heater is on. Moreover, Alice
knows it is possible that the heater is off.

5.2 Deterministic actions
Definition 5.2 An action α is deterministic in S0 if [α] =
{α}.

It says α is a deterministic action, if the comparability class
of α is a singleton.

Theorem 5.3 LetDS0 be φ[S0] where φ = θ∧Kψ∧
∧
i K̂ηi∧

Bϕ∧
∧
i B̂ξi is an extended term, and α a deterministic action

possible in S0. Let φ′ = kbforget(φobj,K ∧ φB, ~F ), where

• φobj,K = θ ∧ K(ψ ∧ PSS(α)) ∧
∧
ψ∧ηi|=Poss∗(α) K̂ηi;

• φB =

{
Bϕ∧

∧
ψ∧ϕ∧ξi|=Poss∗(α)B̂ξi, if φ |= B̂Poss∗(α);

>, ow.

Then φ′[~F ′/~F ][Sα] is a progression of DS0 wrt α.

The above formula φ′ states the following. Firstly, θ still
holds, and the agent remains her knowledge of ψ and gets to
know the precondition and effect of α. Secondly, the agent
keeps considering ηi possible if ψ ∧ ηi |= Poss∗(α). Thirdly,
when φ entails that the agent believes the precondition of α
possible, the agent keeps believing ϕ and keeps believing ξi
possible if ψ ∧ϕ∧ ξi |= Poss∗(α). The third part is because:
under the restriction, the most plausible alternatives to Sα are
do(α, s′) where s′ is a most plausible alternative to S0 such
that s′ satisfies the precondition of α.

Figure 2: Accurate observation action

This theorem shows that extended terms are closed under
progression wrt deterministic actions. As a corollary of this
theorem, we have: for deterministic actions, the size of pro-
gression is one exponential lower than in the general case:

Theorem 5.4 Let α be a deterministic action. Then there ex-
ists a progression wrt α with size at most 4l+42nm2, where l
is the size of DS0

, m is the size of α, and n is the number of
fluents.

An action which accurately observes that γ holds, written
oγ , is a deterministic epistemic action where Poss(oγ , s) ≡
γ(s). Since epistemic actions do not change the world state,
as an immediate corollary of Theorem 5.3, we have:

Corollary 5.1 LetDS0
be φ[S0] where φ = θ∧Kψ∧

∧
i K̂ηi∧

Bϕ ∧
∧
i B̂ξi is an extended term, and oγ be an accurate ob-

servation action possible in S0. Let φ′ = φobj,K ∧ φB, where

• φobj,K = θ ∧ K(ψ ∧ γ) ∧
∧
ψ∧ηi|=γ K̂ηi;

• φB =

{
Bϕ ∧

∧
ψ∧ϕ∧ξi|=γ B̂ξi, if φ |= B̂γ;

>, ow.

Then φ′[Soγ ] is a progression of DS0 wrt oγ .

Example 4 Reconsider the example from the introduction.
Assume that the observation action is accurate. The axioms
are the same as those in Example 1, except for the A axiom:

A(a′, a, s) ≡ a = a′ ∨ a′ = αh ∧ a = αc.
As depicted in Figure 2, now the situations Soh and S′o¬h are
not comparable since oh and o¬h are not comparable. From
Example 2, we have DSαc ≡ φ[Sαc ] where φ = ¬c ∧ h ∧
K(c ∧ ¬h ∨ ¬c ∧ h) ∧ K̂>∧ B(c ∧ ¬h) ∧ B̂>. By Corollary
5.1, since φ 6|= B̂h, the following is a progression of DSαc
wrt oh:

(¬c ∧ h ∧K((c ∧ ¬h ∨ ¬c ∧ h) ∧ h))[Soh ],
which is equivalent to K(¬c∧h, Soh). Compared to Example
3, Alice not only believes that the heater is on, but also gets
to know the truth.

6 Conclusions
In this paper, we have studied progression of knowledge
and belief wrt nondeterministic actions in the single-agent
propositional case. We gave a model-theoretic definition of
progression of knowledge and belief. We studied forgetting
in the logic of knowledge and belief, and showed that it is
closed under forgetting. We constructed the combination
formula which combines the information of an extended term
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and an action. We showed that for propositional actions, both
physical and epistemic, progression of knowledge and belief
reduces to forgetting in the combination formula, and hence
is always definable in the logic of knowledge and belief.
In general, progression might cause a double exponential
blowup in the size of the formula. We showed that for the
special cases of epistemic actions and deterministic actions,
the blowup is only single exponential. For these cases, we
can acquire practical solutions to progression via techniques
of knowledge compilation, e.g., BDDs, SDDs [Darwiche,
2011], and minimal-DNFs [To et al., 2009]. We have used
the results of progression for deterministic actions in imple-
menting an epistemic planner [Wan et al., 2015]. All results
in this paper can carry over to the single-agent propositional
fragments of several extensions to the situation calculus, e.g.,
[Shapiro et al., 2011] and [Liu and Wen, 2011].

For the future, we would like to identify fragments and ex-
plore sound but incomplete progression to prevent the dou-
ble exponential blowup. Then, we will apply practical forms
of progression in doxastic planning and high-level program
execution for belief-based programs. We would also like to
investigate progression for non-propositional actions and the
multi-agent case.
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