Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Schema.org as a Description Logic

Andre Hernich!, Carsten Lutz?, Ana Ozaki' and Frank Wolter!'

'University of Liverpool, UK

{andre.hernich, anaozaki, wolter} @liverpool.ac.uk

Abstract

Schema.org is an initiative by the major search en-
gine providers Bing, Google, Yahoo!, and Yandex
that provides a collection of ontologies which web-
masters can use to mark up their pages. Schema.org
comes without a formal language definition and
without a clear semantics. We formalize the lan-
guage of Schema.org as a Description Logic (DL)
and study the complexity of querying data using
(unions of) conjunctive queries in the presence of
ontologies formulated in this DL (from several per-
spectives). While querying is intractable in general,
we identify various cases in which it is tractable and
where queries are even rewritable into FO queries
or datalog programs.

1 Introduction

The Schema.org initiative was launched in 2011 and is sup-
ported today by Bing, Google, Yahoo!, and Yandex. In the
spirit of the Semantic Web, it provides a collection of ontolo-
gies that establish a standard vocabulary to mark up website
content with metadata (https://schema.org/). In particular, web
content that is generated from structured data as found in rela-
tional databases is often difficult to recover for search engines
and Schema.org markup elegantly solves this problem. The
markup is used by search engines to more precisely identify
relevant pages, to provide richer search results, and to enable
new applications. Schema.org is experiencing very rapid adop-
tion and is used today by more than 15 million webpages
including all major ones [Guha, 2013].

Schema.org does neither formally specify the language in
which its ontologies are formulated nor does it provide a for-
mal semantics for the published ontologies. However, the pro-
vided ontologies are extended and updated frequently and fol-
low an underlying language pattern. This pattern and its mean-
ing is described informally in natural language. Schema.org
adopts a class-centric representation enriched with binary re-
lations and datatypes, similar in spirit to description logics
(DLs) and to the OWL family of ontology languages; the cur-
rent version includes 622 classes and 891 binary relations.
Partial translations into RDF and into OWL are provided by
the linked data community. Based on the informal descrip-
tions at https://schema.org/ and on the mentioned translations,

3048

ZUniversity of Bremen, Germany
clu@informatik.uni-bremen.de

Patel-Schneider [2014] develops an ontology language for
Schema.org with a formal syntax and semantics that, apart
from some details, can be regarded as a fragment of OWL DL.

In this paper, we abstract slightly further and view the
Schema.org ontology language as a DL, in line with the for-
malization by Patel-Schneider. Thus, what Schema.org calls a
type becomes a concept name and a property becomes a role
name. The main characteristics of the resulting ‘Schema.org
DL’ are that (i) the language is very restricted, allowing only
inclusions between concept and role names, domain and range
restrictions, nominals, and datatypes; (ii) ranges and domains
of roles can be restricted to disjunctions of concept names (pos-
sibly mixed with datatypes in range restrictions) and nominals
are used in ‘one-of enumerations’ which also constitute a form
of disjunction. While Point (i) suggests that the Schema.org
DL is closely related to the tractable profiles of OWL2, be-
cause of Point (ii) it does actually not fall into any of them.
There is a close connection to the DL-Lite family of DLs
[Calvanese et al., 2007], and in particular to the DL—LiterOOI
variant [Artale ef al., 2009]. However, DL-Lite/t | admits
existential restriction, negation, conjunction, and free use of
disjunction whereas the Schema.org DL allows no existential
quantification and includes nominals and datatypes. We use
the term schema.org-ontology to refer to ontologies formu-
lated in the Schema.org DL; in contrast, ‘Schema.org 2015’
refers to the concrete collection of ontologies provided at
https://schema.org/ as of end of April, 2015.

Our main aim is to investigate the complexity of query-
ing data in the presence of schema.org-ontologies, where the
data is the markup that was extracted from webpages. While
answering queries over such data is the main reasoning task
that arises in Schema.org applications and the Schema.org
initiative specifies a format for the data in terms of so-called
items, no information is given on what form of querying is
used. We consider conjunctive queries (CQs) and unions
of conjunctive queries (UCQ), a basic querying mechanism
that is ubiquitous in relational database systems and research,
and that also can be viewed as a core of the Semantic Web
query language SPARQL. In particular, we also consider CQs
and UCQs without quantified variables since these are not
allowed in the relevant SPARQL entailment regimes [Glimm
and Krdtzsch, 2010]. We often view a pair (O, ¢) that consists
of a schema.org-ontology and an actual query as a compound
query called an ontology-mediated query (OMQ).

We start with the observation that evaluating OMQs is in-
tractable in general, namely IT5-complete in combined com-
plexity and CONP-complete in data complexity. In the main
part of the paper, we therefore have two aims: (i) identify large
and practically useful classes of OMQs with lower combined
and data complexity, and (ii) investigate in how far it is possi-
ble to obtain a full classification of each schema.org ontology
or each OMQ according to its data complexity. While the
utility of aim (i) is obvious, we note that aim (ii) is also most
useful from a user’s perspective as it clarifies the complexity
of every concrete ontology or OMQ that might be used in an
actual application. Apart from classical tractability (that is,
PTIME), we are particularly interested in the rewritability of
OMQs into first-order (FO) queries (actually: UCQs) and into
datalog programs. One reason is that this allows to implement
querying based on relational database systems and datalog en-
gines, taking advantage of those systems’ efficiency and matu-
rity. Another reason is that there is significant research on how
to efficiently answer UCQs and datalog queries in cluster com-
puting models such as MapReduce [Afrati and Ullman, 2011;
2012], a natural framework when processing web-scale data.

For both aims (i) and (ii) above, we start with analyzing
basic schema.org ontologies in which enumeration definitions
(‘one of” expressions) and datatypes are disallowed. Regard-
ing aim (i), we show that all OMQs which consist of a basic
schema.org-ontology and a CQ q of gqvar-size two (the restric-
tion of ¢ to quantified variables is a disjoint union of queries
with at most two variables each) are datalog-rewritable in
polynomial time and can be evaluated in PTime in combined
complexity. This result trivially extends to basic schema.org-
ontologies with datatypes, but does not hold for unrestricted
schema.org-ontologies. In the latter case, we establish the
same tractability results for OMQs with CQs that do not con-
tain any quantified variables.

Regarding aim (ii), we start with classifying each single
schema.org-ontology O according to the data complexity of
all OMQs (O, q) with ¢ a UCQ. We establish a dichotomy
between ACY and CONP in the sense that for each ontol-
ogy O, either all these OMQs are in AC® or there is one
OMQ that is CONP-hard. The dichotomy comes with a trans-
parent syntactic characterization and is decidable in PTIME.
Though beautiful, however, it is of limited use in practice
since most interesting ontologies are of the intractable kind.
Therefore, we also consider an even more fine-grained classi-
fication on the level of OMQs, establishing a useful connec-
tion to constraint satisfaction problems (CSPs) in the spirit
of [Bienvenu et al., 2014b]. It turns out that even for ba-
sic schema.org-ontologies and for ontologies that consist ex-
clusively of enumeration definitions, a complexity classifica-
tion of OMQs implies a solution to the dichotomy conjecture
for CSPs, a famous open problem [Feder and Vardi, 1998;
Bulatov, 2011]. However, the CSP connection can also be
used to obtain positive results. In particular, we show that
it is decidable in NEXPTIME whether an OMQ based on a
schema.org-ontology and a restricted form of UCQ is FO-
rewritable and, respectively, datalog-rewritable. We also es-
tablish a PSpace lower bound for this problem.

Detailed proofs are provided in the full version at
http://cgi.csc.liv.ac.uk/~ frank/publ/publ.html.

2 Preliminaries

Let N¢, Ng, and N; be countably infinite and mutually disjoint
sets of concept names, role names, and individual names.
Throughout the paper, concepts names will be denoted by
A, B,C,..., role names by r, s, t, ..., and individual names
by a,b,c,....

A schema.org-ontology consists of concept inclusions of
different forms, role inclusions, and enumeration definitions.
A concept inclusion takes the form A C B (atomic concept
inclusion), ran(r) C Ay U --- U A, (range restriction), or
dom(r) C A U-- A, (domain restriction). A role inclusion
takes the form r C s.

Example 1. The following are examples of concept inclusions
and role inclusions (last line) in Schema.org 2015:

Movie C CreativeWork
ran(musicBy) C Person Ll MusicGroup
dom(musicBy) C Episode LI Movie LI RadioSeries LI TVSeries
sibling C relatedTo

We now define enumeration definitions. Fix a set Ng C N;
of enumeration individuals such that both Ng and N, \ Ng
are infinite. An enumeration definition takes the form A =
{a1,...,a,} with A € Nc and aq,...,a, € Ng.

Example 2. An enumeration definition in Schema.org 2015
is Booktype = {ebook, hardcover, paperback}.

A datatype D = (D, AP) consists of a datatype name D and
a non-empty set of data values AP . Examples of datatypes in
Schema.org 2015 are Boolean, Integer, and Text. We assume
that datatype names and data values are distinct from the
symbols in N¢ U Ng U N, and that there is an arbitrary but
fixed set DT of datatypes such that AP N AP2 = () for all
D1 # Dy € DT.

To accommodate datatypes in ontologies, we generalize
range restrictions to range restrictions with datatypes, which
are inclusions of the form ran(r) C A; U --- U A, with
Ay, ..., A, concept names or datatype names from DT.

Example 3. A range restriction with datatypes in Schema.org
2015 is ran(acceptsReservation) C Boolean LI Text

A schema.org-ontology O is a finite set of concept inclu-
sions (including range restrictions with datatypes), role inclu-
sions, and enumeration definitions. We denote by N¢(O) the
set of concept names in O, by Ng(O) the set of role names
in O, and by Ng(O) the set of enumeration individuals in O.

A data instance A is a finite set of

e concept assertions A(a) where A € N¢ and a € Ny;

e role assertions r(a,b) where r € Ng, a € Ny and b €
NiUUpepr A7
We say that A is a data instance for the ontology O if A
contains no enumeration individuals except those in Ng(O).
We use Ind(.A) to denote the set of all individuals (including
datatype elements) in A.

Example 4. Examples for assertions are Movie(a),
name(a, ‘avatar’), director(a, b), name(b, ‘Cam’).

3049

Let O be a schema.org-ontology. An interpretation T =
(AT,) for O consists of a non-empty set AZ disjoint from
Upeot AP and with A7 0 Ng = Ng(0), and a function -*
that maps

e every concept name A to a subset A% of AZ,

e every role name r to a subset 7~ of A7 x AT-PT where
IOT _ AT D.
AFPT = AT UUpepr A™:

e cvery individual name a € (N; \ Ng) U Ng(O) to some
a® € AT such that a” = a for all a € Ng(O).

Note that we make the standard name assumption (and, there-
fore, unique name assumption) for individuals in Ng. Individ-
ual names from Ng that do not occur in O are not interpreted
by 7 to avoid enforcing infinite domains.

For an interpretation Z and role name 7, set dom(r)? =
{d | (d,d’) € r*} and ran(r)T = {d’g (d,d’) € rt}. To
achieve uniform notation, set DZ = AP for every datatype
(D,AP) in DT and d* = d for every d € AP, D € DT.
For concept or datatype names A1, ..., A,, set (A3 U---U
A, = ATU---UAZL. Aninterpretation Z for an ontology O
satisfies a (concept or role) inclusion X; C X5 € O if X %I -
XZ, an enumeration definition A = {a1,...,a,} if AT =
{ai1,...,a,}, a concept assertion A(a) if aZ € AT, and a
role assertion r(a,b) if (aZ,b%) € rZ. These satisfaction
relationships are denoted with “=",asinZ E X; C Xo.

An interpretation Z for O is a model of O if it satisfies
all inclusions and definitions in O and a model of a data in-
stance A for O if it satisfies all assertions in .A. We say that A
is satisfiable w.r.t. O if O and A have a common model. Let
« be a concept or role inclusion, or an enumeration definition.
We say that « follows from O, in symbols O = a, if every
model of O satisfies .

We introduce the query languages considered in this pa-
per. A ferm t is either a member of Nj U Jpcpr AP or
an individual variable taken from an infinite set Ny of such
variables. A first-order query (FOQ) consist of a (domain-
independent) first-order formula (Z) that uses unary predi-
cates from Nc U {D | (D, D) € DT}, binary predicates from
NRg, and only terms as introduced above. The unary datatype
predicates are built-ins that identify the elements of the respec-
tive datatype. We call & the answer variables of p(Z), the
remaining variables are called guantified. A query without
answer variables is Boolean. A conjunctive query (CQ) is a
FOQ of the form 37 (&, §) where ¢(Z, %) is a conjunction
of atoms such that every answer variable x occurs in an atom
that uses a symbol from N¢ U Ng, that is, an answer variable x
is not allowed to occur exclusively in atoms of the form D(z)
with D a datatype name (to ensure domain independence). A
union of conjunctive queries (UCQ) is a disjunction of CQs.
A CQ ¢ can be regarded as a directed graph GY with vertices
{t | ttermin ¢} and edges {(¢,t') | r(¢,t') ing¢}. If G? is
acyclic and r(t1,t3), s(t1,t2) € g implies = s, then ¢ is an
acyclic CQ. A UCQ is acyclic if all CQs in it are.

We are interested in querying data instances .4 using a
UCQ ¢(Z) taking into account the knowledge provided by an
ontology O. A certain answer to q(Z) in A under O is a tuple
a of elements of Ind(.A) of the same length as & such that for
every model Z of O and A, we have 7 |= ¢[d]. In this case,
we write O, A |= ¢(a).

Query evaluation is the problem to decide whether
O, A = ¢(d). For the combined complexity of this problem,
all of O, A, q, and @ are the input. For the data complexity,
only A and @ are the input while O and ¢ are fixed. It of-
ten makes sense to combine the ontology O and actual query
q(Z) into an ontology-mediated query (OMQ) Q = (O, ¢(Z)),
which can be thought of as a compound overall query. We
show the following by adapting techniques from [Eiter et al.,
1997] and [Bienvenu et al., 2014b].

Theorem 5. Query evaluation of CQs and UCQs under
schema.org-ontologies is 115 -complete in combined complex-
ity. In data complexity, each OMQ (O, q) from this class can
be evaluated in CONP; moreover, there is such a OMQ (with
q a CQ) that is CONP-complete in data complexity.

An OMQ (O, q(Z)) is FO-rewritable if there is a FOQ Q(Z)
(called an FO-rewriting of (O, q(Z))) such that for every data
instance A for O and all @ € Ind(A), we have O, A = ¢(@)
iff Z4 E Q(d) where Z4 is the interpretation that corre-
sponds to A (in the obvious way). We also consider datalog-
rewritability, defined in the same way as FO-rewritability,
but using datalog programs in place of FOQs. Using Ross-
man’s homomorphism preservation theorem [Rossman, 2008],
one can show that an OMQ (O, ¢(¥)) with O a schema.org-
ontology and ¢(Z) a UCQ is FO-rewritable iff it has a UCQ-
rewriting iff it has a non-recursive datalog rewriting, see [Bi-
envenu et al., 2014b] for more details. Since non-recursive
datalog-rewritings can be more succinct than UCQ-rewritings,
we will generally prefer the former.

3 Basic schema.org-Ontologies

We start with considering basic schema.org-ontologies, which
are not allowed to contain enumeration definitions and
datatypes. The results obtained for basic schema.org-
ontologies can be easily extended to basic schema.org-
ontologies with datatypes but do not hold for ontologies with
enumeration definitions (as will be shown in the next section).
In Schema.org 2015, 45 concept names from a total of 622
are defined using enumeration definitions, and hence are not
covered by the results presented in this section.

We start with noting that the entailment problem for ba-
sic schema.org-ontologies is decidable in polynomial time.
This problem is to check whether O = « for a given basic
schema.org-ontology O and a given inclusion « of the form
allowed in such ontologies. In fact, the algorithm is straightfor-
ward. For example, O =ran(r) C A; U--- U A, if thereis a
role name s and a range restriction ran(s) C By U---UB,, €
Osuchthat Op ErCsand O¢ = B; C A U---UA,
for all 1 < j < m, where Or and O¢ denote the set of role
inclusions and atomic concept inclusions in O.

Theorem 6. The entailment problem for basic schema.org-
ontologies is in PTIME.

The hardness results reported in Theorem 5 crucially rely on
existential quantification in the actual query. In fact, it follows
from results in [Grau et al., 2013; Kaminski et al., 2014b] that
given an OMQ Q = (O, ¢(%)) with O a basic schema.org-
ontology and ¢(#) a CQ without quantified variables, it is
possible to construct a non-recursive datalog rewriting of)

3050

Figure 1: Data instance A,,.

in polynomial time, and thus such OMQs can be evaluated in
PTIME in combined complexity. We aim to push this bound
further by admitting restricted forms of quantification.

A CQ ¢ has gvar-size n if the restriction of ¢ to quantified
variables is a disjoint union of queries with at most n variables
each. For example, quantifier-free CQs have qvar-size 0 and
the following query ¢(z, y) has qvar-size 1:

21329 /\ (producedBy(z1,v) A musicBy(v, z3))
ve{z,y}

The above consequences of the work by Grau, Kaminski, et al.
can easily be extended to OMQs where queries have qvar-size
one. In what follows, we consider qvar-size two, which is
more subtle and where, in contrast to qvar-size one, reasoning
by case distinction is required. The following example shows
that there are CQs of qvar-size two for which no non-recursive
datalog rewriting exists.

Example 7. Ler O = {ran(s) C A U B} and consider the
following CQ of gvar-size two:

q(x) = 1 Fwa(s(x, 21) A A(z1) Ar(x1,22) A B(22))

It is easy to see that O, A,, = q(a) for every data instance
A, with m > 2 as defined in Figure 1.

By applying locality arguments and using the data instances
A, one can in fact show that (O, g(x)) is not FO-rewritable
(note that removing one r(b;, b;11) from A,, results in g(a)
being no longer entailed).

Theorem 8. For every OMQ (O, q(Z)) with O a basic
schema.org-ontology and q(Z) a CQ of qvar-size at most two,
one can construct a datalog-rewriting in polynomial time.
Moreover, evaluating OMQs from this class is in PTIME in
combined complexity.

Applied to Example 7, the proof of Theorem 8 yields a datalog
rewriting that consists of the rules

P(xy,29,x) s(x,x1) A X1 (1) Ar(xr, x2) A Xo(22)
where the X; range over A, B, and Jy r(y,), plus

Tq(x1,x) < P(x1,29,2) AN A(z1)

Ip(x9,x) + P(x1,22,2) A B(x2)

Th(xo,x) < P(x1,29,2) A La(21,2)

Ip(xy,x) « P(x1,22,2) A Ig(22,2)

goal(x) < s(z,x1) A Ta(z1,2) Ar(z1,22) A Ip(22,).

The recursive rule for 14 (the one for Ip is dual) says that if
the only option to possibly avoid a match for (21, z2, x) is to
color (x1,x) with I 4, then the only way to possibly avoid a
match for (z1, z2,) is to color (zo,z) with I4 (otherwise,

since ran(s) C AU B € O, it would have to be colored with
I which gives a match).

Theorem 8 can easily be extended to basic schema.org-
ontologies enriched with datatypes. For schema.org-
ontologies O that also contain enumeration definitions, the
rewriting is sound but not necessarily complete, and can thus
be used to compute approximate query answers.

Interestingly, Theorem 8 cannot be generalized to UCQ:s.
This follows from the result shown in the full version that for
basic schema.org-ontologies O and quantifier-free UCQs ¢(z)
(even without role atoms), the problem O, A |= q(a) is coNP-
hard regarding combined complexity for data instances A with
a single individual a. We also note that it is not difficult to
show (and follows from FO-rewritability of instance queries in
DL-Lite[t , [Artale et al., 2009]) that given an OMQ (O, ¢(Z))
with O a basic schema.org-ontology and ¢(Z) a quantifier-free
UCAQ, one can construct an FO-rewriting in exponential time,
and thus query evaluation is in AC® in data complexity.

We now classify basic schema.org-ontologies O according
to the data complexity of evaluating OMQs (O, q) with ¢
a UCQ (or CQ). It is convenient to work with minimized
ontologies where for all inclusions F'C Ay LI---U A, € O
and all i < n, there is a model Z of © and a d € AZsuch that
d satisfies F' 11 A; |;| —A; (defined in the usual way). Every

J7F1

schema.org-ontology can be rewritten in polynomial time into
an equivalent minimized one. We establish the following
dichotomy theorem.

Theorem 9. Let O be a minimized basic schema.org-ontology.
If there exists F C A1 U---U A, € Owithn > 2, then there
is a Boolean CQ q that uses only concept and role names
from O and such that (O, q) is CONP-hard in data complexity.
Otherwise, a given OMQ (O, q) with ¢ a UCQ can be rewritten
into a non-recursive datalog-program in polynomial time (and
is thus in ACY in data complexity).

The proof of the second part of Theorem 9 is easy: if there are
no FC A U---UA, € Owithn > 2, then O essentially is
already a non-recursive datalog program and the construction
is straightforward. The proof of the hardness part is obtained
by extending the corresponding part of a dichotomy theorem
for ALC-ontologies of depth one [Lutz and Wolter, 2012].
The main differences between the two theorems are that (i) for
basic schema.org-ontologies, the dichotomy is decidable in
PTIME (whereas decidability is open for ALC), (ii) the CQs
in CONP-hard OMQs use only concept and role names from
O (this is not possible in ALC), and (iii) the dichotomy is
between AC? and CONP whereas for ALC OMQs can be
complete for PTIME, NL, etc.

By Theorem 9, disjunctions in domain and range restrictions
are the (only!) reason that query answering is non-tractable
for basic schema.org-ontologies. In Schema.org 2015, 14%
of all range restrictions and 20% of all domain restrictions
contain disjunctions.

In Theorem 9, we have classified the data complexity of on-
tologies, quantifying over the actual queries. In what follows,
we aim to classify the data complexity of every OMQ. This
problem turns out to be much harder and, in fact, we show that
a classification of the data complexity of OMQs based on basic
schema.org-ontologies and UCQs implies a classification of
constraint satisfaction problems according to their complexity

3051

(up to FO-reductions), a famous open problem that is the sub-
ject of significant ongoing research [Feder and Vardi, 1998;
Bulatov, 2011].

A signature is a set of concept and role names (also called
symbols). Let BB be a finite interpretation that interprets only
the symbols from a finite signature . The constraint satis-
faction problem CSP(B) is to decide, given a data instance A
over Y., whether there is a homomorphism from A to B. In
this context, 53 is called the template of CSP(B).

Theorem 10. For every template BB, one can construct in
polynomial time an OMQ (O, q) with O a basic schema.org-
ontology and q a Boolean acyclic UCQ such that the comple-
ment of CSP(B) and (O, q) are mutually FO-reducible.

Theorem 18 below establishes the converse direction of The-
orem 10 for unrestricted schema.org-ontologies and a large
class of (acyclic) UCQs. From Theorem 18, we obtain a
NEXPTIME-upper bound for deciding FO-rewritability and
datalog-rewritability of a large class of OMQs (Theorem 19
below). It remains open whether this bound is tight, but we
can show a PSPACE lower bound for FO-rewritability using a
reduction of the word problem of PSPACE Turing machines.
The proof uses the ontology O and data instances .4,,, from
Example 7 and is similar to a PSPACE lower bound proof
for FO-rewritability in consistent query answering [Lutz and
Wolter, 2015] which is, in turn, based on a construction from
[Cosmadakis et al., 1988].

Theorem 11. It is PSPACE-hard to decide whether a given
OMQ (O, q) with O a basic schema.org-ontology and q a
Boolean acyclic UCQ is FO-rewritable.

4 Incoherence and Unsatisfiability

In the subsequent section, we consider unrestricted schema.org
ontologies instead of basic ones, that is, we add back enumer-
ation definitions and datatypes. The purpose of this section is
to deal with a complication that arises from this step, namely
the potential presence of inconsistencies.

A symbol X € N¢ U N is incoherent in an ontology O if
X7 = () for all models Z of O. An ontology O is incoherent if
some symbol is incoherent in O. The problem with incoherent
ontologies O is that there are clearly data instances A that are
unsatisfiable w.r.t. O. Incoherent ontologies can result from
the UNA for enumeration individuals such as in O = {A =
{a}, B = {b}, A C B}, which has no model (if a # b) and
thus any symbol is incoherent in O; they can also arise from
interactions between concept names and datatypes such as in
O’ = {ran(r) C Integer,ran(s) C A,r C s} with A € N,
in which r is incoherent since AZ N A& — () in any model
T of O'. Using Theorem 6, one can show the following.

Theorem 12. Incoherence of schema.org-ontologies can be
decided in PTime.

We now turn to inconsistencies that arise from combining
an ontology O with a particular data instance A for O. As
an example, consider O = {A = {a},B = {b}} and A =
{A(c), B(c)}. Although O is coherent, A is unsatisfiable
w.r.t. O. Like incoherence, unsatisfiability is decidable in
polynomial time. In fact, we can even show the following
stronger result.

A A A A

ar r by r by T b1 T by T 02

e e —_— e .

Figure 2: Data instance A/ ,.

Theorem 13. Given a schema.org-ontology O, one can com-
pute in polynomial time a non-recursive datalog program 11
such that for any data instance A for O, A is unsatisfiable
w.rt. O Jff TI(A) # 0.

In typical schema.org applications, the data is collected from
the web and it is usually not acceptable to simply report back
an inconsistency and stop processing the query. Instead, one
would like to take maximum advantage of the data despite the
presence of an inconsistency. There are many semantics for
inconsistent query answering that can be used for this purpose.
As efficiency is paramount in schema.org applications, our
choice is the pragmatic intersection repair (IAR) semantics
which avoids CONP-hardness in data complexity [Lembo et
al., 2010; Rosati, 2011; Bienvenu et al., 2014al. A repair of
a data instance A w.r.t. an ontology O is a maximal subset
A’ C A that is satisfiable w.r.t. O. We use rep, (A) to denote
the set of all repairs of A w.r.t. O. The idea of IAR semantics
is then to replace A with [A Crepe (A) A’. In other words,
we have to remove from A all assertions that occur in some
minimal subset A’ C A that is unsatisfiable w.r.t. ©. We call
such an assertion a conflict assertion.

Theorem 14. Given a schema.org-ontology O and concept
name A (resp. role name), one can compute a non-recursive
datalog program 11 such that for any data instance A for O,
II(A) is the set of all a € Ind(A) (resp. (a,b) € Ind(A)?)
such that A(a) (resp. v(a,b)) is a conflict assertion in A.

By Theorem 14, we can adopt the IAR semantics by simply
removing all conflict assertions from the data instance before
processing the query. Programs from Theorem 14 become
exponential in the worst case, but we expect them to be small
in practical cases. In the remainder of the paper, we assume
that ontologies are coherent and that A is satisfiable w.r.t. O if
we query a data instance A using an ontology O.

5 Unrestricted schema.org-Ontologies

We aim to lift the results from Section 3 to unrestricted
schema.org-ontologies. Regarding Theorem 8, it turns out
that quantified variables in CQs are computationally much
more problematic when there are enumeration definitions in
the ontology. In fact, one can expect positive results only for
quantifier-free CQs, and even then the required constructions
are quite subtle.

Theorem 15. Given an OMQ Q = (0,q) with O a
schema.org-ontology and q a quantifier-free CQ, one can con-
struct in polynomial time a datalog-rewriting of Q. Moreover,
evaluating OMQs in this class is in PTIME in combined com-
plexity. The rewriting is non-recursive if ¢ = A(x).

The following example illustrates the construction of the data-
log program. Let O = {A = {a1,a2}} and ¢() = (a1, az).
Observe that O, A/, |= ¢() for every data instance A}, de-
fined in Figure 2. Similarly to Example 7, one can use the data
instances A/, to show that (O, ¢()) is not FO-rewritable.

3052

A datalog-rewriting of (O, ¢()) is given by the program
114, ,a, Which contains the rules

goal() +«+

goal() <«

path,(z,y) <

pathA (3;‘7 y) —

r(al,ag)

r(a1,x) A path 4 (z,y) Ar(y, az)
r(z,y) N Ax) A Aly)

path 4 (z, z) A path 4(z,y).

Given a data instance A, the program checks whether there
is an r-path from a; to as in A with inner nodes in A. If
by, b1, ..., by is such a path, then in all models Z of O and A
there is an i < n with (b7_;,b) = (a1, az2), hence Z = ¢().
Otherwise, we obtain a model Z with Z [~ ¢() by assigning
ay to all individual names b with A(b) € A that are reachable
from a; by a path with inner nodes in A, and an individual
a; to all other individual names in A.

We now modify the datalog program to obtain a rewriting
of the OMQ (O, ¢'(z,y)) with ¢(z,y) = r(x,y). First, we
include in II,. the rules A(aq) < true, A(ag) < true, and

goal(z,y) <« r(z,y)
goal(:L‘, y) — A(gj) N A(y) A A1§i7j§2 Rai,aj ($> y)

We want to use the latter rule to check that (1) in every model,
x and y have to be identified with an individual in {a1, a2},
and (2) for all ¢, j € {1, 2}, all models that identify x and y
with a; and a; satisfy r(a;, a;). Notice that (x, y) is false in
a model of O and A iff A does not contain r(z, y) and (1) or
(2) is violated. To implement (2), we add the rules:

Rai,aj(xay) — neq(x7a'i)
Ra;a,(z,y) < goal(a;,a;)
neq(ai,as) « true

Ra'i;aj (J’J, y) < neq (y7 a’j)

neq(as,a1) < true.

The first row checks admissibility of the assignment z, y +—
a;,a;: if z is one of the enumeration individuals in {a1, as}
and a; # x, then there is no model that identifies with a;,
hence the statement (2) above is trivially true. Similarly for y
and a;. It remains to add rules 3 and 4 from II,, ,, and

goal(a;,a;) <+ r(a;,x) Apathy(z,y) Ar(y, a;)
forl1 <i,57 <2andi # j.

Theorem 15 is tight in the sense that evaluating CQs with a
single atom and a single existentially quantified variable, as
well as quantifier-free UCQs, is coNP-hard in data complexity.
For instance, let O = {dom(e) C A, ran(e) C A, A =
{r,g,b}}. Then, an undirected graph G = (V,E) is 3-
colorable iff O, {e(v,w) | (v,w) € E} = Jxe(x, x). Alter-
natively, one may replace the query by r(r, 7)Vr(g, g)Vr(b,b).
In fact, one can prove the following variant of Theorem 10
which shows that classifying OMQs with ontologies using only
enumeration definitions and quantifier-free UCQs according
to their complexity is as hard as CSP.

Theorem 16. Given a template B, one can construct in poly-
nomial time an OMQ (O, q) where O only contains enumer-
ation definitions and q is a Boolean variable-free UCQ such
that the complement of CSP(B) and (O, q) are mutually FO-
reducible.

We now turn to classifying the complexity of ontologies and
of OMQs, starting with a generalization of Theorem 9 to
unrestricted schema.org-ontologies.

Theorem 17. Let O be a coherent and minimized schema.org-
ontology. If O contains an enumeration definition A =
{a1,...,a,} with n > 2 or contains an inclusion F T

Ay U---U A, such that there are at least two concept names

) A C
in{A,...,Apyand O £ F C Al (DVA%)GDTDfor any

Awith A = {a} € O, then (O, q) is coNP-hard for some
Boolean CQ q. Otherwise every (O, q) with g a UCQ is FO-
rewritable (and thus in AC® in data complexity).

Note that, in contrast to Theorem 9, being in ACP does not
mean that no ‘real disjunction’ is available. For example,
for O = {ran(r) CAUB,AC C,BC C,C = {c}} and
A = {r(a,b)} wehave O, A = A(b) Vv B(b) and neither A(b)
nor B(b) are entailed. This type of choice does not effect FO-
rewritability, since it is restricted to individuals that must be
identified with a unique individual in Ng(O). Note that, for the
hardness proof, we now need to use a role name that possibly
does not occur in O. For example, for O = {A = {a1,a2}}
there exists a Boolean CQ ¢ such that (O, q) is NP-hard, but a
fresh role name is required to construct q.

We now consider the complexity of single OMQs and show
a converse of Theorems 10 and 16 for schema.org-ontologies
and UCQs that are gvar-acyclic, that is, when all atoms 7 (¢, t')
with neither of ¢,t’ a quantified variable are dropped, then all
CQs in it are acyclic. We use generalized CSPs with marked
elements in which instead of a single template B3, one considers
a finite set I' of templates whose signature contains, in addition
to concept and role names, a finite set of individual names.
Homomorphisms have to respect also the individual names
and the problem is to decide whether there is a homomorphism
from the input interpretation to some B € I'. It is proved in
[Bienvenu et al., 2014b] that there is a dichotomy between
PTIME and NP for standard CSPs if, and only if, there is such
a dichotomy for generalized CSPs with marked elements.

Theorem 18. Given an OMQ (O, q) with O a schema.org-
ontology and q a qvar-acyclic UCQ, one can compute in ex-
ponential time a generalized CSP with marked elements T’
such that (O, q) and the complement of CSP(T') are mutually
FO-reducible.

The proof uses an encoding of qvar-acyclic queries into con-
cepts in the description logic ALCZUO that extends ALC
by inverse roles, the universal role, and nominals. It extends
the the template constructions of [Bienvenu et al., 2014b] to
description logics with nominals. It is shown in [Bienvenu et
al., 2014b] that FO-definability and datalog definability of the
complement of generalized CSPs with marked elements are
NP-complete problems. Thus, we obtain the following result
as a particularly interesting consequence of Theorem 18.

Theorem 19. FO-rewritability and datalog-rewritability of
OMQs (O, q) with O a schema.org-ontology and q a gvar-
acyclic UCQ are decidable in NEXPTIME.

6 Practical Considerations

In this paper, we have introduced a novel description logic
motivated by Schema.org and studied the complexity of the

3053

resulting querying problems from various angles. From a
practical perspective, a central observation is that intractability
is caused by the combination of disjunction in the ontology
(in domain/range restrictions and, with {a,b} = {a} U {b},
in enumeration definitions) and quantification in the query.
For practical feasibility, one thus has to tame the interaction
between these features.

One may speculate that professional users of Schema.org
such as the major search engine providers take a pragmatic ap-
proach and essentially ignore disjunction. However, the results
in this paper show that one can do better without compromis-
ing tractability when the query contains no quantified variables
(Theorem 15). For basic ontologies, it is even possible to han-
dle some queries with quantified variables (Theorem 8); in
fact, we believe that the restriction to qvar-size 2 is a mild one
from a practical perspective. It is also interesting to observe
that the datalog-rewritings constructed in the proofs of these
two theorems are sound if applied to unrestricted CQs and
can be seen as tractable approximations that go beyond simply
ignoring disjunction.

Another practically interesting way to address intractabil-
ity is to require suitable forms of completeness of the data.
For example, whenever the data contains an assertion r(a, b)
and there is a range restriction ran(r) C A; U--- U A, in
the ontology, one could require that A4,(b) is also in the data,
for some i. This could be easily implemented in existing
Schema.org validators that webpage developers use to ver-
ify their annotations. If all disjunctions are ‘disabled’ in the
described way, tractability is regained.

References

[Afrati and Ullman, 2011] EN. Afrati and J.D. Ullman. Opti-
mizing multiway joins in a map-reduce environment. /EEE
Trans. Knowl. Data Eng., 23(9):1282-1298, 2011.

[Afrati and Ullman, 2012] EN. Afrati and J.D. Ullman. Tran-
sitive closure and recursive datalog implemented on clus-
ters. In EDBT, pages 132-143, 2012.

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov,
and M. Zakharyaschev. The DL-Lite family and relations.
JAIR, 36:1-69, 2009.

[Bienvenu et al., 2013] M. Bienvenu, C. Lutz, and F. Wolter.
First-order rewritability of atomic queries in Horn descrip-
tion logics. In Proc. of IJCAI 2013.

[Bienvenu et al., 2014a] M. Bienvenu, C. Bourgaux, and F.
Goasdoué. Querying inconsistent description logic knowl-
edge bases under preferred repair semantics. In AAAI, pages
996-1002, 2014.

[Bienvenu et al., 2014b] M. Bienvenu, B. ten Cate, C. Lutz,
and F. Wolter. Ontology-based data access: A study
through disjunctive datalog, CSP, and MMSNP. ACM Trans.
Database Syst., 39(4):33, 2014.

[Bulatov, 2011] A.A. Bulatov. On the CSP dichotomy con-
jecture. In CSR, pages 331-344, 2011.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo, D.
Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

3054

and efficient query answering in description logics: The DL-
Lite family. J. Autom. Reasoning, 39(3):385-429, 2007.

[Cohen and Jeavons, 2006] D. Cohen and P. Jeavons. The
complexity of constraint languages, Ch. 8. Elsevier, 2006.

[Cosmadakis et al., 1988] S.S. Cosmadakis, H. Gaifman, P.C.
Kanellakis, and M.Y. Vardi. Decidable optimization prob-
lems for database logic programs (preliminary report). In
STOC, pages 477-490, 1988.

[Eiter et al., 1997] T. Eiter, G. Gottlob, and H. Mannila. Dis-
junctive datalog. ACM Trans. Database Syst., 22(3):364—
418, 1997.

[Feder and Vardi, 1998] T. Feder and M.Y. Vardi. The compu-
tational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory.
SIAM J. Comput., 28(1):57-104, 1998.

[Glimm and Krétzsch, 2010] B. Glimm and M. Kroétzsch.
SPARQL beyond subgraph matching. In ISWC, volume
6496 of LNCS, pages 241-256. Springer, 2010.

[Grau et al., 2013] B. Cuenca Grau, B. Motik, G. Stoilos, and
I. Horrocks. Computing datalog rewritings beyond horn
ontologies. In IJCAI, 2013.

[Guha, 2013] R.V. Guha. Light at the end of
the tunnel? Invited Talk at ISWC 2013,
https://www.youtube.com/watch?v=0FY-0QoxBiS§.

[Kaminski et al., 2014a] M. Kaminski, Y. Nenov, and
B. Cuenca Grau. Computing datalog rewritings for dis-
junctive datalog programs and description logic ontologies.
In RR, pages 76-91, 2014.

[Kaminski et al., 2014b] M. Kaminski, Y. Nenov, and B.
Cuenca Grau. Datalog rewritability of disjunctive data-
log programs and its applications to ontology reasoning. In
AAAI pages 1077-1083, 2014.

[Larose and Tesson, 2009] B. Larose and P. Tesson. Univer-
sal algebra and hardness results for constraint satisfaction
problems. Theor. Comput. Sci., 410(18):1629-1647, 2009.

[Lembo et al., 2010] D. Lembo, M. Lenzerini, R. Rosati, M.
Ruzzi, and D. Fabio Savo. Inconsistency-tolerant semantics
for description logics. In RR, pages 103—117, 2010.

[Lutz and Wolter, 2012] C. Lutz and F. Wolter. Non-uniform
data complexity of query answering in description logics.
In KR, 2012.

[Lutz and Wolter, 2015] C. Lutz and F. Wolter. On the rela-
tionship between consistent query answering and constraint
satisfaction problems. In /CDT, 2015.

[Patel-Schneider, 2014] P.F. Patel-Schneider.
schema.org. In ISWC, pages 261-276, 2014.

[Rosati, 2011] R. Rosati. On the complexity of dealing with
inconsistency in description logic ontologies. In IJCAI,
pages 1057-1062, 2011.

[Rossman, 2008] B. Rossman. Homomorphism preservation
theorems. J. ACM, 55(3), 2008.

[Schaerf, 1993] A. Schaerf. On the complexity of the instance
checking problem in concept languages with existential
quantification. J. of Int. Infor. Sys., 689:508, 1993.

Analyzing

