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Abstract
Computational models of argument could play a
valuable role in persuasion technologies for be-
haviour change (e.g. persuading a user to eat a
more healthy diet, or to drink less, or to take more
exercise, or to study more conscientiously, etc). For
this, the system (the persuader) could present argu-
ments to convince the user (the persuadee). In this
paper, we consider asymmetric dialogues where
only the system presents arguments, and the sys-
tem maintains a model of the user to determine
the best choice of arguments to present (including
counterarguments to key arguments believed to be
held by the user). The focus of the paper is on the
user model, including how we update it as the dia-
logue progresses, and how we use it to make opti-
mal choices for dialogue moves.

1 Introduction
Persuasion is an activity that involves one party trying to in-
duce another party to believe something or to do something.
It is an important and multifaceted human facility. Persua-
sion technologies [Fogg, 1998] are being developed with an
emphasis on building systems to help people make positive
changes to their behaviour, particularly for healthcare and
healthy life styles. Interestingly, argumentation is not cen-
tral to the current manifestations of persuasion technologies
[Hunter, 2014]. Rather there is an emphasis on either helping
users to explore their issues (e.g. game playing) or helping
users once they are persuaded to do something (e.g. diaries
for recording calorie intake for weight management).

To address the lack of explicit argumentation in persuasion
technologies, we propose a framework for argumentation di-
alogues. A system (the persuader running for example as an
app) enters into a dialogue with a user (the persuadee using
the app) to persuade them to believe an argument (for some
action such as eating some fruit, or for not doing some action
such as texting while driving, etc).

A key challenge for building a dialogical argumentation
system is getting arguments from the user as we are unable (in
the short term) to build a system to automatically understand
natural language arguments from the user. Our solution to this
problem is to have asymmetric dialogues where the kinds of

move available to the system are different to those available to
the user. In this paper, we allow the system to posit arguments
but the user is unable to posit arguments.

Example 1. The system moves are starred: (1*) You believe
that a cup cake is preferable to a banana? (2) Yes. (3*) It is
late afternoon, and you think a cup cake will give you a sugar
rush to help you work? (4) Yes. (5*) The sugar rush from a
cup cake is brief, and therefore it won’t help you work. (6*) A
banana gives a longer lasting energy supply, and so a banana
is preferable to a cup cake.

Using asymmetric dialogues creates a challenge for the
system to choose appropriate arguments to present in order
to maximize the likelihood that the system is successful in
persuading the user. To address this, the system uses a model
of the user. In this paper, we investigate a probabilistic user
model, including how the system updates the model at each
step of the dialogue, how it uses the model to choose moves,
and how it can query the user to improve the model.

2 Asymmetric dialogues
We base our paper on abstract argumentation [Dung, 1995].
We assume our dialogues concern an argument graphGwith-
out self-attacks where Args(G) is the set of arguments in G,
and Attacks(G) is the set of attack relations in G.

We focus on the following kinds of move in this paper: (1)
Posit of an argument A by the system, denoted A!; (2) Query
by the system to the user about an argument, denoted A?; (3)
Reply by the user of yes (denoted Y ) or no (denoted N ) to
a query; And (4) termination of the dialogue by the system
(denoted ⊥).

A dialogue is a sequence of moves D = [m1, . . . ,mk].
Equivalently, we use D as a function with an index position i
to return the move at that index (i.e. D(i) = mi). We impose
the following constraints on the dialogues in this paper.

• if 1 ≤ i < k, then D(i) 6= ⊥.

• if 1 ≤ i < k, then D(i) = A? iff D(i+ 1) ∈ {Y,N}.
So a query in a dialogue is followed by the user an-

swering, and a dialogue does not continue after the sys-
tem has terminated. An example of a terminated dialogue
is [A!, B!,⊥] and examples of unterminated dialogues are
[A!, C!, D!, A!, C!, D!, A!] and [A?, Y, B?, N ]. Any unter-
minated dialogue may be extended by adding further moves,
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A B C

Figure 1: Example of argument graph.

and it may be terminated by adding ⊥. A dialogue may be
infinite, but in this paper, we focus on finite dialogues.

For a dialogue D = [m1, . . . ,mk], let Length(D) = k
and let Set(D) = {m1, . . . ,mk}. For dialogues D′ and
D, the subsequence relation, denoted D′ v D, holds
iff for all i′, j′ ∈ {1, . . . , Length(D′)}, if i′ < j′ then
there are i, j ∈ {1, . . . , Length(D)} such that i < j and
D′(i′) = D(i) and D′(j′) = D(j). For example, [B!, D!] v
[A!, B!, C!, D!, E!].

3 Probabilistic user models
We use epistemic probabilities [Thimm, 2012; Hunter, 2013;
Hunter and Thimm, 2014b; Baroni et al., 2014].
Definition 1. A mass distribution P over Args(G) is such
that

∑
X⊆Args(G) P (X) = 1. The probability of an argu-

ment A is P (A) =
∑
X⊆Args(G) s.t. A∈X P (X).

For a mass distribution P , and A ∈ Args(G), P (A) is the
belief that an agent has in A (i.e. the degree to which the
agent believes the premises and the conclusion drawn from
those premises). When P (A) > 0.5, then the agent believes
the argument to some degree, whereas when P (A) < 0.5,
then the agent disbelieves the argument to some degree.

We may wish to impose rationality (defined below) on our
mass distributions [Hunter, 2013]. It forces the mass distribu-
tion to respect the structure of the graph, but it does not force
an unattacked argument to be believed.
Definition 2. A mass distribution P is rational for G iff
∀(A,B) ∈ Attacks(G), if P (A) > 0.5, then P (B) ≤ 0.5.
Example 2. Consider Figure 1. Mass distribution P1(A) =
0.6, P1(B) = 0.9, and P1(C) = 0.9 is not rational, whereas
P2(A) = 0.6, P2(B) = 0.3, and P2(C) = 0.9 is rational,
and P3(A) = 0, P3(B) = 1, and P3(C) = 0.3 is rational.

In this paper, the system uses a mass distribution P as a
model of the user, and so the system maintains P to represent
the belief that the user has in each argument. The system can
update the model at each stage of the dialogue depending on
the move. We investigate how this can be done in the rest of
the paper. Next is a non-exhaustive list of optional dynamic
properties for when a mass Pi−1 is updated to mass Pi.

• (Credulous) If D(i) = A!, then Pi(A) ≥ 0.5.
• (Minimal) If D(i) 6= A!, then Pi(A) = Pi−1(A).
• (Rational+) ForG, if Pi−1 is rational, then Pi is rational.
• (Binary) If Pi−1(A) 6= Pi(A), then Pi(A) ∈ {0, 1}.
• (Restricted) If Pi−1(A) ≤ 0.5, and Pi(A) > 0.5, and

(B,A) ∈ Attacks(G), then Pi−1(B) ≤ 0.5.

These properties capture assumptions about the user, and
we explain them as follows: (Credulous) A persuadee always
believes an argument when it is posited by the persuader;
(Minimal) A persuadee does not change belief in an argument

that is unposited; (Rational) A rational distribution is only up-
dated to a rational distribution; (Binary) Any update to belief
in an argument is binary; (Restricted) Belief in an argument
is only updated when the attackers of it are disbelieved.

The epistemic approach is useful for asymmetric dialogues
where the user is not allowed to posit arguments or counter-
arguments. So the only way the user can treat arguments that
s/he does not accept is by disbelieving them. In contrast, in
symmetric dialogues, the user could be allowed to posit coun-
terarguments to an argument that s/he does not accept. For
example, suppose the user believes A, and the system posits
B where B attacks A, then the user may disbelieve B and
continue to believe A, and this could be modelled by a ratio-
nal mass distribution.

4 Persuasion goals
A persuasion goal is a Boolean combination of arguments.
If A ∈ Arg(G), then A is a positive literal, and ¬A is a neg-
ative literal. Let Formulae(G) denote all the formulae that
can be formed from the arguments in G using ∧, ∨, and ¬ as
connectives in the usual way.

Informally, for an argument A, the goal A means that the
persuader aims to persuade the persuadee to accept A, and
the goal ¬A means that the persuader aims to persuade the
persuadee to not accept A. The goal A ∧ B means that the
persuader aims to persuade the persuadee to accept A and to
accept B, and the goal A ∨ B means that the persuader aims
to persuade the persuadee to accept A or to accept B.

In order to formalize the satisfaction of persuasion goals,
we treat each subset of Args(G) as a model.
Definition 3. The satisfaction relation is defined as fol-
lows where X ⊆ Args(G), A ∈ Args(G), and α, β ∈
Formulae(G).
• X |= A when A ∈ X
• X |= α ∧ β iff X |= α and X |= β

• X |= α ∨ β iff X |= α or X |= β

• X |= ¬α iff X 6|= α

Essentially |= is a classical satisfaction relation. So if α
is a classical tautology, then X |= α for all X ⊆ Args(G),
and if α is a classical contradiction, then X 6|= α for all X ⊆
Args(G). For α ∈ Formulae(G), let Models(α) = {X ⊆
Args(G) | X |= α}.

For each graph G, we assume an ordering over the argu-
ments A1, ..., An so that we can encode each model by a bi-
nary number: For a modelX , if the ith argument is inX , then
the ith digit is 1, otherwise it is 0. For example, for A,B,C,
the model {A,C} is represented by 101.

For a user model P , the probability that a user believes a
persuasion goal φ is the sum of the probability of each model
that satisfies the goal. This definition (below) is adapted from
[Paris, 1994] where a probability distribution is defined over
models of a propositional language.
Definition 4. The probability of the goal φ ∈ Formulae(G)
is P (φ) =

∑
X⊆Args(G) s.t. X|=φ P (X).

Suppose α ∈ Formulae(G) and P is a mass distribution. If
α is a contradiction of classical logic, then P (α) = 0, and if
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AB P H1
A(P ) H1

¬A(P ) H0.75
A (P ) H1

B(P )

11 0.6 0.7 0.0 0.675 0.8
10 0.2 0.3 0.0 0.275 0.0
01 0.1 0.0 0.7 0.025 0.2
00 0.1 0.0 0.3 0.025 0.0

Table 1: Examples of mass redistribution

α is a tautology of classical logic, then P (α) = 1. Also, if
{α} ` β, then P (α) ≤ P (β), and if ¬(α ∧ β) is a classical
tautology, then P (α ∨ β) = P (α) + P (β).

We will use persuasion goals as outcomes in a lottery. For
this, we need the following subsidiary definitions. Persuasion
goals φ and ψ are disjoint iff Models(φ) ∩ Models(ψ) =
∅. A set of persuasion goals Φ is pairwise disjoint iff for
each φ, ψ ∈ Φ are disjoint. A set of persuasion goals Φ is
exhaustive iff

⋃
φ∈Φ Models(φ) = Args(G).

Example 3. Let Args(G) = {A,B,C}. Consider the per-
suasion goals Φ = {φ1, φ2, φ3} where φ1 = A ∧ B ∧ ¬C,
φ2 = ((A∧¬B)∨(¬A∧B))∧¬C, and φ3 = (¬A∧¬B)∨C.
Since Models(φ1) = {110}, Models(φ2) = {100, 010}, and
Models(φ3) = {111, 101, 011, 001, 000}. Hence, Φ is pair-
wise disjoint and exhaustive.
Proposition 1. If Φ = {φ1, . . . , φn} is a set of persuasion
goals such that Φ is exhaustive and pairwise disjoint, then
P (φ1 ∨ . . . ∨ φn) = 1.

For a persuasion goal φ, and a mass distribution P (i.e. the
user model), P (φ) is the probability that φ is believed. If
P (φ) is low at the start of the dialogue, then the system aims
to terminate the dialogue with P (φ) > 0.5 (i.e. according to
the user model, the user believes φ).

5 Redistributing mass
To update a user model during a dialogue, we need to redis-
tribute mass. A mass redistribution function takes a probabil-
ity distribution and formula α, and returns a revised probabil-
ity distribution. There are many possibilities for this. In this
paper, we focus on refinement which redistributes mass from
models not satisfying α to models satisfying α.
Definition 5. Let α ∈ Formulae(G) be a literal, let P be a
mass distribution, and let k ∈ [0, 1]. A refinement function,
denoted Hk

α(P ), returns the mass distribution P ′ as follows
where X ∈ Models(G)

P ′(X) =

{
P (X) + (k × P (hα(X))) if X |= α
(1− k)× P (X) if X 6|= α

and where hα(X) = X \ {A} when α is of the form A and
hα(X) = X ∪ {A} when α is of the form ¬A.

See Table 1 for examples of redistribution. For redistribu-
tion, hα returns the model closest to X but with α no longer
satisfied. If k = 1, then all the mass is transferred from the
models not satisfying α to models satisfying α. If k < 1,
then only a proportion is transferred. We use k < 1 in the
next section to give finer grained modelling of users.

For each α, we can partition Models(G) into the set of
models that satisfy α, i.e. Sat(α) = {X ∈ Models(G) | X |=

α}, and the set of models that do not satisfy α, i.e. Unsat(α)
= {X ∈ Models(G) | X 6|= α}.
Proposition 2. For each α ∈ Formulae(G), the function hα
is a bijection from Sat(α) to Unsat(α).
Proposition 3. If α ∈ Formulae(G), and k = 0, and
Hk
α(P ) = P ′, then P = P ′.

Proposition 4. If α ∈ Formulae(G), H1
α(H1

α(P )) =
H1
α(P ).

Proposition 5. If A ∈ Args(G), P (A) = 1 iff H1
A(P ) = P .

Proposition 6. Let Args(G) = {A1, . . . , An}. If
H1
A1

(. . . H1
An

(P )..) = P ′, then there is a model X ∈
Models(G) such that X = {A1, . . . , An} and P (X) = 1.

Note, the refinement update is not reversible. In other
words, given an update Hk

α, there is no k′ and β such that
Hk′

β (Hk
α(P )) = P . We illustrate this in the next example.

Example 4. Consider P3 in the table. From P3, we can iden-
tify many distributions P such that H1

A(P ) = P3. We give
two distributions P1 and P2, such that H1

A(P1) = P3 and
H1
A(P2) = P3. So knowing α and k is insufficient to identify

β and k′ such that Hk′

β (Hk
α(P )) = P holds.

AB hA P1 P2 P3

11 01 0.4 0.25 0.5
10 00 0.1 0.25 0.5
01 01 0.1 0.25 0
00 00 0.4 0.25 0

The following property shows that the only argument with
a changed assignment is the one being explicitly updated
where Atom(A) = A and Atom(¬A) = A for A ∈ Args(G).
Proposition 7. For literal α ∈ Formulae(G), & k ∈ [0, 1],
let Hk

α(P ) = P ′. If B 6= Atom(α), then P ′(B) = P (B).
Refinement is associative for multiple updates as shown in

the following result.
Proposition 8. If α, β are literals, s.t. α is not the comple-
ment of β (i.e. α 6` ¬β), and P is a mass distribution, and
k, k′ ∈ [0, 1], then Hk

α(Hk′

β (P )) = Hk′

β (Hk
α(P )).

Next, we introduce notation for a set of updates Φ.
Definition 6. Let Φ ⊆ Formulae(G) be a set of literals, let
P be a mass distribution, and let k ∈ [0, 1]. A compound
refinement function, denoted Hk

Φ, is defined as follows: (1)
Hk

Φ(P ) = P when Φ = ∅; and (2) Hk
Φ(P ) = Hk

α(Hk
Φ′(P ))

when Φ′ = Φ \ {α} for some α ∈ Φ.
Because of its useful properties, we use the refinement

function for updating user models in the next section.

6 Updating user models
Given a mass distribution P , representing a user’s beliefs at
the current state of the dialogue, we want to update the model
depending on the move made. For this, we introduce the no-
tion of an update method which generates a mass distribution
Pi from Pi−1 based on the move D(i). Each method is de-
fined as a rule with a condition (defined in terms of the cur-
rent state of the dialogue, the current mass distribution, and
the structure of the graph), and a consequent that specifies the
redistribution.
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Definition 7. For step i in the dialogue, the naive method
generates Pi from Pi−1 as follows.

If D(i) = A!, then Pi = H1
A(Pi−1).

Example 5. For Figure 1 with dialogue [A!, B!,⊥] and the
naive method. Let the initial mass be P0(011) = 0.3, P0(010)
= 0.2, P0(001) = 0.3, & P0(000) = 0.2. After A!, P1(111) =
0.3, P1(110) = 0.2, P1(101) = 0.3, & P1(100) = 0.2. After
B!, P2(111) = 0.6, & P2(110) = 0.4. Note, P2 is not rational.

The naive method fails the rational+ property. The trust-
ing method (defined next) satisfies the rational+ property by
lowering belief in attackers and attackees of the posit.
Definition 8. For step i in the dialogue, the trusting method
generates Pi from Pi−1 as follows, where Φ = {¬C |
(A,C) ∈ Attacks(G) or (C,A) ∈ Attacks(G)}.

If D(i) = A!, then Pi = H1
Φ(H1

A(Pi−1)).

Example 6. Consider Figure 1 with dialogue [A!,⊥] and
the trusting method. Let the initial mass be P0(011) = 0.3,
P0(010) = 0.2, P0(001) = 0.3, & P0(000) = 0.2. After A!,
P1(101) = 0.6, & P1(100) = 0.4.

The strict method (defined next) only allows a posit to up-
date the belief to 1 when there is no attacker of the posit that
is believed.
Definition 9. For step i in the dialogue, the strict method
generates Pi from Pi−1 as follows, where Φ = {¬C |
(A,C) ∈ Attacks(G)}.

If D(i) = A!,
and for all (B,A) ∈ Attacks(G), Pi−1(B) ≤ 0.5,
then Pi = H1

Φ(H1
A(Pi−1)), else Pi = Pi−1

Example 7. Consider Figure 1 with dialogue [A!, C!, A!,⊥]
and the strict method. Let the initial mass be P0(111) = 0.2,
P0(110) = 0.3, P0(011) = 0.3, & P0(010) = 0.2. After A!,
P1(111) = 0.2, P1(110) = 0.3, P1(011) = 0.3, & P1(010) =
0.2. After C!, P2(101) = 0.5, & P2(001) = 0.5. After A!,
P3(101) = 1.0.

The ambivalent method is motivated by the idea that peo-
ple do not entirely believe what they are told (unless corrob-
orated), and as shown in [Rahwan et al., 2010] they do not
entirely disbelieve an argument when defeated.
Definition 10. For step i in the dialogue, the ambivalent
method generates Pi from Pi−1 as follows, where Φ =
{¬C | (C,A) ∈ Attacks(G)}.

If D(i) = A!,
and for all (B,A) ∈ Attacks(G), Pi−1(B) ≤ 0.5,
then Pi = H0.75

Φ (H0.75
A (Pi−1), else Pi = Pi−1

Example 8. Consider Figure 1 with the dialogue [C!, A!,⊥]
with the ambivalent method. Let the initial mass be P0(111)
= P0(110) = P0(011) = P0(010) = 1/4. After C!, P1(111)
= 7/64, P1(101) = 21/64, P1(110) = 1/64, P1(100) =
3/64, P1(011) = 7/64, P1(001) = 21/64 P1(010) = 1/64
& P1(000) = 3/64. After A!, P2(111) = 49/256, P2(101)
= 147/256, P0(110) = 7/256, P2(100) = 21/256, P0(011)
= 7/256, P2(001) = 21/256 P0(010) = 1/256 & P2(000)
= 3/256. Hence, at the dialogue termination, P2(A) =
224/256, P2(B) = 64/256, and P2(C) = 224/256.

Naive Trusting Strict Ambivalent
Credulous X X × ×
Minimal X × × ×
Rational+ × X X X
Binary X X X ×
Restricted × × X X

Table 2: Dynamic properties for update methods

Proposition 9. If P is a mass distribution, and P ′ is gen-
erated from P by the naive, trusting, strict or ambivalent
method, then P ′ is a mass distribution.
Definition 11. Let σ be an update method (such as naive,
trusting, strict, or ambivalent), let D = [m1, . . . ,mn] be
a dialogue, and let [P0, P1, . . . , Pn] be a sequence of user
models such that for each i ∈ {1, . . . , n}, Pi is obtained from
Pi−1 by the σ update method. We call P0 the initial mass,
and Pn the final mass obtained from D with respect to P0

and σ, which we denote by σ(P0, D) = Pn.
The update methods given in this section are meant to illus-

trate a range of methods. We give the satisfaction of dynamic
properties in Table 2. Further options for update methods can
use alternatives to Definition 5 or take meta-level criteria into
account (e.g. preferences [Amgoud and Cayrol, 2002] and
values [Oren et al., 2012]).

7 Maximizing expected utility
We start by briefly reviewing the notion of a lottery. A lottery
L is a probability distribution over a set of possible outcomes.
A lottery with possible outcomes π1,..,πn that are pairwise
disjoint and that is exhaustive (i.e. one of them is guaranteed
to occur), that occur with probabilities p1, .., pn respectively,
is written as [p1, π1; ....; pn, πn]. For a utility function U , the
expected utility of a lottery L is

∑n
i=1 pi × U(πi).

We adapt the notion of a lottery in a straightforward way
for our purposes.
Definition 12. LetD be a dialogue, let S = {φ1, . . . , φn} be
a set of disjoint and exhaustive outcomes, let P0 be the initial
mass, let σ be an update method, and let σ(P0, D) = P , and
let U be a utility function. The lottery for P , U , S is the
following:

Lot(P,U, S) = [P (φ1), U(φ1); . . . ;P (φn), U(φn)]

Then the expected utility for P , U , S is EU(P,U, S) =
(P (φ1)× U(φ1)) + . . .+ (P (φn)× U(φn))

A dialogue D is optimal with respect to an initial mass
P0, update method σ, utility function U , and σ(P0, D) = P ,
when EU(P,U, S) is maximized.
Example 9. Let Args(G) = {A,B} and Attacks(G) =
{(B,A)}. For the naive method σ(P0, D) = P where P0(11)
= 0, P0(10) = 0.6, P0(01) = 0.2, P0(00) = 0.2, U(A) = 1
and U(¬A) = −1, D1, D2 and D4 are optimal.

D EU(P,U, S)
D1 [A!, B!,⊥] (1× 1) + (0×−1) = 1
D2 [A!,⊥] (1× 1) + (0×−1) = 1
D3 [B!,⊥] (0.6× 1) + (0.4×−1) = 0.2
D4 [B!, A!,⊥] (1× 1) + (0×−1) = 1
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Proposition 10. Let σ be the naive or trusting method,
A ∈ Args(G) be the persuasion goal and P0 is the initial
mass. If (B,A) ∈ Attacks(G) and there is an i such that
D(i) = B, then there is a D′ v D such that EU(P ′, U, S) =
EU(P,U, S) where σ(P0, D) = P and σ(P0, D

′) = P ′.

Given the above result, the next example only considers
dialogues without positing of attackers of the goal.

Example 10. Consider Figure 1 with the persuasion goal A
and the trusting method. If P0(111) = P0(110) = P0(011) =
P0(010) = 0.25, then D1, D2 and D4 are optimal.

D EU(P,U, S)
D1 [A!, C!,⊥] (1× 1) + (0×−1) = 1
D2 [A!,⊥] (1× 1) + (0×−1) = 1
D3 [C!,⊥] (0.5× 1) + (0.5×−1) = 0
D4 [C!, A!,⊥] (1× 1) + (0×−1) = 1

The next result shows attackers cannot improve the utility
of a dialogue with the strict/ambivalent methods.

Proposition 11. Let σ be the strict or ambivalent method.
Let A ∈ Args(G) be the persuasion goal. If (B,A) ∈
Attacks(G) and there is an i such that D(i) = B, then there
is a D′ v D such that EU(P ′, U, S) ≥ EU(P,U, S) where
σ(P0, D) = P and σ(P0, D

′) = P ′.

We now turn to whether repeating a move can have a ben-
efit under any of the assumed update methods.

Definition 13. For dialogues D and D′, D′ is a maximal
non-repeating subsequence ofD iff the following conditions
hold: (1) D′ v D; (2) Set(D′) = Set(D); and (3) if D′′ @
D′, then Set(D′′) 6= Set(D).

Example 11. Consider D = [A!, B!, A!, C!, D!]. There
are two maximal non-repeating subsequences D1 =
[A!, B!, C!, D!] and D2 = [B!, A!, C!, D!].

Proposition 12. Let P0 be the initial mass, and σ is the naive
or trusting method. For all dialogues D, if D′ is a maximal
non-repeating subsequence of D, and σ(P0, D) = P and
σ(P0, D

′) = P ′, then EU(P,U, S) = EU(P ′, U, S).

With naive and trusting methods, we can reduce a repeat-
ing sequence to a non-repeating sequence by deleting the re-
peated arguments. This is sufficient for the utility of the two
sequences to be the same. However, with the strict and am-
bivalent methods, all we can ensure is that for every dialogue,
there exists another dialogue that is non-repeating and with
the same utility. To show this, we require the following.

Definition 14. An update tree T for A ∈ Args(G), and a
mass distribution P , is the smallest tree such that

1. T has a finite number of nodes and A is the root

2. for each Ai at an odd level in T , if P (Aj) > 0.5, and
(Aj , Ai) ∈ Attackers(G), then Aj is a child of Ai in T ,

3. for each Ai at an even level in T , if (Aj , Ai) ∈
Attackers(G), then Aj is a child of Ai in T ,

4. for each Ai at an odd level in T , there is no Aj at an
odd level in T such that (Aj , Ai) ∈ Attackers(G),

and where the root is at level 1, and for each node at level i,
its children are at level i+ 1.

In an update tree, all the odd level arguments are disbe-
lieved, and all the even level arguments are believed. Further-
more, we can regard the odd level arguments as “defenders”
of the root argument, and the even level arguments as direct
or indirect “attackers” of the root argument. When every leaf
is at an odd level, then we can use this tree to design a dia-
logue for a successful persuasion (as illustrated in Example
12), but as we illustrate in Example 13, not every graph and
mass distribution has an update tree.
Example 12. Consider the following graph where A is the
persuasion goal.

A
B

C
D

E

F

G

H

Let P (A) = 0.5, P (B) = 0.9, P (C) = 0.9, P (D) = 0.1,
P (E) = 0.9, P (F ) = 0.5, P (G) = 0.5, and P (H) = 0.5.
For the update tree below, A, D, and G are defenders, and
B, C and E are attackers. For this, the sequence G!, D!, A!
will result inA being believed using the strict update method.

G
E

D
B

A
C

D
E

G

Example 13. Consider the following graph where A is the
persuasion goal. Let P (A) = 0.1, P (B) = 0.9, and
P (C) = 0.1. For this graph and persuasion goal, with this
mass distribution, there is no update tree.

ABC

Proposition 13. If T is an update tree for A ∈ Arg(G),
and mass distribution P , the set Ω = {B ∈ Args(G) |
B is a node in level i and i is odd} is conflictfree (i.e. there
are no arguments (B,C) ∈ Attacks(G) s.t. {B,C} ⊆ Ω).

Given an update tree, the defenders in a branch can be
posited in sequence starting from the leaf. Doing this leads
to the following results.
Proposition 14. For persuasion goal A ∈ Args(G), with ini-
tial mass P0, where P0(A) ≤ 0.5, there is an update tree for
A and G, where every leaf is at an odd level, iff there is a di-
alogue D = [B1!, . . . , Bx!,⊥] such that P (A) > 0.5, where
σ is the strict or ambivalent method and σ(P0, D) = P .
Proposition 15. For any dialogue D1, there is a dialogue
D2 such that D2 is non-repeating, and EU(P1, U, S) =
EU(P2, U, S), where P0 is the initial mass, and σ is the strict
or ambivalent method and σ(P0, D1) = P1 and σ(P0, D2) =
P2 and U is the utility function.

In general, shorter dialogues are preferable to longer dia-
logues if we want to decrease the risk of the user disengaging
(because they become bored with the dialogue). We can take
this into account in the expected utility assignment by nor-
malizing it by the length of the dialogue (e.g. by dividing
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EU(P,U, S) by the number of posits in D). Returning to Ex-
ample 10, the revised expected utilities could be such that D1

is 0.5, D2 is 1, D3 is 0, and D4 is 0.5, and therefore, the
optimal dialogue would be D2.

8 Accuracy of the user model
At each step i of the dialogue, the user model Pi is an estimate
of the user’s actual mass distribution P̂i. This raises the ques-
tion of how to compare Pi and P̂i. We use the total variation
distance (defined below) because of simplicity. Alternatives
include the Kullback-Leiber divergence or an f-divergence.
Definition 15. The total variation distance between mass
distributions Pi and Pj , denoted Distance(Pi, Pj), is 1/2 ×∑
A∈Args(G) |Pi(A)− Pj(A)|.

Example 14. Distance(P1, P2) = 0.6. when P1(11) = 0.4,
P1(10) = 0.2, P1(01) = 0.2, P1(00) = 0.2, P2(11) = 0.0,
P2(10) = 0.0, P2(01) = 0.2, and P2(00) = 0.8.

In order to decrease the distance between the user model
and the user’s actual mass distribution, we can use queries.
For instance, a dialogue can start with a sequence of
queries before giving posits. So we have a sequence of
queries/answers [Q1, R1, . . . , Qx, Rx] where each Qi is a
query and each Ri is the response by the user and is either
Y or N . Note, we can use a finer grained scale for the user
reply to A? (e.g. from 0 to 10 where 10 denotes completely
believes A, 9 denotes strongly believes A, etc.) instead of Y
and N . The user model is updated as follows.

If D(i) = A? and D(i+ 1) = Y, then Pi+1 = H1
A(Pi)

If D(i) = A? and D(i+ 1) = N, then Pi+1 = H1
¬A(Pi)

Example 15. Consider the dialogue [A?, Y, B?, N ] where
Args(G) = {A,B,C}. Suppose the initial mass P0 is a uni-
form distribution. Then P2(111) = P2(110) = P2(101) =
P2(100) = 1/4, and P4(101) = P4(100) = 1/2.

A user is categorical in dialogue D iff for all i ∈
{1, . . . , Length(D)}, if D(i) = A?, then Pi+1(A) =
̂Pi+1(A). The following results show that querying the user

when s/he is categorical improves the user model.
Proposition 16. Assume that the user is categorical in dia-
logue D. For each i, if D(i) = A?, then Distance(Pi, P̂i) ≥
Distance(Pi+1, P̂i+1)

Proposition 17. If [Q1, R1, . . . , Qm, Rm] is the initial se-
quence of moves of dialogue D where each Qi is a query and
each Ri is a reply, and for every A ∈ Args(G), there is a
query Qi = A?, then Pm = P̂m.

If queries are at no cost, then we can query the user about
all arguments in the graph. However, in practice, it may be
inappropriate to query the user about every argument as ask-
ing the user more than a few queries raises the risk of the user
disengaging. We will investigate this trade-off in future work.

9 Comparison with the literature
There are a number of proposals that formalize aspects of
persuasion. Most are aimed at providing protocols for di-
alogues (e.g. [Prakken, 2005; 2006; Fan and Toni, 2011;

Caminada and Podlaszewski, 2012]), but strategies for per-
suasion, in particular taking into account beliefs of the oppo-
nent are under-developed. See [Thimm, 2014] for a review of
strategies in multi-agent argumentation.

There are a number of proposals for using probability the-
ory in argumentation including the epistemic approach (e.g.
[Thimm, 2012; Hunter, 2013]) and the constellations ap-
proach (e.g. [Li et al., 2011; Hunter, 2012]) but these do not
consider dialogues.

Persuasion has been considered through uncertainty mod-
elling of the audience [Oren et al., 2012], but this uncertainty
is with respect to the structure of the graph rather than be-
liefs, and there is no consideration of dialogues or strategies.
A probabilistic model of the opponent has been used in a di-
alogue strategy allowing the selection of moves for an agent
based on what it believes the other agent believes [Rienstra et
al., 2013]. But this assumes symmetric dialogues, and the un-
certainty concerns what the opposing agent is aware of rather
than what it believes. In another approach to a probabilistic
opponent model, the history of previous dialogues is used to
estimate the arguments that an agent might put forward [Had-
jinikolis et al., 2013]. But this assumes symmetric dialogues,
with a method for updating the opponent model that is of ex-
ponential complexity, and there is no consideration of how
utility theory could be employed.

Utility theory has been considered previously in argumen-
tation (for example [Rahwan and Larson, 2008b; Riveret et
al., 2008; Matt and Toni, 2008; Oren and Norman, 2009])
though none of these represent the uncertainty of moves made
by each agent in argumentation. There is an approach that
combines probability theory and utility theory to identify
outcomes with maximum expected utility where outcomes
are specified as particular arguments being included or ex-
cluded from extensions [Hunter and Thimm, 2014a], but it
is based on the constellations approach to uncertainty in ar-
gumentation (i.e. uncertainty about what the structure of
the graph is) as opposed to the epistemic approach consid-
ered in this paper, and there is no consideration of updates
to the model. Strategies in argumentation have also been
analyzed using game theory [Rahwan and Larson, 2008a;
Fan and Toni, 2012], though these are more concerned with
issues of manipulation, rather than persuasion.

10 Discussion
In this paper, we have considered a framework for asymmet-
ric dialogues, with a general definition for probabilistic user
models, and a general definition for updating user models in
terms of mass redistributions. The type of dialogue is a per-
suasion dialogue. However, the persuader uses the user model
to determine whether the persuasion goal is believed, and so
it is an indirect judgment since the persuadee has not declared
whether or not they are persuaded when the dialogue has ter-
minated. Nonetheless, the user model may be a good rep-
resentative of the persuadee as it can either be generated by
querying the user, or by learning from previous interactions
with the user or similar users. Some recent studies indicate
the potential viability of an empirical approach [Cerutti et al.,
2014; Rosenfeld and Kraus, 2015].
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