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Abstract
RCC8 is a constraint language that serves for qual-
itative spatial representation and reasoning by en-
coding the topological relations between spatial en-
tities. We focus on efficiently characterizing non-
redundant constraints in large real world RCC8 net-
works and obtaining their prime networks. For a
RCC8 network N a constraint is redundant, if re-
moving that constraint from N does not change
the solution set of N . A prime network of N
is a network which contains no redundant con-
straints, but has the same solution set as N . We
make use of a particular partial consistency, namely,
�
G-consistency, and obtain new complexity results
for various cases of RCC8 networks, while we also
show that given a maximal distributive subclass
for RCC8 and a network N defined on that sub-
class, the prunning capacity of �G-consistency and
�-consistency is identical on the common edges of
G and the complete graph of N , when G is a trian-
gulation of the constraint graph of N . Finally, we
devise an algorithm based on �G-consistency to com-
pute the unique prime network of a RCC8 network,
and show that it significantly progresses the state-
of-the-art for practical reasoning with real RCC8
networks scaling up to millions of nodes.

1 Introduction
The Region Connection Calculus (RCC) is the dominant ap-
proach in Artificial Intelligence, and Knowledge Representa-
tion in particular, for representing and reasoning about topo-
logical relations [Randell et al., 1992]. RCC can be used to
describe regions that are non-empty regular subsets of some
topological space by stating their topological relations to each
other. RCC8 is the constraint language formed by the follow-
ing 8 binary topological base relations of RCC: disconnected
(DC), externally connected (EC), equal (EQ), partially over-
lapping (PO), tangential proper part (TPP ), tangential proper
part inverse (TPPi), non-tangential proper part (NTPP ),
and non-tangential proper part inverse (NTPPi). These 8
relations are depicted in [Randell et al., 1992, Fig. 4].

The literature has mainly focused on the satisfiability prob-
lem [Renz and Nebel, 2001] and the minimal labeling problem
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Figure 1: A RCC8 network (left) and its prime network (right)

(MLP) [Amaneddine et al., 2013; Liu and Li, 2012] of a RCC8
network. The satisfiability problem is deciding if there exists a
solution, i.e., a spatial configuration satisfying the constraints
of a given network, whilst the MLP is determining all the
base relations participating in at least one solution for each
of the constraints of that network. Recently, the important
problem of deriving redundancy in a RCC8 network was con-
sidered and already well established in [Duckham et al., 2014;
Li et al., 2015]. For a RCC8 network N a constraint is
redundant, if removing that constraint from N does not
change the solution set of N . A prime network of N is a
network which contains no redundant constraints, but has
the same solution set as N . Finding a prime network can
be useful in many applications such as computing, stor-
ing, and compressing the relationships between spatial ob-
jects and hence saving space for storage and communication,
facilitating comparison between different networks, merg-
ing networks [Condotta et al., 2009], aiding quering in
spatially-enhanced databases [Nikolaou and Koubarakis, 2013;
OGC, 2012], unveiling the essential network structure of a net-
work (e.g., being a tree or of bounded treewidth [Bodirsky and
Wölfl, 2011]), and adjusting geometrical objects to meet topo-
logical constraints [Wallgrün, 2012]. Due to space constraints,
we refer the reader to [Li et al., 2015] for a well depicted real
motivational example and further application possibilities.

In [Li et al., 2015], the complexity results and algorithms
obtained rely on the use of �-consistency [Renz and Ligozat,
2005], which enforces consistency on all paths of length 2
in the complete graph of a given network. Hence, the ap-
proach offered becomes impractical for networks scaling up
to a few tens of thousands of nodes as it is time consum-
ing and most often hits the memory limit (preview Table 1).
To solve this practical problem, we are concerned with effi-
ciently characterizing non-redundant constraints in large real
world RCC8 networks using partial reasoning. In particular,
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we make the following contributions: (i) we provide new
complexity results for various cases of RCC8 networks with
respect to deriving their non-redundant constraints and obtain-
ing their prime networks, using a particular partial consistency
that enforces consistency on all paths of length 2 in a graph
G, viz., �G-consistency [Chmeiss and Condotta, 2011], while
we also show that given a maximal distributive subclass for
RCC8 and a network N defined on that subclass, the prun-
ning capacity of �G-consistency and �-consistency is identical
on the common edges of G and the complete graph of N ,
when G is a triangulation of the constraint graph of N ; (ii) as
a byproduct, we show that �G-consistency on a network de-
fined on a maximal distributive subclass of relations equals
to ◆G-consistency [Amaneddine et al., 2013], which can have
a positive impact on the algorithm for solving the MLP of
a network that was devised in [Amaneddine et al., 2013];
(iii) given a maximal distributive subclass for RCC8 and a tri-
angulation of its constraint graph, we implement an algorithm
to compute the unique prime network of very large real world
RCC8 networks scaling up to millions of nodes, and show that
it goes well beyond the state-of-the-art.

2 Preliminaries
A (binary) qualitative temporal or spatial constraint language
[Renz and Ligozat, 2005] is based on a finite set B of jointly
exhaustive and pairwise disjoint (JEPD) relations defined on
a domain D, called the set of base relations. The base rela-
tions of set B of a particular qualitative constraint language
can be used to represent definite knowledge between any two
entities with respect to the given level of granularity. B con-
tains the identity relation Id, and is closed under the con-
verse operation (−1). Indefinite knowledge can be specified
by unions of possible base relations, and is represented by
the set containing them. Hence, 2B represents the total set
of relations. 2B is equipped with the usual set-theoretic op-
erations union and intersection, the converse operation, and
the weak composition operation denoted by symbol � [Renz
and Ligozat, 2005]. In the case of RCC8 [Randell et al.,
1992], as noted in Section 1, the set of base relations B is the
set {DC,EC,PO,TPP ,NTPP ,TPPi,NTPPi,EQ}, with
EQ being relation Id. RCC8 networks can be viewed as quali-
tative constraint networks (QCNs), defined as follows.

Definition 1 A QCN is a pairN = (V,C) where: V is a non-
empty finite set of variables; C is a mapping that associates
a relation C(v, v′) ∈ 2B to each pair (v, v′) of V × V . C is
such that C(v, v) = {Id} and C(v, v′) = (C(v′, v))−1.

In what follows, given a QCN N = (V,C) and v, v′ ∈
V , N [v, v′] will denote the relation C(v, v′). N[v,v′]/r

with r ∈ 2B is the QCN N ′ defined by N ′[v, v′] = r,
N ′[v′, v] = r−1, and N ′[v, v′] = N [v, v′] ∀(v, v′) ∈ (V ×
V ) \ {(v, v′), (v′, v)}. Given a set of variables V , ⊥V

G, with
G = (V,E) a graph, will denote the particular QCN where
each constraint between each pair of variables (v, v′) ∈ E is
defined by the empty relation ∅. Given a QCN N = (V,C)
we have the following definitions: N is said to be trivially
inconsistent iff ∃v, v′ ∈ V with N [v, v′] = ∅. A solution of
N is a mapping σ defined from V to the domain D, yielding

a spatial configuration, such that for every pair (v, v′) of vari-
ables in V , (σ(v), σ(v′)) can be described by N [v, v′], i.e.,
there exists a base relation b ∈ N [v, v′] such that the relation
defined by (σ(v), σ(v′)) is b. Two QCNs are equivalent iff
they admit the same set of solutions.

Definition 2 A QCN N is satisfiable iff it admits a solution.

A sub-QCN N ′ of N , is a QCN (V,C ′) such that
N ′[v, v′] ⊆ N [v, v′] ∀v, v′ ∈ V where N ′[v, v′] 6= B. If
b is a base relation, then {b} is a singleton relation. An atomic
QCN is a QCN where each constraint is a singleton relation.
A scenario S of N is an atomic satisfiable sub-QCN of N . A
partial scenario of N on V ′ ⊆ V is a scenario restricted to
constraints involving only variables of V ′.

Definition 3 ([Li et al., 2015]) A QCN N = (V,C) is weak
globally consistent iff, for any V ′ ⊂ V , every partial scenario
of N on V ′ can be extended to a partial scenario of N on
V ′ ∪ {v} ⊆ V , for any v ∈ V \ V ′.

A base relation b ∈ N [v, v′] with v, v′ ∈ V is feasible
(resp. unfeasible) iff there exists (resp. there does not exist) a
scenario S of N such that S[v, v′] = {b}.
Definition 4 A QCN N = (V,C) is minimal iff ∀v, v′ ∈ V
and ∀b ∈ N [v, v′], b is a feasible base relation of N . The
unique equivalent minimal sub-QCN ofN , called the minimal
QCN of N , is denoted by Nmin.

A subclass of relations is a set A ⊆ 2B closed under con-
verse, intersection, and weak composition. In what follows, all
the considered subclasses will contain the singleton relations
of 2B.

Definition 5 A subclass A ⊆ 2B is a tractable subclass if a
QCN N comprising only relations from A is tractable. A
subclass A ⊆ 2B is a maximal tractable subclass if there is no
other tractable subclass that properly contains A.

Given three relations r, r′, and r′′, we say that weak compo-
sition distributes over intersection if we have that r�(r′∩r′′) =
(r ∩ r′) � (r ∩ r′′) and (r′ ∩ r′′) � r = (r′ ∩ r) � (r′′ ∩ r).
Definition 6 ([Li et al., 2015]) A subclass A ⊆ 2B is a dis-
tributive subclass if weak composition distributes over non-
empty intersections for all relations r, r′, r′′ ∈ A. A subclass
A ⊆ 2B is a maximal distributive subclass if there is no other
distributive subclass that properly contains A.

A QCN N is �-consistent or closed under weak composi-
tion iff ∀v, v′, v′′ ∈ V we have that N [v, v′] ⊆ N [v, v′′] �
N [v′′, v′]. Given a QCN N = (V,C), �-consistency can be
determined in O(|V |3) time. The �-consistent QCN of N is
denoted by �(N ), and it is equivalent to N . In what follows,
all considered graphs are undirected. Given two graphs G =
(V,E) and G′ = (V ′, E′), G is a subgraph of G′, denoted by
G ⊆ G′, iff V ⊆ V ′ and E ⊆ E′. Given a QCN N = (V,C)
and a graphG = (V,E),N is �G-consistent [Chmeiss and Con-
dotta, 2011] iff for ∀(v, v′), (v, v′′), (v′′, v′) ∈ E we have that
N [v, v′] ⊆ N [v, v′′] � N [v′′, v′]. Given a QCN N = (V,C)
and a graph G = (V,E), �G-consistency can be determined
in O(δ · |E|) time, where δ is the maximum vertex degree
of G. The �G-consistent QCN of N is denoted by �G(N ). A
graph G = (V,E) is a chordal graph (or triangulated graph)
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[Diestel, 2012] iff each of its cycles of length strictly greater
than 3 has a chord, i.e., an edge joining two vertices that are
not adjacent in the cycle. The complete graph, denoted by
KV with V a set of variables, is graph G = (V,E) where
E = {(v, v′) | v, v′ ∈ V }. The constraint graph of a QCN
N = (V,C) is the graph (V,E), denoted by G(N ), for which
we have that (v, v′) ∈ E iff N [v, v′] 6= B.

Checking the satisfiability of a QCN of RCC8 is NP-hard
in general [Renz and Nebel, 1999]. However, there exist the
maximal tractable subclasses Ĥ8, C8, and Q8 for RCC8 for
which the satisfiability problem becomes tractable [Renz and
Nebel, 2001], as noted earlier. RCC8 also has two maximal
distributive subclasses, namely,D41

8 andD64
8 , that are properly

contained in Ĥ8 [Li et al., 2015]. From this fact, and due to the
implication of chordal graphs in the satisfiability problem in
RCC8 [Sioutis and Koubarakis, 2012], we have the following
result:

Proposition 1 ([Sioutis and Koubarakis, 2012]) Let N =
(V,C) be a not trivially inconsistent QCN of RCC8 defined
on one of the subclasses Ĥ8, C8, Q8, D41

8 , or D64
8 , and

G = (V,E) a graph such that G(N ) ⊆ G. If G is chordal
and N is �G-consistent, then N is satisfiable.

Solving the minimal labelling problem for a QCN of RCC8,
i.e., obtaining the minimal QCN Nmin of a QCN N of RCC8,
is NP-hard in general (cf. [Liu and Li, 2012]). However,
for the two maximal distributive subclasses D41

8 and D64
8 for

RCC8, the minimal labelling problem becomes tractable [Li
et al., 2015]. In particular we have the following result:

Proposition 2 ([Li et al., 2015]) Let N = (V,C) be a not
trivially inconsistent QCN of RCC8 defined on one of the max-
imal distributive subclasses D41

8 , or D64
8 . If N is �-consistent,

then N is weak globally consistent and minimal.

Finally, let N = (V,C) and N ′ = (V ′, C ′) be two
QCNs such that N [v, v′] = N ′[v, v′] for all v, v′ ∈ V ∩ V ′.
We denote by N ′ ∪ N the QCN N ′′ = (V ′′, C ′′), where
V ′′ = V ∪ V ′, N ′′[v, v′] = N [v, v′] for all v, v′ ∈ V \ V ′,
N ′′[v, v′] = N ′[v, v′] for all v, v′ ∈ V ′ \ V , and N ′′[v, v′] =
N ′′[v′, v] = B for all v ∈ V ′ \ V , v′ ∈ V \ V ′.

3 Prime Network in RCC8

In this section we give the definitions of a redundant relation
in a QCN N of RCC8 and a prime QCN of N , and provide
new complexity results and algorithms for finding a prime
QCN of N when N is defined on a non-tractable, a maximal
tractable, or a maximal distributive subclass for RCC8.

Given a QCNN = (V,C), we say thatN entails a relation
r(v, v′) ∈ 2B, with v, v′ ∈ V , if for every solution σ of N ,
the relation defined by (σ(v), σ(v′)) is a base relation b such
that b ∈ r(v, v′). A relation N [v, v′] in N is redundant if
network N[v,v′]/B entails N [v, v′]. Note that by definition
every universal relation B in a QCN is redundant. Recalling
the fact that the constraint graph of a QCN involves all the
non-universal relations, we can obtain the following lemma:

Lemma 1 Given a QCN N = (V,C) and its constraint
graph G(N ) = (V,E), a relation N [v, v′] with v, v′ ∈ V
is redundant if (v, v′) 6∈ E.

We recall the definition of a reducible and a prime QCN.

Definition 7 ([Li et al., 2015]) A QCN N = (V,C) is re-
ducible if it comprises a redundant relation other than relation
B, and irreducible otherwise. An equivalent irreducible sub-
QCN of N , is called a prime QCN of N . If a prime QCN of
N is also unique, it is denoted by Nprime.

In Figure 1 a QCN N of RCC8 and its prime QCN are
depicted. Relation {DC} is redundant as it can be entailed
by N[v1,v2]/B and, thus, can be replaced with relation B (that
denotes the lack of a constraint between two entities in a
QCN).

3.1 RCC8 networks in the general case
Given an arbitrary QCN N of RCC8, finding a prime QCN of
N is clearly at least as hard as determining if N is reducible.
We then have the following result, which relies on the fact
that retrieving a solution for a QCN of RCC8 is NP-hard in
general [Renz and Nebel, 1999]:

Proposition 3 ([Li et al., 2015]) Let N = (V,C) be a QCN
of RCC8. It is co-NP-complete to decide if N [v, v′], with
v, v′ ∈ V , is redundant in N .

However, we can have a stronger theoretical result than
that for QCNs of RCC8 of bounded treewidth. The width of
a tree decomposition (T, {X1, . . . , Xn}) [Diestel, 2012] is
max
1≤i≤n

|Xi| − 1. The treewidth of a graph G is the minimum

width possible for arbitrary tree decompositions of G.

Theorem 1 ([Bodirsky and Wölfl, 2011]) For any k, the sat-
isfiability problem for a QCN of RCC8 of treewidth at most k
can be solved in polynomial time.

A detailed algorithm for Theorem 1 that builds on the proof
sketch of [Bodirsky and Wölfl, 2011] is provided in [Huang et
al., 2013]. In particular, the satisfiability check can be made in
O(w3·|V |·cw2· log |V |) time for a QCN N = (V,C) of RCC8,
where w is the treewidth of G(N ) and c a constant such that
|B||V |·|V−1|/2 ≤ c|V |2 , with the algorithm provided in [Huang
et al., 2013]. We then have the following result:

Proposition 4 Let N = (V,C) be a QCN of RCC8 of
bounded treewidth. It takes polynomial time to decide if
N [v, v′], with v, v′ ∈ V , is non-redundant in N .

Proof. Let r = B \ N [v, v′], viz., the set of base relations not
included in N [v, v′]. To check if N [v, v′] is non-redundant in
N , we must check if N[v,v′]/r is satisfiable. This satisfiability
check can be made in polynomial time due to Theorem 1. a

The obtained bound for the algorithm for Theorem 1 does
not allow for practical applicability of Proposition 4, for which
we are interested in this paper, but, nevertheless, is of theoreti-
cal merit. To check if a QCNN of RCC8 is reducible, we need
to check O(E(G(N ))) relations as suggested by Lemma 1.
Thus, due to Proposition 4 we can obtain a prime network in
polynomial time with a simple procedure similar to the one
provided in [Li et al., 2015, p. 60].
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3.2 RCC8 networks defined on a maximal
tractable subclass

Given a QCN N of RCC8 that is defined on a maximal
tractable subclass for RCC8, finding a prime QCN of N takes
polynomial time. In particular, we have the following result:

Proposition 5 Let N = (V,C) be a QCN of RCC8 defined
on one of the maximal tractable subclasses Ĥ8, C8, or Q8,
G(N ) = (V,E′) its constraint graph, and G = (V,E) a
chordal graph such that G(N ) ⊆ G. We can determine if a
relation is non-redundant in N in O(δ · |E|) time, where δ
denotes the maximum vertex degree ofG, and inO(δ·|E|·|E′|)
time find all non-redundant relations in N . In addition, a
prime QCN of N can be found in O(δ · |E| · |E′|) time.

Proof. Let r = B \ N [v, v′], where N [v, v′] with (v, v′) ∈
E′ is a non-universal relation in N . To check if relation
N [v, v′] is non-redundant inN , we must check if there ∃b ∈ r
such that N[v,v′]/{b} is satisfiable. If such b exists, N [v, v′]
is non-redundant in N . Due to Proposition 1, satisfiability
checking can be done inO(δ ·|E|) time with the �G-consistency
operation, and as we can have a check for at most a constant
number of |B| base relations, the complexity remainsO(δ·|E|).
By Lemma 1, we need only perform the non-redundancy check
for a total of O(E′) relations. Thus, finding all non-redundant
relations takes O(δ · |E| · |E′|) time, and, as a consequence,
we can obtain a prime network in O(δ · |E| · |E′|) time using
a simple procedure like the one provided in [Li et al., 2015,
p. 60]. a

As noted in [Li et al., 2015], calculating Nprime for a QCN
N of RCC8 defined on a maximal tractable subclass is not
always possible, asN may have more than one prime network.
To obtain Nprime we need N to be defined on a maximal
distributive subclass, which we will study in the sequence.

3.3 RCC8 networks defined on a maximal
distributive subclass

Given a QCN N of RCC8 that is defined on a maximal dis-
tributive subclass for RCC8, we will show that we can find
Nprime with an algorithm that goes well beyond the state-of-
the-art algorithm presented in [Li et al., 2015]. To be able to
do so, we will first present a result that is similar to a main
result of [Bliek and Sam-Haroud, 1999], namely, we will
show that for a maximal distributive subclass for RCC8 and
a QCN N defined on that subclass, the prunning capacity of
�
G-consistency and �-consistency is identical on the common
edges of a chordal graph G with G(N ) ⊆ G and the complete
graph of N . As a consequence, we will also briefly explain
the implication of this result in the minimal labelling problem
(MLP) of a QCN of RCC8 [Amaneddine et al., 2013].

First, we recall the following lemma that will allow us to
make a chordal graph complete by adding a single edge at a
time and keeping all intermediate graphs chordal:

Lemma 2 ([Bliek and Sam-Haroud, 1999]) If G = (V,E)
is a non-complete chordal graph, then one can add a miss-
ing edge (u, v) with u, v ∈ V such that the graph G′ =
(V,E ∪ {(u, v)}) is chordal and the graph induced by X =
{x | (u, x), (x, v) ∈ E} is complete.

We now proceed with proving the following result:

Proposition 6 Let N = (V,C) be a not trivially inconsistent
QCN of RCC8 defined on one of the maximal distributive
subclasses D41

8 , or D64
8 , and G = (V,E) a chordal graph

such that G(N ) ⊆ G. Then, ∀(v, v′) ∈ E we have that
�(N )[v, v′] = �G(N )[v, v′].

Proof. Suppose that N is �G-consistent. We consider only the
case where �G-consistency did not result in the assignment of
the empty relation ∅ for some edge inG, i.e., the case whereN
is satisfiable, as otherwise we would have that �(N ) = ⊥V

KV
,

�
G(N ) = ⊥V

G, and as a consequence ∀(v, v′) ∈ E trivially
have that �(N )[v, v′] = �G(N )[v, v′] = ∅, as desired. We will
add to graph G the missing edges one by one until it becomes
complete. We will show that the relations that correspond
to the new edges can be computed from existing relations,
so that for each intermediate chordal graph G′ network N is
�
G′ -consistent, and for the final complete graph KV network
N is therefore �KV

-consistent, that is, �-consistent. Every edge
is added according to Lemma 2 to retain a chordal graph at all
times. Consider graph G as shown below.

vn−1 vj

x′

After adding edge e = (vn−1, vj) to G we obtain graph
G′ = (V,E ∪ {e}). (As e 6∈ E, initially N [vn−1, vj ] = B.)
Let X = {x | (vn−1, x), (x, vj) ∈ E} be the set of variables
that induce a complete graph and are denoted in grey colour
in our figure. We will show that the relation corresponding to
edge e can be computed as follows:

N [vn−1, vj ] =
⋂

x∈X
N [vn−1, x] � N [x, vj ] (1)

Note that by construction graphs A induced by {vn−1} ∪X
andB induced byX∪{vj} are complete. Let us denote byNA

andNB the QCNs of RCC8 that correspond to graphsA andB
respectively. We need to show that networkN is �G′ -consistent.
In particular, we need to show that every path π of length 2
that goes through vn−1 and vj is consistent, as every other
path of length 2 is by assumption consistent. We need to
consider two cases (reasoning is the same for symmetrical
cases). With x′ ∈ X , either π = 〈vn−1, vj , x′〉, or π =
〈vn−1, x′, vj〉. If π = 〈vn−1, vj , x′〉, we prove that for every
base relation ofN [vn−1, x

′], there exist base relations for both
N [vn−1, vj ] as defined in (1) and N [vj , x

′], so that the path
is consistent (i.e., N [vn−1, x

′] ⊆ N [vn−1, vj ] � N [vj , x
′]).

As graph A is complete, NA is �-consistent, and therefore
due to Proposition 2, NA is weak globally consistent and
minimal. Thus, for every base relation of N [vn−1, x

′] there
exist compatible base relations for all other constraints in
NA, i.e., there exists a scenario for NA, denoted by NSA . As
V (A)∩V (B) = X induces a complete graph, the assignment
of base relations for every constraint in NA will define a
partial scenario for NB on X . Again, as graph B is complete,
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NB is �-consistent, and therefore due to Proposition 2, NB

is weak globally consistent and minimal, thus, this partial
scenario can be extented to a scenario for NB , denoted by
NSB . As such, N [vj , x

′] will be also characterized by a base
relation. Finally, relations N [vn−1, x] and N [x, vj ] for all
x ∈ X participating in (1) will be characterized by base
relations, thus, there exists a base relation forN [vn−1, vj ] too
as clearlyNSA∪N SB is �G-consistent and, thus, satisfiable due to
Proposition 1. If π = 〈vn−1, x′, vj〉, by equation (1) we know
that for every base relation of N [vn−1, vj ] we can find base
relations for N [vn−1, x

′] and N [x′, vj ], so that N [vn−1, vj ]
⊆ N [vn−1, x

′] � N [x′, vj ] can hold. a
Given a not trivially inconsistent QCN N = (V,C) of

RCC8 defined on one of the maximal distributive subclasses
D41

8 , or D64
8 , and G = (V,E) a chordal graph such that

G(N ) ⊆ G, due to Proposition 2 and Proposition 6 we have
that ∀(v, v′) ∈ E every base relation b ∈ �G(N )[v, v′] is feasi-
ble. As a consequence we have the following result:

Proposition 7 Let N = (V,C) be a not trivially inconsistent
QCN of RCC8 defined on one of the maximal distributive
subclasses D41

8 , or D64
8 , and G = (V,E) a chordal graph

such that G(N ) ⊆ G. Then, N is ◆G-consistent [Amaneddine
et al., 2013] iff it is �G-consistent.

In [Amaneddine et al., 2013], given a QCN N of RCC8
and a chordal graph G = (V,E) such that G(N ) ⊆ G,
◆

G-consistency is a partial consistency that is applied to charac-
terize the feasible base relations ∀N [u, v] with (u, v) ∈ E. It
is shown that if N is defined on a maximal tractable subclass
Ĥ8, C8, or Q8, computing ◆

G-consistency takes O(δ·|E|2)
time, where δ is the maximum vertex degree of G. Propo-
sition 7 suggests that if we restrict N to a maximal distribu-
tive subclass D41

8 , or D64
8 , ◆G-consistency can be computed in

O(δ·|E|) time. As ◆G-consistency is used in an algorithm for
solving the MLP in [Amaneddine et al., 2013], this result can
have a positive impact on its performance, which is out of the
scope of this paper to explore.

Let us now introduce a property that will hold for all the
considered QCNs in what follows.

Property 1 ([Li et al., 2015]) Let N = (V,C) be a satisfi-
able QCN of RCC8. Then,N will be said to satisfy the unique-
ness property iff ∀u, v ∈ V , with u 6= v, we have that N does
not entail a relation r ⊆ N [u, v] where r = {EQ}.

The uniqueness property specifies that every region in a
QCN of RCC8 should be unique and not identical to any other
region. This property establishes a very weak condition in
the sense that we can eliminate all entailed singleton {EQ}
relations from a given QCN of RCC8 and retain its knowledge
by reducing the spatial variables that are identical to each other
into a single variable, maintaining all involved relations. This
is a necessary condition to be able to obtain the unique prime
network of a QCN [Li et al., 2015]. Before obtaining another
result in this section, we recall the following lemma:

Lemma 3 ([Li et al., 2015]) Let N = (V,C) be a not triv-
ially inconsistent QCN of RCC8 defined on one of the max-
imal distributive subclasses D41

8 , or D64
8 , and having the

uniqueness property. If N is �-consistent, then a relation

N [v, v′], with v, v′ ∈ V , is non-redundant in N iff we have
that N [v, v′] 6= ⋂{N [v, v′′] � N [v′′, v′] | v′′ ∈ V \ {v, v′}}.

We will now prove a result that allows us to obtain the
same set of non-redundant relations as the one provided by
Lemma 3, more efficiently, through the use of chordal graphs.
Proposition 8 Let N = (V,C) be a not trivially inconsistent
QCN of RCC8 defined on one of the maximal distributive
subclasses D41

8 , or D64
8 , and having the uniqueness property,

and G = (V,E) a graph such that G(N ) ⊆ G. If G is
chordal and N is �G-consistent, then a relation �(N )[v, v′]
is non-redundant in �(N ) (i.e., the �-consistent network N
as in Lemma 3), iff we have that (v, v′) ∈ E(G(N )) and
N [v, v′] 6= ⋂{N [v, v′′] � N [v′′, v′] | (v, v′′), (v′′, v′) ∈ E}.

Proof. By Lemma 1 and the fact that for a QCNM of
RCC8, �(M) andM are equivalent, it trivially follows that
if (v, v′) 6∈ E(G(N )) then �(N )[v, v′] is redundant in �(N ).
We will show that we can have the same set of non-redundant
relations as the one suggested in Lemma 3. Let �(N )[v, v′]
with (v, v′) ∈ E(G(N )) be a relation in �(N ), then by Propo-
sition 6 we have that �(N )[v, v′] = �G(N )[v, v′] (= N [v, v′]).
Let G′ = (V,E′ = E ∪ {e}) be the chordal graph that results
by adding edge e = (u, v′) to G according to Lemma 2. It
suffices to show that the next equation holds:⋂{�G′(N )[v, v′′] � �G′(N )[v′′, v′]|(v, v′′), (v′′, v′) ∈ E′} =⋂{�G(N )[v, v′′] � �G(N )[v′′, v′]|(v, v′′), (v′′, v′) ∈ E} (2)

Equation (2) states that N [v, v′] is strictly contained in the
intersection of all paths of length 2 that start with v and end
with v′ in G iff N [v, v′] is strictly contained in the intersec-
tion of all paths of length 2 that start with v and end with
v′ in G′. If (2) holds, it follows that we can add all edges
necessary to obtain the paths of length 2 that start with v, end
with v′, and go through every v′′ ∈ V \ {v, v′}, and have
that

⋂{�G(N )[v, v′′] � �G(N )[v′′, v′] | (v, v′′), (v′′, v′) ∈ E}
=

⋂{�(N )[v, v′′] � �(N )[v′′, v′] | v′′ ∈ V \ {v, v′}}, so that
the necessary and sufficient conditions specified in Lemma 3
and Proposition 8 are equivalent with respect to deciding the
redundancy of �(N )[v, v′]. We will assume that (2) does not
hold and result in a contradiction. In particular, we will as-
sume that b is a base relation that is in the intersection of
all paths of length 2 that start with v and end with v′ in G,
but not in the intersection of all paths of length 2 that start
with v and end with v′ in G′. Clearly, this is only possible
when b 6∈ N [v, u] � N [u, v′], where new relation N [u, v′] is
computed according to (1) in the proof of Proposition 6, i.e.,
N [u, v′] is the intersection of all paths of length 2 that start
with u and end with v′ in G. Thus, a path π = 〈u, x, v′〉 exists
inG such that b 6∈ N [v, u]�N [u, x]�N [x, v′]. Then, we have
that b 6∈ N [v, x] � N [x, v′]. However, both (v, x) and (x, v′)
are in G and we already know that b ∈ N [v, v′′] � N [v′′, v′]
for all v′′ ∈ V such that (v, v′′), (v′′, v′) ∈ E, thus, b ∈
N [v, x] � N [x, v′]. This is a contradiction, thus, (2) holds. a

The set of non-redundant relations as provided by Lemma 3
and Proposition 8 is related to the unique prime network of a
QCN N of RCC8, viz., Nprime, as follows:
Theorem 2 ([Li et al., 2015]) Let N = (V,C) be a satisfi-
able QCN of RCC8 defined on one of the maximal distributive
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Algorithm 1: Delphys5(N )
in :A satisfiable QCNN defined on D41

8 or D64
8 .

output :χ, the set of non-redundant relations in �(N ).
1 begin
2 χ← ∅;
3 G← Triangulation(G(N ));
4 N ′ ← �

G(N );
5 Q← {(v, v′) | (v, v′) ∈ E(G(N ))};
6 while Q 6= ∅ do
7 (v, v′)← Q.pop();
8 τ ← ∅;
9 foreach v′′ such that (v, v′′), (v′′, v′) ∈ E(G) do

10 t←N ′[v, v′′] � N ′[v′′, v′];
11 foreach b ∈ B do
12 if b 6∈ t then τ ← τ ∪ {b};
13 ;

14 if τ ∪N ′[v, v′] 6= B then χ← χ ∪ {N ′[v, v′]};
15 ;

16 return χ;

network Delphys Delphys5 speedup (%)
nuts 0.26s 0.19s 26.9%
adm1 25 536.93s 222.33s 99.1%
gadm1 140 685.26s 329.43s 99.8%
gadm2 9.18s 2.34s 74.5%
adm2 ∞ 1 069.51s ∼ 100%

Table 1: Performance comparison on CPU time

subclasses D41
8 , or D64

8 , and having the uniqueness prop-
erty. Further, let χ be the set of non-redundant relations in
�(N ). Then, ∀u, v ∈ V we have that Nprime[u, v] = N [u, v]
if �(N )[u, v] ∈ χ and Nprime[u, v] = B otherwise.

An algorithm based on Lemma 3 to obtain the set of non-
redundant relations was provided in [Li et al., 2015] with a
time complexity of O(|V |3) for a given QCN N = (V,C) of
RCC8, which we here call Delphys. Due to Proposition 8, we
can have a new algorithm with a time complexity of O(δ · |E|)
for a chordal graph G = (V,E) such that G(N ) ⊆ G, where
δ denotes its maximum vertex degree, as the triangulation
procedure in line 3 is linear in the size of G [Parter, 1961;
Diestel, 2012] and �G-consistency in line 4 dominates the over-
all complexity. Our new algorithm is presented in Algorithm 1,
under the name Delphys5.

4 Experimental Evaluation
In this section, we compare the performance of Delphys5
with that of Delphys [Li et al., 2015] using a real dataset.
The experiments were carried out on a computer with an In-
tel Core 2 Quad Q9400 processor with a CPU frequency of
2.66 GHz per core, 8 GB RAM, and the Precise Pangolin
x86 64 OS. Both Delphys5 and Delphys were written in pure
Python and run with with PyPy 2.4.0 (http://pypy.org/). Only
one of the CPU cores was used.

We consider the dataset of real network instances that was
originally introduced in [Nikolaou and Koubarakis, 2014]:
• nuts: a nomenclature of territorial units using RCC8

network initial # of
relations

non-redundant #
of relations decrease (%)

nuts 3 176 2 249 29.19%
adm1 44 832 44 601 0.52%
gadm1 159 600 158 440 0.73%
gadm2 589 573 292 331 50.42%
adm2 5 236 270 1 798 132 65.66%

Table 2: Effect on obtaining non-redundant relations

relations that contains 2 235/3 176 nodes/edges.1
• adm1: a network that describes the administrative geog-

raphy of Great Britain using RCC8 relations [Goodwin
et al., 2008] and contains 11 761/44 832 nodes/edges.
• gadm1: a network that describes the German ad-

ministrative units using RCC8 relations and contains
42 749/159 600 nodes/edges.
• gadm2: a network that describes the world’s ad-

ministrative areas using RCC8 relations and contains
276 727/589 573 nodes/edges (http://gadm.geovocab.
org/).
• adm2: a network that describes the Greek adminis-

trative geography using RCC8 relations and contains
1 732 999/5 236 270 nodes/edges.1

The aforementioned network instances are satisfiable. They
comprise relations that are properly contained in any of the
two maximal distributive subclasses D41

8 and D64
8 for RCC8.

(Also, some identical regions were properly amalgamated to
satisfy the uniqueness property.)

The results on the performance of Delphys5 and Delphys
are shown in Table 1.2 Note that symbol∞ signifies that a
reasoner hits the memory limit. The speedup for Delphys5
reaches as high as nearly 100% for the cases where Delphys
was actually able to reason with the networks (e.g., gadm1).
Table 2 shows the decrease that we can achieve with respect
to the total number of non-redundant relations that we can
obtain from an initial network, which allows one to construct
sparse constraint graphs that boost various graph related tasks
such as storing, querying, representing, and reasoning. Note
that the constraint graphs of the initial networks are sparse,
thus, a lot of redundancy is already avoided. Still, for the
biggest network of the dataset, namely, adm2, the decrease
is around 66%, which is almost linear to the number of its
vertices, confirming a similar observation in [Li et al., 2015].

5 Conclusion
We made use of �G-consistency [Chmeiss and Condotta, 2011]
to obtain new complexity results for various cases of RCC8
networks with respect to deriving their non-redundant con-
straints and obtaining their prime networks, while we also

1Retrieved from: http://www.linkedopendata.gr/
2As Delphys relies on �-consistency and consequently uses an

adjacency matrix to store the complete graph of a given network that
forbids it from being able to consider networks of more than a few
tens of thousands of nodes, its operation was appropriately aided
with the simple decomposition scheme of [Sioutis et al., 2015b],
as described in [Sioutis et al., 2015a]. The same decomposition
scheme was applied to Delphys5 too, to maintain a fair comparison.
However, Delphys5 did not really benefit from that scheme, as it
uses an adjacency list to store a chordal graph of a given network and
it was already very time/memory efficient for the involved instances.

3234



showed that given a maximal distributive subclass for RCC8
and a network N defined on that subclass, the prunning ca-
pacity of �G-consistency and �-consistency is identical on the
common edges of G and the complete graph of N , when G
is a triangulation of G(N ). As a byproduct, we showed that
�
G-consistency on a network defined on a maximal distributive
subclass of relations equals to ◆G-consistency [Amaneddine et
al., 2013]. Given a maximal distributive subclass for RCC8,
we devised an algorithm based on �G-consistency to compute
the unique prime network of a RCC8 network, and showed
that it significantly progresses the state-of-the-art for practical
reasoning with very large real RCC8 networks.

A Generalization to other Calculi
As RCC5 is a sublanguage of RCC8 where no significance is
attached to boundaries of regions [Randell et al., 1992], all
results in this paper immediately carry over to RCC5 with
respect to its own particularities, such as its maximal tractable
and maximal distributive subclasses.

All results, except that of Theorem 2 which uses some
particular algebraic properties of RCC5/8, can be applied to
several other qualitative spatial constraint calculi, such as the
Cardinal Direction Calculus [Frank, 1991; Ligozat, 1998], the
Block Algebra [Guesgen, 1989], and even the Interval Alge-
bra [Allen, 1983] when viewed as a spatial calculus, again,
with respect to their own particularities. In fact, it can be
shown that the aforementioned results can be applied to any
qualitative spatial constraint calculus that is a relation algebra
and has patchwork for networks defined on one of its maximal
tractable subclasses of relations [Huang, 2012]. This is due
to the fact that the sound use of �G-consistency, when G is a
triangulation of the constraint graph of a given network, im-
plicitly considers patchwork for the involved qualitative spatial
constraint calculus [Amaneddine et al., 2013, Property 1].
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