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Abstract
Instrumental variables (IVs) are widely used to
identify causal effects. For this purpose IVs have
to be exogenous, i.e., causally unrelated to all vari-
ables in the model except the explanatory variable
X . It can be hard to find such variables. A gen-
eralized IV method has been proposed that only
requires exogeneity conditional on a set of covari-
ates. This leads to a wider choice of potential IVs,
but is rarely used yet. Here we address two issues
with conditional IVs. First, they are conceptually
rather distant to standard IVs; even variables that
are independent of X could qualify as conditional
IVs. We propose a new concept called ancestral
IV, which interpolates between the two existing no-
tions. Second, so far only exponential-time algo-
rithms are known to find conditional IVs in a given
causal diagram. Indeed, we prove that this prob-
lem is NP-hard. Nevertheless, we show that when-
ever a conditional IV exists, so does an ancestral IV,
and ancestral IVs can be found in polynomial time.
Together this implies a complete and constructive
solution to causal effect identification using IVs in
linear causal models.

1 Introduction
When studying a system that cannot be manipulated, we can
only attempt to infer its cause-effect relationships from obser-
vational data. Conclusions drawn from observational studies
are confounded when the putative cause and effect variables
share common unobserved causes. This threat to causal in-
ference is sometimes called the endogeneity problem [Anton-
akis et al., 2010]. In practice, the endogeneity problem is of-
ten addressed by making the parametric assumptions needed
to justify a linear regression model. Under these assump-
tions, it is possible to remove confounding by using an in-
strumental variable (instrument, IV) [Angrist et al., 1996;
Imbens, 2014a].

For instance, suppose our system under study can be de-
scribed by the set of structural equations depicted in Fig. 1A,
then (assuming all arrows describe linear functions and all
variables have variance 1) we have Cov(X,Y ) = γ + λ1λ2,
which differs from the causal effect γ. Yet, given that
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Figure 1: (A) The classic IV model. (B) Z is not an IV, but is
a conditional instrument (conditional IV) given W .

Cov(Y, Z) = βγ and Cov(X,Z) = β, we can estimate
the causal effect as Cov(Y, Z)/Cov(X,Z). This approach
is called the IV method, which is valid under two condi-
tions called exogeneity (Z shares no causes with and is not
caused by Y nor U ) and exclusion restriction (Z only af-
fects Y through X). Both conditions hold in Fig. 1A. The
conditions are untestable1 and have to be justified from do-
main knowledge. However, the IV method can sometimes
also be applied if exogeneity does not hold. For instance, Z
is not exogenous in Fig. 1B, but by conditioning onW we get
Cov(Y, Z | W )/Cov(X,Z | W ) = γ. In such cases, we call
Z a conditional instrument, and we say that W instrumental-
izes Z.

This begs the more general question: When, and how,
can a variable be instrumentalized using a covariate set W?
A graphical criterion exists to answer this question when a
causal diagram (directed acyclic graph, DAG) is given [Pearl,
2009], but it requires exponential time to find W. Indeed,
we show here that this is an NP-hard problem. Nevertheless,
we prove that the following related question can be answered
constructively in polynomial time: Given a DAG, does any
(perhaps conditional) IV exist? In other words, finding a con-
ditional IV is easier than instrumentalizing a given variable.
This surprising result implies that we can always efficiently
find a conditional IV in a DAG if one exists.

Our paper starts with a brief outline of our notation and
graphical formalisms. We divide our results into a conceptual
and a computational part: Section 3 introduces a new three-
level hierarchy of increasingly general IV definitions, which
forms the basis for our results. Section 4 presents algorithms
and hardness proofs.

1More precisely, instrumentality is testable to some extent if all
variables are discrete [Pearl, 2009]. However, most practical meth-
ods assume X to be normally distributed and therefore continuous,
in which case we cannot test instrumentality [Bonet, 2001].
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2 Background
We denote sets in bold upper case (S), and abbreviate sin-
gleton sets as S = {S}. Graphs are written calligraphically
(G), and variables in upper case (X). We consider graphs
G = (V,E) with nodes (variables) V and directed (A→ B)
edges E. We assume that the set V is partitioned disjointly
into a set of latent variables (that are not measured) and a set
M of observed (measured) variables.

Nodes linked by an edge are adjacent. A path of length
n is a node sequence V1, . . . , Vn+1, in which no Vi occurs
more than once, such that there exists an edge sequence
E1, E2, . . . , En for which every edge Ei connects Vi, Vi+1.
Then V1 is called the start node and Vn+1 the end node of the
path. We use the kinship terms child, parent, ancestor and de-
scendant to describe node relationships in graphs in the same
way as in [Pearl, 2009]; in this convention, every node is an
ancestor (but not a parent) and a descendant (but not a child)
of itself. For a node set Y we denote by An(Y) the set of
all ancestors of nodes in Y. Analogously, the descendant set
De(Y) is the set of all descendants of any node in Y. Given
a graph G and a node set Y ⊆ V, the ancestor graph GAn(Y)

is the subgraph of G consisting only of the nodes in An(Y)
and all edges between them.

A path from a node X to Y is called causal or directed
if it only contains directed edges pointing away from X . A
graph is a DAG if it does not contain a directed path from a
node to itself of length > 1. A node V on a path π is called a
collider if two arrowheads of π meet at V , e.g. if π contains
U → V ← Q. There can be no collider if π is shorter than 2.
Two nodes Z, Y are called d-connected by a set W if there is
a path π between them on which every collider is an ancestor
of W and every non-collider is not in W. Then π is called
a d-connecting or active path. If Z, Y are not d-connected
by W, we say that W d-separates them or blocks all paths
between them. We use the notation (Z⊥⊥Y | W)G to indi-
cate this separation, analogously (Z �⊥⊥ Y |W)G if Z, Y are
d-connected by W. If Z, Y are d-connected (d-separated)
by the empty set, we simply say they are d-connected (d-
separated). For a path π, we denote by π[X ∼ Z] the subpath
of π consisting of the edges between X and Z.

Given a directed graph G, the moral graph Gm [Lauritzen
et al., 1990] is the undirected graph obtained by transforming
G as follows: (1) For all pairs of edges of the form A → B,
C → B, if A and C are not adjacent in G, add an undirected
edge A− C to G. (2) Substitute every directed edge A→ B
by an undirected edge A−B.

3 A Hierarchy of Conditional Instruments
Because IVs rely on causal assumptions, it is natural to base
IV definitions on causal models. Directed acyclic graphs
(DAGs) are simple causal models consisting of nodes repre-
senting variables and edges representing causal relationships.
In this paper, we focus on the acyclic case in which reciprocal
causation is not allowed. We assume that a DAG G = (V,E)
with measured variables M ⊆ V is given. Also we assume
that G contains an edge X → Y (the effect to be estimated),
and we denote by Gc the graph obtained by removing said
edge from G.

As mentioned above, exogeneity and exclusion restriction
are statistically untestable – arguably, they cannot even be
expressed in statistical language [Pearl, 2009]. Conversely,
requirements that can be formulated in statistical language
have the advantage of being testable. We make this distinc-
tion explicit by expressing testable requirements in statistical
language (labeled with ∗), and untestable ones2 in graphical
language. The standard IV definition then reads as follows:
Definition 3.1 (IV). Z is an instrumental variable relative to
X → Y , if
∗(a) Z correlates with X ,

(b) Z is d-separated from Y in Gc.

Note that (a) implies the existence of a path π from Z to
X that is d-connected. Our definition is thus stricter than
the one given by [Pearl, 2009], in which (a) only requires
the existence of π. However, for actual estimation of causal
effects e.g. by two-stage regression, Z needs to be correlated
with X , so our definition does not miss any relevant cases.
Definition 3.2 (Conditional Instrument [Pearl, 2009]). Z
is said to be a conditional instrument relative to X → Y , if
there exists a set W ⊆M such that
∗(a) Z correlates with X conditioned on W,

(b) W d-separates Z and Y in Gc,

(c) W consists of non-descendants of Y .

For instance, Z is a conditional instrument in Fig. 1B us-
ing W = W . Again, condition (a) is statistically testable,
and it implies the existence of a path π from Z to X that is
d-connected by W. Conditions (a) and (b) are direct general-
izations of the same conditions in the standard IV definition.
Restriction (c) is necessary because conditioning on descen-
dants of Y would bias estimation by the reversal paradox.

The idea of applying instruments together with condition-
ing variables predates its graphical definition. Take the sem-
inal work of Angrist on the labor market impact of voluntary
military service [Angrist, 1998; Angrist and Pischke, 2008]:
During the “Vietnam draft lottery”, randomly chosen men
were called to serve in the war. As not every drafted per-
son enlisted, this is a classical example of a randomized trial
with imperfect compliance: The IV Z in this case is the draft,
and the independent variable X is enlistment. Several depen-
dent variables Y could be studied with this setup. However,
because different numbers of men were drafted for each birth
cohort, the IV was only exogenous conditioned on the year
of birth (this would be our W in Definition 3.2). A DAG
describing this scenario could look like this:

enlistment Y

Uyear of birth

draft

In this typical example, we condition on a set of covariates
to render a variable exogenous. However, Definition 3.2 also
allows for quite different scenarios that no longer fit the usual
IV setting. For example, in the DAG

2By this we mean “untestable from observed data”. In principle
we could test some of these requirements experimentally.
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Z1 is a canonical IV. But Definition 3.2 also allows Z2 as an
IV after conditioning on W : even though Z1 and X are ini-
tially independent, they (may) become correlated after condi-
tioning. Whilst this is technically fine, starting from a vari-
able that is uncorrelated with X and then essentially exploit-
ing the reversal paradox might lend less credibility to such
an analysis. In practice, good candidate IVs are often found
when circumstances create a scenario akin to (imperfect) ran-
domization, like in the Vietnam lottery example. We would
then use conditioning to remove any residual endogeneity
from the instrument, not to create spurious correlations. Nat-
ural covariates would be the common causes of Z, X and Y
(or proxies thereof). With this motivation in mind, we define
the following “restricted” version of a conditional IV.
Definition 3.3 (Ancestral Instrument). VariableZ is said to
be an ancestral instrument relative to X → Y , if there exists
a set W ⊆M such that
∗(a) Z correlates with X conditional on W,
(b) W d-separates Z and Y in Gc,
(c) W consists of ancestors of Y or Z or both which are

non-descendants of Y .
From this definition, it is obvious that ancestral IVs are

special case of conditional IVs. Also, each standard IV is an
ancestral IV (using W = ∅). There are, however, conditional
IVs that are not ancestral (e.g. Z2 in the above DAG), and
this might seem to imply that ancestral IVs are less “power-
ful” than generic conditional ones. Importantly and perhaps
surprisingly, the following theorem shows that this is not the
case.
Theorem 3.4. For a given DAG G and variables X and Y , a
conditional IV Z relative to X → Y exists if and only if an
ancestral IV Z ′ relative to X → Y exists.

Proof. Let Z be a conditional IV relative to X → Y , such
that the path π from X to Z has the minimum number of
colliders. Let W be a minimal set of non-descendants of Y
opening the path π and separating Y and Z in Gc. If π has
no colliders then after removing nodes from W which are
neither ancestors of Y nor of Z the set still d-separates Y
and Z [Lauritzen et al., 1990] and does not block π. Thus, Z
is an ancestral instrument.

Assume π has at least one collider, say C. Let W ∈W be
the first descendant ofC in Gc. Note thatW can coincide with
C. Then all paths τ between Y and W that are active given
W\W in Gc have the form τ = τ0 ←W , where τ0 starts with
Y , and at least one such path exists: Otherwise, if no open
path between Y and W exists, W is a conditional instrument
relative to X → Y whose sequence π[X ∼ C] → . . . → W
given W\W in Gc has fewer colliders than π. If the sequence
does not visit a node twice, it is an active path; Otherwise, if a
node, say D, is visited on the sequence twice, we can remove
all nodes between the farthest occurrences of D resulting in
an active path π[X ∼ D]→ . . .→W. If path τ ends with→,
i.e. τ = τ0 → W and no node occurs twice in the sequence

τ0 → W ← . . . ← π[C ∼ Z] then it is a path between
Y and Z in Gc which is open given W. If a node, say D,
occurs twice in the sequence, we remove all nodes between
the farthest occurrences of D obtaining a shorter sequence
with a single occurrence of D. In the shorter sequence, ev-
ery collider is open given W and no non-collider is blocked
by W. This fact is obvious for any node V 6= D. To see
that it is true also for D, we consider two cases. If in the
shorter sequence node D is a non-collider, then at least one
of its occurrences in the original sequence was a non-blocked
non-collider. Thus, W does not block D in the shorter se-
quence either. If D becomes a collider but in the original se-
quence both occurrences were non-colliders, then in the orig-
inal sequence the subsequence between both occurrences has
the form→ D → . . .← D ←. This means that a descendant
of D is in W.

If one of these first descendants W ∈W is not an ances-
tor of Y then there exists a path τ of the form τ1 → V ←
. . . ← W , for some subpath τ1 starting in Y that is active
given W \W in Gc. Node V has a descendant in W \W .

Since W is minimal no node W ∈W that does not open
the path between X and Z can be removed without opening
a path π′ between Y and Z in Gc. Since such a path π′ has
to contain a collider, W is an ancestor of this collider and a
node W ′ ∈W that is opening the collider.

So, every node in W is either an ancestor of Y or Z, or
is an ancestor of some other node in W. Since Gc does not
contain cycles, every node in W is an ancestor of Y orZ.

The result that we lose nothing by restricting ourselves to
ancestral IVs has an interesting connection to a similar re-
sult for covariate adjustment: If it is possible to identify a
causal effect by adjustment, then it is always possible to do
so by only adjusting for ancestors of the variables of interest
[van der Zander et al., 2014].

The rest of the paper will show that ancestral instruments
are algorithmically appealing: Unlike non-ancestral instru-
ments, they can be found efficiently in a given DAG.

4 Finding Conditional Instruments
In this section we are concerned with the following problem:
Given a DAG G and variables X,Y, can we find a variable
Z and a set W ⊆ M that renders Z into a conditional in-
strument with respect to X → Y ? If this is possible, we say
that Z can be instrumentalized using W. If many such W
exist, we give a preference to “simple” sets – e.g., we prefer
to instrumentalize using the empty set if possible. Our main
workhorse to achieve this is the notion of a nearest separator,
which we introduce now.

4.1 Nearest Separators
Let G = (V,E) be a graph and let M ⊆ V denote the
measured nodes and let Y and Z be nodes in V. We say
that Y and Z are separable in G if there exists W ⊆ M
such that (Z⊥⊥Y | W)G . For given nodes Y and Z in V
we call a subset W ⊆ M a nearest separator according
to (Y,Z) if and only if (i) (Z⊥⊥Y | W)G and (ii) for all
X ∈ An(Y ∪ Z) \ {Y,Z} and any path π in the moral graph
(GAn(Y ∪Z))

m connecting X and Z, if there exists W′ ⊆ M

3245



(A)

Z

A B

CD U1

U2 Y

(B)

Z

A B

CD U1

U2 Y

Figure 2: (A) DAG G with unmeasurable U1, U2 and (B) the
corresponding moral graph. {D,B} is a nearest separator ac-
cording to (Y,Z) but {A,B} not since it does not satisfy (ii).

such that (Z⊥⊥Y |W′)G and W′ does not block π then W
does not block π either. For an example nearest separator see
Fig. 2. The following algorithm computes such separators.

function NEAREST-SEPARATOR(G, Y, Z)
Let M be the set of measured variables in G
Construct the moralized graphM = (GAn(Y ∪Z))

m

W := ∅
while ∃ π = Y, V1, . . . , Vk, Z - a path from Y to Z

inM s.t. k ≥ 1, π is not blocked by W,
and {V1, . . . , Vk} ∩M 6= ∅ do

W := W ∪ {first measurable node Vi of π}
if (Z⊥⊥Y |W) then return W else return ⊥

Lemma 4.1. Algorithm NEAREST-SEPARATOR finds a near-
est separator W ⊆ An(Y ∪ Z) if Y and Z are separable in
G; otherwise it returns ⊥. Moreover, if Y and Z can be sep-
arated in G by a set that does not contain a descendant of Y ,
then W ⊆ An(Y ∪Z)\De(Y ). The runtime of the algorithm
is O(nm), where n = |V| and m = |E|.

Proof. The algorithm finds W satisfying (Z⊥⊥Y | W)G if
such a set exists, because in this case it exists in the moral
graph of ancestors [Lauritzen et al., 1990] and in an undi-
rected graph a separating set can be found greedily.

This W contains only ancestors of Z and Y , so if W con-
tains a descendant V of Y then V is an ancestor of Z. Hence
there is a causal path from Y to V and a causal path from V
to Z. Thus, there exists a causal path from Y to Z that can
only be blocked by a descendant of Y , and every separating
set must contain a descendant of Y . This proves the condi-
tion that the algorithm returns a set of non-descendants of Y
if such a set exists.

Next, we show that the set W returned by the algorithm
is a nearest separator according to (Y,Z) in G. So, let X be
an arbitrary node in An(Y ∪ Z) other than Y and Z and let
π be a path in the moral graph (GAn(Y ∪Z))

m connecting X
and Z such that π is blocked by W. Assume there exists a
set W′ ⊆ M which separates Y and Z in G but does not
block the path π in the moral graph. Then π is blocked by
a node W ∈ W \W′ which has to block a path π′ from Y
to Z in the moral graph. This follows from the construction
of the algorithm. The subpath of π′ between Y and W is not
blocked by W′, because the algorithm only chooses W , if
no node closer to Y can block the path π′. Hence every path
fromW to Z in (GAn(Y ∪Z))

m is blocked by W′. Particularly,
a subpath of π between W and Z is blocked by W′, too. But
this contradicts the assumption that W′ does not block π.

The runtime is O(nm) since a path in the moralized graph
can be found in O(m) steps and at most O(n) nodes are
needed to block all paths. The times needed to construct the
moralized graph (O(n)) and to check the separation at the
end (O(m)) do not change the asymptotic runtime.

The following property of nearest separators computed by
the algorithm above will turn out to be useful.

Corollary 4.2. Let X,Y, Z be different variables in V and
let W 6= ⊥ be a set returned by NEAREST-SEPARATOR for
(Gc, Y, Z). If X ∈ W, then variable Z is not an ancestral
instrument relative to X → Y in G.

4.2 Ancestral Instruments
Having introduced the concept of nearest separators and hav-
ing shown how to find them, we are now ready to present an
algorithm to instrumentalize ancestral IVs.

function ANCESTRAL-INSTRUMENT(G, X, Y, Z)
Gc := G with edge X → Y removed
W := NEAREST-SEPARATOR(Gc, Y, Z)
if (W = ⊥) ∨ (W ∩ De(Y ) 6= ∅) ∨ (X ∈W) then

return ⊥
if (Z �⊥⊥ X |W) in Gc then return W else return ⊥

Theorem 4.3. For given X,Y and Z in a DAG G algo-
rithm ANCESTRAL-INSTRUMENT returns a set of variables
W that satisfies the properties of ancestral conditional in-
struments relative to X → Y , if such a set exists; Otherwise
it returns ⊥. The running time of the algorithm is O(nm).

Proof. Let A = M∩An(Y,Z)\De(Y ). We prove first that if
the algorithm returns a set W 6= ⊥, it has found W satisfying
the conditions of Definition 3.3.

From Lemma 4.1 we know that NEAREST-SEPARATOR
returns a nearest separator W according to (Y, Z) and that
W ⊆ M ∩ An(Y,Z). Due to the test for descendants of Y
we have that W ⊆ A. From Corollary 4.2 we know that Z
cannot be an ancestral instrument if X ∈ W. Finally, a set
W is returned if it does not separate X and Z in Gc.

Next, assume there exists a set W0 ⊆ A, such that
(Y⊥⊥Z |W0)Gc and a path π0 between X and Z which is
open in Gc given W0. We show that the algorithm finds a set
W satisfying the conditions of ancestral instruments.

From the assumption and due to Lemma 4.1, we get that
NEAREST-SEPARATOR returns a set W ⊆ A which is a near-
est separator according to (Y,Z). If π0 has colliders, then all
of them are ancestors of nodes in W0 that, recall, is a sub-
set of An(Y,Z). So, π0 has the form X ← . . . ← Z, or
X ← . . . ← V → π1, or X → π2 such that V and all
nodes on π1 and π2 are ancestors of Y or Z. Paths V → π1
and X → π2 correspond to paths in the moralized graph
M = (Gc,An(Y,Z))

m, which are not blocked by W0 and
thus not blocked by W in M. Relying on the properties
of the moralized graph, we can prove that there exist paths
V → π′1 or X → π′2 to Z in Gc that are not blocked by W
and V /∈W due to Corollary 4.2. The paths X ← . . . ← Z
and X ← . . . ← V are not blocked by W either, since if
the nodes belong to the moral graph, they are not blocked due
to Lemma 4.1, otherwise W cannot block them since it only
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contains nodes of the moral graph. Similarly V /∈ W, or
there would be a path between Y and Z that is not blocked
by W0. Thus, replacing π1, π2 by π′1, π′2, resp., in π0
leads to a path π′0 that is not blocked by W and the condi-
tion (Z �⊥⊥ X |W)Gc is true. The runtime is dominated by
NEAREST-SEPARATOR.

It is easy to see that if Z is d-separated from Y in Gc,
i.e. if (Z⊥⊥Y | ∅)Gc , then for given Gc, Y , and Z, algorithm
NEAREST-SEPARATOR, returns W = ∅. Thus, we get:
Corollary 4.4. For given X,Y and Z in a DAG G algorithm
ANCESTRAL-INSTRUMENT returns the empty set W = ∅ if
and only if Z is an instrumental variable relative to X → Y .

Further, we can use algorithm ANCESTRAL-INSTRUMENT
to find a conditional instrumental variable relative toX → Y :
we search exhaustively in M \ (X ∪De(Y )) for a variable Z
for which the algorithm returns W 6= ⊥. The soundness of
the algorithm and its time complexity O(n2m) follows from
Theorem 4.3. The completeness is a consequence of Theo-
rem 3.4. We obtain the following result.
Corollary 4.5. There exists an algorithm which, givenX and
Y , returns a node Z and a node set W in time O(n2m) such
that W instrumentalizes Z, if such W and Z exist. Other-
wise, it returns ⊥.

This corollary is complete for effect identification using
conditional IVs in the same sense as the do-calculus is com-
plete for causal effect identification in general [Huang and
Valtorta, 2006; Shpitser and Pearl, 2006]: if it is possible to
estimate a causal effect in a DAG using a conditional IV, then
we can find such an IV using our algorithm.

4.3 Instrumentalization is NP-hard in general
We have now solved the problem posed in the previous sec-
tion: find a variableZ and a set W such that W instrumental-
izes Z. Now it is natural to wonder about a slightly different
problem: given Z, find a set W that instrumentalizes Z. We
refer to this as the instrumentalization problem. Intuitively,
this new problem might seem to be easier than finding an IV
because Z is already fixed. Perhaps surprisingly, the opposite
turns out to be true: Instrumentalization is computationally
harder than finding an IV.
Theorem 4.6. Determining if, for given X,Y, Z ∈ V, node
Z is a conditional instrument relative to X → Y is an NP-
complete problem.

Proof. Obviously, the conditions of Definition 3.2 can be ver-
ified in polynomial time after guessing W ⊆ M. Thus, the
problem is in NP. To prove the NP-hardness we show a reduc-
tion from the 3SAT problem, which is the canonical complete
problem for NP [Garey and Johnson, 1979].

Assume ϕ =
∧m

j=1 Cj is an instance of 3SAT, which is a
Boolean formula in conjunctive normal form over n variables
x1, . . . , xn where each clause Cj is limited to exactly three
literals from x1, x1, . . . , xn, xn. We construct the DAG G =
(V,E) for ϕ as follows.

For every clause Cj we define two nodes Cj and C ′j in V.
Next, let oi, resp. oi, be the number of occurrences of pos-
itive literal xi, resp. negative literal xi, in ϕ. For each lit-
eral xi we define oi nodes V 1

i , . . . , V
oi
i in V, resp., for xi

we define nodes V
1

i , . . . , V
oi
i . Additionally, for every xi two

nodes V 0
i , V

−1
i are defined and for every xi the node V

0

i is
included in V. We complete the construction of V by adding
the sets of nodes Pi, Fi, Ni, for all 1 ≤ i ≤ n and nodes
X,Z, Y, Y ′, Y ′′. Thus,

V={X,Z, Y, Y ′, Y ′′}
∪{V k

i | 1 ≤ i ≤ n ∧ −1 ≤ k ≤ oi}

∪{V k

i | 1 ≤ i ≤ n ∧ 0 ≤ k ≤ oi}
∪{Pi, Fi, Ni | 1 ≤ i ≤ n} ∪ {Ci, C

′
i | 1 ≤ i ≤ n}.

We define the edges of G such that C ′i, Ci form the path
X → C ′1 → C1 ← C ′2 → C2 ← ... ← C ′m → Cm ← Z
between X and Z (see the top of Fig. 3), and the nodes
Pi, Fi, Ni form the n paths Y ′ → Pi ← Fi → Ni ← Y ′′

between Y ′ and Y ′′ (see the bottom of Fig. 3). The complete
set of edges E is defined as follows:

E={X → Y,X → C ′1, Y
′ → C ′1, C

′
1 → C1, Cm ← Z}

∪{Cj−1 ← C ′j → Cj | 1 < j ≤ m}
∪{Cj → V k

i | k-th occurrence of xi in ϕ is in Cj}

∪{Cj → V
k

i | k-th occurrence of xi in ϕ is in Cj}
∪{V −1i → V 0

i , V
0
i → V k

i | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ oi}

∪{V 0

i → V
k

i | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ oi}
∪{Y ′ → Pi ← Fi → Ni ← Y ′′ | 1 ≤ i ≤ n}
∪{Pi → V −1i , Ni → V

0

i | 1 ≤ i ≤ n}
∪{Y ′′ → V 0

i | 1 ≤ i ≤ n} ∪ {Y ′′ → Y }.

The set M of observed nodes is defined as

M = {V j
i , V

k

i | 1 ≤ i ≤ n ∧ −1 ≤ j ≤ oi ∧ 0 ≤ k ≤ oi}.

G can be constructed in polynomial time with respect to the
length of the instance formula ϕ. The construction ensures
that sets W that instrumentalizes Z w.r.t. X,Y bijectively
map to satisfying assignments as follows:

xi =

{
true if ∃k : V k

i ∈W

false otherwise.

Our construction ensures the validity of this mapping in the
following manner. First, the only possible open path from X
to Z is the path via the Ci, C

′
i nodes; if W opens any other

path, then it also opens a path from Z to Y . Second, to con-
nect Z and X , set W needs to contain at least one of V j

i , V
k

i

for i ≥ 1. But it is not possible to pick both V j
i and V

k

i for
any i ≥ 1, j, k without opening a path from Z to Y . This
ensures that no variable is assigned both “true” and “false”.
If a path has been found that is d-connected by W, then it
therefore has to contain an assignment for at least one vari-
able in every clause, and this assignment fulfills said clause.
Therefore, we altogether obtain a satisfying assignment. If no
such assignment exists, then it is also not possible simultane-
ously to d-connect Z and X and d-separate Z and Y in the
graph.
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Figure 3: Reduction of 3SAT to the instrumentalization problem (the edge X → Y is omitted). Each variable Ci stands for a
clause in the input formula.

5 Discussion
We proposed a three-level hierarchy that links traditional IVs
[Angrist et al., 1996] to conditional IVs [Pearl, 2009]. For
the first two stages, classic and ancestral instruments, we gave
efficient algorithms for finding IVs and for instrumentalizing
given variables. At the same time, we showed that instrumen-
talization is in general not efficiently solvable unless P=NP.
Yet, whenever a conditional IV exists, an ancestral IV also
exists. In this sense, our solution is complete – it covers all
cases where a causal effect can be identified using the con-
ditional IV method. To our knowledge, no attempt has been
made so far to find conditional IVs efficiently or to prove the
hardness of this problem, and perhaps due to these algorith-
mic issues, the existing software that we know of is limited to
finding unconditional IVs [Kyono, 2010].

We focused here on estimation of causal effects of the form
X → Y , disregarding scenarios where the effect of X on Y
is mediated by other observed variables. However, our results
easily generalize to IVs with respect to the total effect. Details
will appear in an extended version of this paper. On the other
hand, IVs are also often used to disentangle reciprocal cau-
sation in cyclic models such as typical supply-and-demand
systems [Angrist and Pischke, 2008], and that important case
remains to be addressed in future research.

From a computational complexity perspective, the result
that instrumentalization is hard whereas finding a conditional
IV is easy is rather intriguing. This can be explained by not-
ing that the solution space of the IV problem decomposes
into some instances that are easy to find (ancestral IVs) and
others that are hard to find (non-ancestral IVs like the ones
used in our reduction). Our hardness proof heavily uses long
paths on which every observed variable is a collider. In DAGs
with only observed variables (Markovian DAGs), such long
collider paths are impossible. Thus, the question whether
non-ancestral IVs are easier to find in Markovian DAGs re-
mains open. However, this question is not of immediate prac-
tical relevance since in Markovian DAGs, we can identify

causal effects using hierarchical regression or using adjust-
ment, which have superior statistical properties.

We hope our findings will benefit both users of DAGs and
users of standard IV methods, for partly different reasons.
With DAGs we have the do-calculus at our disposal, which
always finds a formula to estimate a causal effect if one exists
[Huang and Valtorta, 2006; Shpitser and Pearl, 2006]. How-
ever, these formulas can grow large, which complicates esti-
mation [VanderWeele, 2009; Glynn and Kashin, 2013]. IV
methods are statistically well-understood, and can identify
causal effects in many settings where standard approaches
like covariate adjustment fail, e.g., when an unobserved con-
founder affects X and Y . Yet, IV methods are rarely used
so far in fields where DAGs are popular, like Epidemiology
[Greenland, 2000]. Phrasing generalized IV methods in the
DAG framework and providing efficient algorithms for IV
construction may make them more palatable for DAG users,
and embracing IV estimation procedures for causal effects
might benefit those fields.

Econometrics is perhaps the field where IV methods are
most commonly used [Imbens, 2014a]. Econometricians
have thus far largely refrained from using graphical causal
models [Pearl, 2013; Imbens, 2014b], and might not be com-
fortable with Pearl’s fully generalized IV definition that in-
cludes IVs which are uncorrelated with X . Therefore, we
hope that interested Econometricians might find some merit
in our notion of ancestral IVs, which reflects the combined
use of IVs and covariates for adjustment. In this context, it
is interesting to note that the linearity requirement of the IV
method does not necessarily apply to the covariates: an esti-
mation approach has been developed into which the covari-
ates can enter non-parametrically [Kasy, 2009].

In summary, we have presented a hierarchy of generalized
IV definitions and gave efficient algorithms to find general-
ized IVs for all levels of this hierarchy. We hope our results
will help DAG users to adopt the IV method, and users of the
IV method to adopt DAGs. Our algorithms are implemented
in the open-source software DAGitty [Textor et al., 2011].
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