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Abstract

In this work we evaluate the performance of a pol-
icy shaping algorithm using 26 human teachers.
We examine if the algorithm is suitable for human-
generated data on two different boards in a pac-man
domain, comparing performance to an oracle that
provides critique based on one known winning pol-
icy. Perhaps surprisingly, we show that the data
generated by our 26 participants yields even bet-
ter performance for the agent than data generated
by the oracle. This might be because humans do
not discourage exploring multiple winning policies.
Additionally, we evaluate the impact of different
verbal instructions, and different interpretations of
silence, finding that the usefulness of data is af-
fected both by what instructions is given to teach-
ers, and how the data is interpreted.

1 Introduction
A long-term goal of Interactive Machine Learning is to create
systems that can be interactively trained by non-expert end-
users. Researchers have shown that there are multiple ways
to interpret human feedback, and that some interpretations
can lead to better learning algorithms [Thomaz and Breazeal,
2008b]. This paper investigates how human feedback is best
interpreted, evaluating the usefulness of an interpretation by
the performance of an artificial learner basing policy updates
on the interpretation. We extend work on so-called policy
shaping, where feedback to a reinforcement learning agent is
interpreted as an evaluation of an action choice, instead of an
evaluation of the resulting state, or an estimate of the sum of
future discounted reward.

In particular, in [Griffith et al., 2013], researchers focused
on understanding theoretical limits of this approach, only
evaluating the algorithm with data from a simulated ora-
cle, and comparing the algorithm’s performance to reward
shaping-based techniques.The primary contribution of our
work in this paper is testing policy shaping with real human
teachers, exploring whether actual human teachers are able to
achieve similar performance gains.

Further, we show in our experiments that although human
teachers are willing to provide a great deal of feedback, they

are silent 30% of the time on average. Thus, it becomes im-
portant for a policy shaping algorithm to interpret that silence.
We compare: (1) the effects of different instructions to peo-
ple regarding the meaning of silence and (2) the performance
impact of different interpretations of silence by the agent.

2 Related Work
Interpreting feedback from humans who are evaluating artifi-
cial learners can be problematic for several reasons. Studies
have shown that human behavior violates many common as-
sumptions routinely built into machine learning algorithms,
and reinforcement learning algorithms in particular [Isbell et
al., 2006; Thomaz and Breazeal, 2008b].

People are committed to achieving a joint goal with the
learner, and instinctively try to provide rich information about
how this goal should be achieved. For example, human teach-
ers will use a mechanism meant as a channel for evaluating
actions to try to motivate the learner, or to try to evaluate hy-
pothesized future learner actions. In [Knox et al., 2012] an
algorithm is introduced allowing a learner to take advantage
of feedback intended for future learner actions. Having a but-
ton dedicated to motivational communication was shown to
reduce the teacher’s tendency to use the evaluation channel
for encouragement [Thomaz and Breazeal, 2008b]. As a re-
sult, use of the evaluation channel is closer to the assumptions
of the learning algorithm, improving performance. The prin-
ciple holds for other information channels as well. For exam-
ple, if human teachers see what types of demonstrations will
be useful, they produce more useful demonstrations [Cakmak
and Lopes, 2012].

Human guidance also results in more focused, but less di-
verse, skill development [Thomaz and Breazeal, 2008a]. It is
possible to explicitly model which parts of the context are vis-
ible to a human teacher and allow this more advanced model
to influence learning from that teacher [Breazeal et al., 2009],
interpreting the human critique as referring to that teacher’s
flawed model of the world, as opposed to the actual world.
Humans might also use positive and negative feedback in dif-
ferent ways [Thomaz and Breazeal, 2007]. Of particular in-
terest for this work is the fact that the way people give feed-
back is unsuitable for standard optimization because of the
human tendency to give more positive than negative reward,
and to stop providing positive rewards when an agent appears
to have learned the task [Isbell et al., 2006].
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These findings are relevant to the policy shaping approach
as they motivate the need to interpret human-generated cri-
tique in policy space. Of course, the general problem of a
learner interpreting a possibly-flawed human teacher is the-
oretically difficult, but there are a number of successful ap-
proaches, either by trying to modify a teacher’s behavior by
communicating confusion [Breazeal et al., 2005], or by im-
proving the learner’s model of the teacher [Lopes et al., 2011;
Grizou et al., 2014; Cederborg and Oudeyer, 2014; Loftin et
al., 2014]. Our work is closer to the latter.

3 Preliminaries: Reinforcement Learning
Although we are interested in the general problem of interac-
tive machine learning, our work here is focused specifically
on policy shaping in Reinforcement Learning (RL). Typically,
RL defines a class of algorithms for solving problems mod-
eled as a Markov Decision Process (MDP).

A Markov Decision Process is specified by the tuple
(S,A, T,R, γ) for the set of possible world states S, the set
of actions A, the transition function T : S × A → P (S),
the reward function R : S × A → R, and a discount fac-
tor 0 ≤ γ ≤ 1. We look for policies π : S × A → R,
mapping state-action pairs to probabilities, which result in
high rewards. One way to solve this problem is through Q-
learning [Watkins and Dayan, 1992]. A Q-value Q(s, a) is
an estimate of the expected future discounted reward for tak-
ing action a ∈ A in state s ∈ S. The Q-value of a state
action pair is updated based on the rewards received, and
the resulting state. In this paper we use Boltzmann explo-
ration [Watkins, 1989] where the probability of taking an ac-
tion is Prq(a) = eQ(s,a)/τ∑

a′ e
Q(s,a′)/τ , where τ is a temperature

constant.
In our experiments, parameters were tuned using only Q-

learning performance, without teacher critique data, and the
values used were T = 1.5, α = 0.05 and γ = 0.9.

4 Policy Shaping
As noted in Section 2, building models of how human behav-
ior should be interpreted can be very difficult; however, im-
proving these models can lead to better performance, at least
for those learning algorithms that assume these models hold.
In this work we use policy shaping—specifically an algorithm
introduced in [Griffith et al., 2013]—where we interpret hu-
man feedback as evaluating action choices such as “move to
the left”. Policy shaping is in direct contrast to the reward
shaping algorithms where human feedback is interpreted as
an evaluation of the state resulting from an action, or an esti-
mate of the sum of future discounted reward.

The model of human psychology underlying the choice of
policy shaping is not far fetched: good actions lead to good
evaluations, bad actions lead to bad evaluations. By contrast,
the assumptions needed to justify treating human feedback
as a value to be maximized is contradicted by experimental
evidence, and requires that the non-expert human maintain a
rather complex model of learning: instead of evaluating the
action choice made by a learner, the teacher would need to
keep track of and estimate the entire sequence of future re-
wards, and give a numerical estimate of this sum (so that, for

example, an action creating a problem receives more nega-
tive reward than the sum of subsequent good action choices
limiting the damage).

Finally, let’s compare the two models in two different
cases. First where the final state is the only thing that matters.
And the second where the specific actions matter and the final
state is always the same, such as in dancing. If success can
be measured in the final state, then the human teacher would
need to make sure the total reward is path independent, mak-
ing it necessary for the teacher to keep track of an enormous
amount of information. However, if the goal is to perform
the correct actions, i.e. correct dance moves, then the policy
shaping interpretation: “evaluations refer to action choice” is
favored almost by definition.

In policy shaping, perhaps the most important parameter
for learning is the probability that an evaluation of an action
choice is correct for a given teacher. This is denoted as C.
If an action is good (or bad), then the teacher is assumed to
give positive (or negative) critique with probability C (C = 0
is a perfectly inverse teacher, C = 0.5 is a random non-
informative teacher, and C = 1 is a flawless teacher). The
algorithm makes the simplifying assumption that the accu-
racy of each critique instance is conditionally independent1,
resulting in the probability Prc(a) that an action is good:
Prc(a) = C∆s,a

C∆s,a+(1−C)∆s,a
, where ∆s,a is the number of

positive minus the number of negative critique instances in a
given data set for state s and action a. This corresponds to an
a priori belief that, before viewing any critique, an action is
good with probability 0.5. In our experiments for this paper
we set C = 0.7. This value assumes that a human is correct
70% of the time (corresponding to significantly flawed, but
still useful, evaluations).

During learning, the probability Pr(a) of taking action
a ∈ A is Pr(a) =

Prq(a)Prc(a)∑
α∈A Prq(α)Prc(α)

, combining the prob-
ability Prq(a) derived from the the Q-values as specified
above with probability Prc(a) from the critique data (this
product represents the maximum information available from
two different, conditionally independent, sources [Griffith et
al., 2013]). It is worth noting that the policy shaping algo-
rithm is almost identical to Q-learning in the cases with a very
small amount of critique, or with critique that has many state
action pairs with the same amount of positive and negative
critique, or where C is close to 0.5. In the case with a lot of
critique from a consistent and trusted teacher, the data will
have a much more dramatic impact on action selection.

5 Experiment
Because the concept of policy shaping has already been
shown to work with a simulated teacher [Griffith et al., 2013],
our primary research goal in the experiments that we will now
describe is to investigate what happens when policy-shaping
data is generated by human teachers. Additionally, we are in-
terested in understanding the consequences of interpreting a
teacher’s silence as an action choice evaluation as well (e.g.,

1This is an approximation because when a human teacher judges
a state-action pair incorrectly once, it may be more probable that this
specific state action pair will be judged incorrectly again.
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deciding that no news is good news, and so silence is evidence
of a good action). Our experiment is designed to inform these
two research questions, with our hypotheses being:

H1: Human teachers will provide good data for Policy Shap-
ing but not as good as an oracle.

H2: People have an inherent bias that informs the meaning
of silence.

H3: We can manipulate the meaning of people’s silence by
differing the instructions given.

5.1 Domain
We use the experimental domain of pac-man, because human
teachers are easily familiar with it, and it is known to work
with policy shaping from prior work. Pac-man consists of
a 2-D grid with food, walls, ghosts, and the pac-man avatar.
Eating all food pellets ends the game with +500 reward, and
being killed by the ghost ends the game with -500 reward.
Each food pellet gives +10 reward, and each time step pac-
man gets a -1 time penalty. Pac-man’s action space is to go
up, down, right or left. The state representation includes pac-
man’s position, the position and orientation of any ghosts and
the presence of food pellets. In this version of the game, a
ghost moves forwards in a straight line if it is in a corridor. If
it has a choice of actions it decides randomly, but does not go
back to a square it has just occupied.

5.2 Design
Based on our hypotheses we have four groups to compare in
this experiment:

• Oracle: this condition uses a simulated teacher, in a sim-
ilar manner as prior work.

• Human-unbiased/open ended instructions: a human
teacher provides action critiques, with no instruction
about the meaning of silence.

• Human-positive bias: a human teacher provides action
critiques, with instruction that silence is positive.

• Human-negative bias: a human teacher provides action
critiques, with instruction that silence is negative.

In order to facilitate comparisons between these four con-
ditions, each teacher gave critique on the exact same state
action pairs, evaluating videos of a pac-man agent playing
the game. Each evaluation video lasts 5 minutes and con-
sists of a series of games. The games were generated by the
experimenters playing the game until either winning or dy-
ing. Because all teachers evaluate the exact same state ac-
tion pairs, any differences in learning performance can be at-
tributed to the experimental condition. If they had been eval-
uating an agent online, who was executing a stochastic policy
in a stochastic world, they would not be evaluating the same
thing and one data set could for example be higher quality due
to having been given the chance to evaluate different states.

We solicited participation from the campus community and
had 26 volunteers provide data for this experiment. Each par-
ticipant did one practice evaluation, followed by two evalua-
tions with unbiased instructions, and another two evaluations
with either the positive or negative biased instructions (not

both). The full experimental protocol is shown visually in
Figure 1.

Figure 1: Each teacher first plays the large board to the top
left. Then evaluates videos v1, v2 and v3. New instructions
are given based on what group the teacher has been assigned
to, then v2m and v3m are evaluated.

5.3 Protocol
Practice session:
First, participants were allowed to play the original pac-man
board for 5 minutes, to familiarize themselves with the game.
After having played a series of games, they were instructed
about how to provide critique.

We call this set of instructions the open-ended instructions:
“Use the “c” button to say “correct action”, and the “b” but-
ton to say “bad action”. Pac-man will take an action, and
then stand still for a little while, which will give you time to
evaluate the action just taken.” Then they evaluated video v1.
This first video allows them to become familiar with the pro-
cedure, and to experience the problem of commenting on a
learner whose actions are hard to evaluate. The data gathered
thus far is not used to test the algorithm.

We then test two different instruction conditions while try-
ing to reduce between-group differences. With a limited sam-
ple size, one of the groups will be better at playing the game,
give more feedback, or more positive feedback. These three
values were recorded, and each new teacher was assigned to
the group that would result in the smallest between group dif-
ference. Data collection started after group assignment.

Unbiased Evaluation:
Next the participants evaluate the two videos v2 and v3, tak-
ing place on the boards 2 and 3 shown in the lower left cor-
ner of Figure 1, again with the same open-ended instructions
about the ‘c’ and ‘b’ buttons. For this step, both groups see
exactly the same setup.

Silence-biased Evaluation:
After evaluating videos v2 and v3, participants were then told
that the study is actually investigating how pac-man should
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handle the cases where there is no feedback. Then each per-
son was given one of the following two instruction sets de-
pending on which group they were assigned.

• Biased-good – The teacher was told: Now you will pro-
vide evaluations in a case where pac-man will take si-
lence to mean that it did not make a mistake. Press “b”
whenever pac-man could have done better. You can be
silent when pac-man is acting reasonably good. Press
“c” only when you are sure that pac-man took the best
action.

• Biased-bad – The teacher was told: Now you will pro-
vide evaluations in a case where pac-man will take si-
lence to mean that it could have done better. Press “c”
when pac-man is acting reasonably good. You can be
silent when pac-man is not doing very good. Press “b”
only when you are sure that pac-man has made a serious
mistake.

Ideally we want to have people give the biased evaluation
on the same state-action pairs as the unbiased, but it is hard to
predict how a teacher’s behavior will be affected by evaluat-
ing the exact same video two times in a row. This was solved
by a combination of not seeing the two videos of the same
board directly after each other, and by mirroring the videos
after the biasing instructions were given. Board 2, used to
generate video 2, or v2, can be seen in the lower left of fig-
ure 1. The mirrored version of board 2 can be seen to the
lower right, in figure 1, after the new instructions are given.
Pac-man starts to the left instead of the right, and the ghost
starts to the right instead of to the left. The states are identi-
cal but with right and left reversed. The actions of video v2
was also reversed so that an equivalent game was observed in
the video v2m. After receiving the biased instructions, partic-
ipants evaluated videos v2m and v3m which are identical to
v2 and v3, but mirrored. The mirroring of videos will allow
us to evaluate human teacher data on the same states action
pairs, but under different instruction conditions. They evalu-
ate the same video twice, but it does not look like the same
video to them.

5.4 Simulated oracle teacher
The Q-learning algorithm was used to obtain a policy πo that
always wins. This policy was then used to construct an oracle
teacher who gave negative critique if a learner did something
different from what πo would have done, and positive critique
if the learner acted in accordance with πo. The oracle was
then used to evaluate the videos v2 and v3, giving critique
on exactly the same state action pairs as the human teachers.
v2m and v3m would have resulted in identical results because
they only differed in visual display and verbal instructions,
both of which are ignored by the simulated teacher. The sim-
ulated teacher gave feedback to a state action pair if that state
action pair was encountered during the Q-learning episode
that provided the simulated teacher with its winning policy
πo. If the state action pair had not been encountered, it gave
no feedback. It is not necessary to explore all possible states
to find an optimal policy since some optimal policies reli-
ably avoid large parts of the state space (and therefor does

not need to know what to do there). The tendency of a simu-
lated teacher to give feedback as opposed to be silent is thus
dependent on which state action pairs it is asked to evaluate.

5.5 Learning
As mentioned above, policy shaping modifies the action se-
lection of a reinforcement learning algorithm, in this case Q-
learning with Boltzmann exploration. Policy shaping takes as
input a data set and outputs a modification to Q-learning. In
our case we compare data sets gathered during evaluations of
videos, meaning that all data is available at the start of learn-
ing. A Q-learning agent explores the world, playing game
after game, and at each step the action selection is modified
by policy shaping operating on a fixed data set. While all Q-
learning agents will eventually learn these boards, the scores
achieved before having converged is dependent on the qual-
ity of the data set. Q-value estimates improve during learning,
but the evaluation data, and thus the impact of policy shaping,
stays the same while the agent learns.

6 Results
6.1 Measuring data quality
In these results we are primarily concerned with measur-
ing differences in the quality of the evaluation data received
across the experimental conditions. As a metric for this, we
take the average quality during the 1000 games of one learn-
ing episode. Q-learning always finds an optimal policy on
these boards, making the integration over quality a more in-
formative measure than final performance. Each policy is a
distribution over actions for each state. During learning, ac-
tions are sampled from this policy to enable exploration. Dur-
ing evaluation, the maximum action is always selected to get
a more accurate estimate of how well the learner is able to
perform. The quality of a specific policy is defined as the ex-
pected reward the learner will achieve when it plays the game
and takes the action with the maximum value (as opposed
to sampling from a distribution in order to explore the state
space and learn). The quality of data is the expected average
score during a learning episode of 1000 games.

6.2 Our participants were better teachers
In Table 1 we see the quality of the data for the three groups
of our 26 participants. The simulated teacher/oracle is also
included, as well as a baseline case with no teacher. The stan-
dard deviations are denoted σ, and we indicate the 95% con-
fidence interval with ±. Learning episodes lasting for 1000
games are performed repeatedly with each data set. The aver-
age score of the 1000 games of a learning episode constitutes
one sample. The sample size was 100 for the “no teacher”
and “oracle” case, 780 for the “Open ended case” (30 learn-
ing episodes for each of the 26 teachers), and 390 for the bi-
ased good and biased bad case (30 learning episodes for each
of the 13 teachers in the respective group).

We can see that the simulated teacher produces lower qual-
ity data than the human teachers, this is counter to our hypoth-
esis H1 about the usefulness of human generated data. The
oracle knows of one policy that always wins, but does not
recognize any other winning policies. When investigating the
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Table 1: Teacher Score Comparison
Teacher Board 2 Board 3

No teacher 426± 2.29,σ = 11.7 354± 7.17,σ = 36.6
Oracle 444± 1.98,σ = 10.1 372± 5.33,σ = 27.2

Open ended 462± 1.08,σ = 15.4 413± 3.99,σ = 56.9
Biased good 447± 1.76,σ = 17.7 371± 5.32,σ = 53.6
Biased bad 459± 1.77,σ = 17.8 410± 5.56,σ = 56

evaluations in detail, the simulated teacher was observed giv-
ing clearly bad feedback in a number of states. Actions were
given bad critique even though they represented one way of
winning the game, but not the one found by the teacher. The
simulated teacher is simply deciding that the action is differ-
ent from what is recommended by its own winning policy πo.
There are however several high stake situations where there is
only one reasonable action, for example when only one action
will escape the ghost, and here the simulated teacher gives the
right feedback. The simulated teacher will also never advice
moving into the ghost, so much of the time the feedback is
reasonable, and the information the learner receives is still
useful. A human teacher might however approve of several
different good strategies, and can therefore beat our simulated
teacher.

6.3 Instruction conditions

Figure 2: Here we can see the average performance of the
learning agent as a function of number of games played on
board 2, using evaluations of the state action pairs in the V2
video. The three lines correspond to the three instruction con-
ditions.

In Figures 2 and 3 we can see that trying to bias the teachers
toward silence meaning good reduces performance on both
boards. The disruption to learning seen in figure 3 is due to
the fact that sometimes agents learn to take the food pellet in
the center even if it has not taken the other food pellet. Do-
ing this leads to immediate reward, but sometimes leads to
the agent being trapped by the ghost with no means of escap-
ing. Due to the stochastic nature of the learning algorithm,
this “trick” is sometimes learnt quite late, and convergence
sometimes does not happen until around iteration 750.

Figure 3: Here we can see the performance on video V3. We
can see a plateau, or even a small dip in learning.

6.4 Interpretation of silence

Figure 4: Here we can see the performance of the learning
agent as a function of number of training iterations on the
V2 video. The three lines correspond to the three different
interpretations of silence.

Besides exploring different instruction conditions, we now
explore what happens when silence is interpreted as either
“good” or “bad”. In Figures 4 and 5 we can see that assum-
ing silence to mean good improves performance. The data
set from the open ended instructions were used for all lines
in these graphs, and the only variation is in how silence is
interpreted.

We also ran the experiment with a data set that had a
“good” evaluation for every state action pair, and one data
set that had a “bad” evaluation for every state action pair. We
found that positivity was significantly better than negativity,
indicating that actions in the videos are better than random
(a random policy almost always dies, while pac-man wins in
some of the videos evaluated). The learner has access to all
the evaluations, and in the beginning has not explored some
of the evaluated states. Because the set of action pairs eval-
uated are better than random, it makes sense to prefer evalu-
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Figure 5: Here we can see the performance on video V3
with the different interpretations of silence. Assuming silence
means good leads to significant performance improvements.

ated pairs that have been met with silence over unevaluated
pairs. This might explain what happens when we compare
the performance of the 4 combinations of biasing instructions
for good/bad while assuming silence to mean good/bad in fig-
ures 6 and 7. Even when giving instructions biasing silence
towards bad, it is still better to assume that silence means
good.

Figure 6: Here we can see what happens when we combine
biasing instructions with different interpretations of the V2
video. Note that there is good performance when teachers
are biased towards silence meaning bad, but the learner as-
sumes silence to mean good, despite bias and assumptions
being miss matched.

These findings about interpreting silence warrant future in-
vestigation, for which we have some hypotheses. It could be
that people tend to mean silence as good, which would ac-
count for the results in Figures 4 and 5, and that this tendency
is strong enough that when you try to bias them to give si-
lence a particular meaning it only makes matters worse, as in
Figures 2 and 3. So much so that the agent is better off assum-
ing silence is positive regardless, as seen in Figures 6 and 7.

However, to fully convince ourselves of this we would need
to experiment on a variety of domains with different posi-
tive/negative biases. As indicated by our baseline experiment
of an agent that assumed good or bad evaluation for every
state, the domain of our experiment was such that assuming
positive was more successful than negative, which contributes
in part to these silence interpretation results.

Figure 7: The results for the V3 video reproduce the qualita-
tive findings of the V2 video in figure 6. Even when attempt-
ing to bias human teachers towards silence meaning bad, it is
still more useful to assume that silence means good.

7 Conclusions
We have experimentally validated the policy shaping algo-
rithm on human teachers, showing that the assumptions about
humans that the algorithm is built on top of are reasonable.
Not only do the results translate to real human teachers, our
participants outperformed the simulated teacher because they
were able to recognize many different ways of winning. We
also showed that verbal instructions for when to give posi-
tive, negative, or no feedback have a significant impact on
data quality.

Further, different interpretations of silence can increase or
decrease performance. Future work will investigate a learner
autonomously re-interpreting silence, and investigate what
can be gained from tailoring the interpretations to individual
teachers. It is possible that for some teachers silence should
be interpreted as an ok action (but maybe not the optimal ac-
tion), while for others it is better interpreted as a bad action
(but perhaps not a critical mistake), and for yet other teachers,
silence might not be useful at all. The setup described here
was designed to generate data suitable for such a study.
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