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Abstract
In recent years, recommendation algorithms have
become one of the most active research areas driven
by the enormous industrial demands. Most of
the existing recommender systems focus on top-
ics such as movie, music, e-commerce etc., which
essentially differ from the TV show recommen-
dations due to the cold-start and temporal dy-
namics. Both effectiveness (effectively handling
the cold-start TV shows) and efficiency (efficiently
updating the model to reflect the temporal data
changes) concerns have to be addressed to design
real-world TV show recommendation algorithms.
In this paper, we introduce a novel hybrid recom-
mendation algorithm incorporating both collabora-
tive user-item relationship as well as item content
features. The cold-start TV shows can be correctly
recommended to desired users via a so called space
alignment technique. On the other hand, an on-
line updating scheme is developed to utilize new
user watching behaviors. We present experimen-
tal results on a real TV watch behavior data set to
demonstrate the significant performance improve-
ment over other state-of-the-art algorithms.

1 Introduction
Recommender systems help to overcome information over-
load by providing personalized suggestions from a plethora
of choices based on the history of user behaviors. While
Collaborative Filtering (CF) algorithms have seen tremen-
dous achievements in the fields of movie [Koren, 2008;
Ning and Karypis, 2011], music [Koenigstein et al., 2011;
van den Oord et al., 2013] and e-commerce [Linden et al.,
2003] in recent years, limited effort has been conducted to
build efficient and effective TV recommender systems [Hu et
al., 2008; Xu et al., 2013]. Compared to conventional afore-
mentioned recommender systems, recommending TV shows
in practice is more challenging in two aspects:
• Cold-start: Since TV shows are live broadcasting, a rec-

ommender system needs to predict user preference for up-
coming new programs based on watch history. The new TV
shows contain no observed user-item relationship, which
means all the programs have to be recommended in a cold-
start [Zhang et al., 2013; Liu et al., 2013; Ahn, 2008;
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Figure 1: Illustration of the cold-start problem for TV recom-
mendations.

Elahi et al., 2011; Liu et al., 2011; Xie et al., 2013] man-
ner.

• Temporal Dynamics: The user-item matrix is constantly
updated as new shows appear over time and new watch data
are collected. It is important for a TV recommender sys-
tem to incorporate new data quickly and update the model
online.
An overall scenario for TV recommender systems is illus-

trated in figure 1, which suggests that the ideal system needs
to address above two issues simultaneously. In other words,
the desired model should not only be able to recommend un-
seen items effectively, but also update itself quickly based on
the new input data.

Existing methods tackle the problem of cold-start item by
involving the auxiliary content information [Forbes and Zhu,
2011; Melville et al., 2002]. These models are known as
hybrid models. The hybridization process combines various
inputs or composite different recommendation mechanisms.
Common approaches combine either memory-based algo-
rithms with content similarities [Basu et al., 1998; Melville
et al., 2002; Ronen et al., 2013] or encode content informa-
tion into model-based algorithm learning [Balakrishnan and
Chopra, 2012; Forbes and Zhu, 2011; van den Oord et al.,
2013].

Due to the unique characteristics of the problem of TV
show recommendations, most of the existing memory-based
as well as model-based recommendation approaches are still
insufficient. The Memory-based methods are efficient but
suffer from data sparsity issues. On the other hand, latent-
based approaches make use of matrix factorization [Koren,
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Figure 2: The conceptual illustration of the proposed SAR
model.

2008; Chang et al., 2014; Bell and Koren, 2007] to fill the
missing data entries by spanning two low-rank matrices. Nev-
ertheless, it requires intensive offline computation, which
hardly applies to a real world setting where items dynami-
cally change [Jannach and Friedrich, 2011].

To overcome these difficulties, we develop a novel frame-
work of TV recommender systems termed Space Alignment
Recommendation (SAR). SAR is a hybrid model utilizing
both CF information via item-item neighborhoods as well as
the auxiliary content features for each item. In our tasks, the
number of TV shows is sufficiently smaller than the items in
other recommendation tasks. The item-item based CF frame-
work provides our model with significant computational ad-
vantages over latent factor models in two aspects. First, in-
stead of directly performing model learning on the user-item
matrix, our SAR algorithms utilizes the CF knowledge from a
much smaller item-item affinity matrix (the number of users
is in the range of millions while the number of TV shows
are only tens of thousands). Secondly, due to the causality
of TV broadcasting, the user-program relationship remains
unchanged once the current TV show is over. Item-item sim-
ilarities calculated from the user-item matrix in the past time
stamp are not need to be recalculated.

We refer to the similarity measured from the user-item
matrix as the CF space affinity. In contrast, content vec-
tors also provide relative closeness information in a content
space. Conventional memory-based hybrid approaches cre-
ate additional ratings on the cold-start items from the content-
based similarity [Melville et al., 2002]. However, the neigh-
borhood relations calculated from the CF space and content
space might differ a lot (see the motivating example). Di-
rectly incorporating the content knowledge might even hurt
the recommendation performance. Unlike these approaches,
the basic assumption for the proposed model is that the neigh-
borhood information from the CF space can be approximated
by the vector of contents through a transformation. Such a
desired mapping can be learned by transferring the knowl-
edge of item-item similarity from the CF space induced by
the historical data. Once the embedding function is obtained,
the neighborhood information in the content space reflects the
corresponding ones in the CF space. Therefore, cold-start TV
shows can be recommended systematically. A graphical illus-
tration is shown in figure 2.

Furthermore, in order to handle the rapid data changes,
an online updating scheme is presented. This provides SAR
the ability to port on real industrial systems with a real-time

streaming data. Moreover, it is common for the popular TV
shows to have highly correlated neighbors that are based on
very few co-watching from viewers. However, these neigh-
bors that are only based on a small number of overlapping
users tend to be inaccurate predictors. To devalue such unreli-
able correlations based on a few user co-watching, our online
model assigns each pairwise similarity in CF space a signif-
icance weighting factor [Melville et al., 2002]. We further
discuss the implementation of the proposed algorithm within
a MapReduce framework and test it in both batch and online
settings. The experimental results show significant advantage
of our model compared to other state-of-the-art algorithms in
a real large-scale TV show recommendation data set.

2 A Motivating Example
In this section, we describe a toy example from the real cold-
start TV recommendation scenario and show why directly
adopting content-based similarity as a measure of neighbor-
hood relationship in CF space fails to provide good predic-
tions. We consider the neighborhood measured from two dif-
ferent spaces of the episode of Dr. Phil broadcasted on March
13, 2014, which talked about controlling husbands. Table 1
illustrates eight of the most relevant TV shows with Dr. Phil
in both CF and content spaces. For the CF space, we use the
normalized user watch-time to compute the cosine similarity
between the TV shows. While for the content space, we ex-
tract keywords from the synopsis of the TV shows (for details
about content feature extraction, see Evaluation section).

Table 1: Relevant TV shows of Dr. Phil measured in both CF
and content spaces.

Rank CF Space Content Space
1 The Talk Law & Order
2 Lets Make a Deal Deadwood
3 The Queen Latifah Show Love It or List It
4 CBS Evening News House Hunters
5 The Dr. Oz Show The Middle
6 The Bold and the Beautiful My Five Wives
7 The Ellen DeGeneres Show Fatal Encounters
8 The Price Is Right Legally Blonde

We observe that among TV shows retrieved from the CF
space, most of them are talk shows in various topics. This
agrees with the fact about the preference of TV users: people
watching the talk show Dr. Phil also like other talk shows.
In the ranked list from the content space, however, the shows
mostly belong to drama. This is mainly because the content
of the Dr. Phil show in this episode is related to relation-
ship between couples, emotional abuse and victims, and may
relate to legal issues. Therefore, the ranking in the content
space is biased by such information, and in the ranked list we
see shows such as Law & Order and Love It or List It.

From this example, we see that there is a gap between the
CF space and content space: the neighborhoods estimated
from the content space cannot reflect the one from CF. As
the content space is typically used directly in many existing
work for recommending cold start items [Schein et al., 2002;
Forbes and Zhu, 2011], it leads to a suboptimal recommenda-
tion performance. In this paper, we seek a mapping function



from the content space, such that the gap can be seamlessly
bridged and consequently provide a better recommendation
performance on cold-start items where only content informa-
tion is available. We call this procedure space alignment.

3 Space Alignment Method for TV
Recommendations

Throughout this paper, all matrices are represented by upper
case letters (e.g., X and S). The ith row of a matrix X is de-
noted as Xi, while Xj represents the jth column. We use the
capital Greek alphabet to represent sets (e.g., Ω and Λ) and
| · | denotes the cardinality of a given set. Moreover, we as-
sume the user-item relationships are given as a utility matrix
X ∈ Rm×n, where m indicates the total number of users and
n represents the unique number of items. The observed user-
item relationship is given as a set of indices of X represented
as Ω. The (i, j) /∈ Ω are the missing entries to be imputed.
Furthermore, we denote the temporal factor as an upper in-
dex associated with each matrix variable. For instance, M t

represents the matrix variable M at a given time stamp t.

3.1 Space Alignment
We denote the affinity matrix constructed from the CF space
as S ∈ Rn×n, where the (i, j) entry of S can be computed by
using pearson correlation or cosine distance. In the content
mapping, we want to learn a similarity sM (Ci, Cj) param-
eterized in a bi-linear form as sM (Ci, Cj) = CiM(Cj)T ,
which can be achieved by solving the following loss function:

min
M

n∑
i=1

n∑
j=1

‖Sij − sM (Ci, Cj)‖22 = min
M
‖S − CMCT ‖2F .

(1)
In order to control the complexity of model parameters, we
introduce a rank constraint to prevent from overfitting. It pro-
vides us the first content alignment algorithm:

min
M
‖S − CMCT ‖2F , s.t. rank(M) ≤ r, (2)

We note that as a special case, if the M is a positive semidef-
inite matrix, thus it can be decomposed by M = LLT .
In such a case, Ld×r can be seen as a projection from the
d−dimensional content space to a low-dimensional latent
space such that similarities obey the CF space. However, en-
forcing the positive semi-definiteness is not necessary. As we
will show later if the matrix S is positive semidefinite, then
the optimal M automatically becomes positive semidefinite.

The optimization problem in (2) can be solved iteratively
using projected gradient descent [Nesterov and Nesterov,
2004] or accelerated projected gradient descent. In each it-
eration, it involves a top-r hard thresholding on the singular
values of the matrix variable M . The gradient of equation (2)
is given by
∇M = −2CT (S − CMCT )C = 2CTCMCTC − 2CTSC,

(3)
where the components CTSC and CTC can be computed
ahead and stored. In the case of n � d, computing of gra-
dient is relatively cheap. Now we show that the proposed
formulation admits an analytical solution under certain con-
ditions, which is applicable in many recommendation scenar-
ios.

Lemma 3.1 Assume the content matrix C is in the form of
n � d, and it is full rank. Moreover, the similarity matrix S
is symmetric as S = ST . Denote the SVD decomposition of
C = UΣV T . Then, the optimal solution of equation (2) is
symmetric and in an analytical form as

M∗ = V QHr(Λ)QTV T ≡ V̂Hr(Λ)V̂ T , (4)

where Hr(·) is the top-r hard singular thresholding [Cai et
al., 2010]. AndQΛQT is the eigen-decomposition of the sym-
metric matrix Σ−1UTSUΣ−1.

Proof Since n � d and rank(C) = r, there exists a right
inverse of C denoted as C† ∈ Rd×n such that C†C = Id and
CT (C†)T = Id. Thus, the objective function in equation (2)
is equivalent to

min
M
‖C†S(C†)T −M‖2F s.t. rank(M) = r, (5)

which admits an analytic solution:

M∗ = Hr(C†S(C†)T ). (6)

We further apply the SVD on the right inverse of C and ob-
tain that C† = V Σ−1UT , where U ∈ Rn×d, V ∈ Rd×d.
Therefore we have

C†S(C†)T = V (Σ−1UTSUΣ−1)V T . (7)

It is easy to verify that Σ−1UTSUΣ−1 is a d × d real and
symmetric matrix, therefore its eigen-decomposition is pro-
vided as QΛQT . Thus, we conclude the proof.

The core computations to obtain the analytical solution in-
volves an economic SVD and an eigen-decomposition on a
n × d and d × d matrix respectively, which add up to a
O(d2(d + n)) complexity. Moreover, in the case C is not
full rank, it is always possible to perform principle compo-
nent analysis (PCA) to reduce the dimensionality to make the
content matrix C full rank. However, PCA imposes a Gaus-
sianized assumption on data distribution, which might lead to
a suboptimal solution.

Another approach to handle the problem of rank deficient
relies on the Moore-Penrose pseudo-inverse instead in the
above process. The rank of the optimal solutionM∗ is jointly
determined by rank(C) and r as min{rank(C), r}. There-
fore, if rank(C) ≤ r, there is no need to perform any trunca-
tion and the optimal solution is given by M∗ = C†S(C†)T .
While if rank(C) > r, Σ−1 is only conducted on the non-
zero diagonal entries. Equivalently,C† can be decomposed as
V ′Σ′−1U ′T , where V ′ ∈ Rd×rank(C) and U ∈ Rn×rank(C).
It is worth mentioning that, in such a case, perform the eigen-
decomposition on Σ′−1U ′TSU ′Σ′−1 and then apply trunca-
tion on the eigen-value gains significant computational ad-
vantage over directly using equation (6). The reason is that
instead of conducting SVD on a d × d matrix, the eigen-
decomposition allows us to work with r × r space. On a
separate note, from the analytical solution in (4), we can eas-
ily verify that M∗ is guaranteed to be a PSD matrix if S is
PSD.

After the content mapping M∗ is obtained, we are able
to use it to recommend the cold-start shows. For complete-
ness of the paper we briefly describe this procedure [Linden
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et al., 2003] as follows. Let P be the set containing in-
dices of shows broadcasted in the past, while F represents
the set of cold-start shows in the future time stamp. We gen-
erate the item-item similarity between shows in P and F as
sp,f = CpM∗(Cf )T , ∀p ∈ P, f ∈ F . Then, the imputation
of the future watching activity is given as

Xif =

∑
p∈Tipf (N)Xip · spf∑

p∈Tipf (N) spf
,∀ i ∈ {1, . . . ,m}, f ∈ F , (8)

where, Tipf (N) is the set that indicates the top-N most sim-
ilar items to the query f among all candidate items in Ωi· for
the particular user i. Ωi· is denoted as the subset of Ω with
user i fixed. Once the missing entries are imputed, we are
able to rank all TV shows in F for each user to perform top-k
recommendations.

3.2 Weighted Space Alignment
The model in equation (2) penalizes the difference between
the given CF similarity and transformed content similarity
at every pair of (i, j), ∀i, j ∈ {1, . . . , n}. However, the
Forbinius norm treats each pair of inputs equally important.
We generalize the equal weight assumption by introducing a
reliability matrix R ∈ Rn×n, where each (i, j) entry of R
represents the weight emphasis of the reconstruction. The
more weight appears in an entry of R, the more penalty is
obtained for the specific pair of inputs.

In general,R can be constructed from the prior information
by domain experts. However, in the field of recommenda-
tion, R is more commonly used to reflect the trustworthiness
of affinity computed from the CF space. A similar idea of
significance weighting factor [Herlocker et al., 1999] can be
adopted. Recall that CF similarity calculation makes use of a
pair of columns in the utility matrix. Two popular TV shows
may contains hundreds of thousands of co-ratings (supports),
while some are only based on a few. We weigh the similar-
ity computed from a large number of supports a high weight,
and vise versa. Therefore, the loss function of the proposed
method can be modified to reflect the trustworthiness in the
following manner.

min
M

n∑
j=1

n∑
i=1

Rij(Sij − CiM(Cj)T )2 = R ◦ ‖S − CMCT ‖2F .

(9)
where ◦ denotes the Hadamard product. and the gradient is
given by

∇M = −2CT
(
R ◦ (S − CMCT )

)
C

= 2CT (R ◦ CMCT )C − 2CT (R ◦ S)C.
(10)

There is no analytical form due to the Hadamard product.
However, the model can be solved using the projected gra-
dient descent [Nesterov and Nesterov, 2004].

3.3 Online Modeling for Temporal Dynamics
In the setting of the TV recommendation, the recommender
system constantly receives new watch information from the
users, and we would like to update the model to reflect the
latest information. This temporal dynamic setting imposes

challenges from the perspective of computation, as it is in-
feasible to re-train a model using all previous data when new
inputs are available. To solve this challenging problem, we
resort to online approaches. In contrast to offline approaches,
which assume all user watching information is provided up
front, online models assume that information is received one
piece at a time, and only utilize the newly available data to
update a previous model.

Specifically, we assume the content similarity func-
tion is parameterized as Mt at a given time stamp t.
The new-coming information is received as a quaternion
((Ci)t, (Cj)t, St

i,j , R
t
i,j). Given the model Mt, we would

like to update the model parameters based on the quaternion,
while on the other hand we want the model to be relatively
stable, i.e., the model should not change too much after ob-
serving the newly available supervision information. Based
on the two criterion, the model proposed in equation (9) can
be naturally extended as

Mt+1 = argminMRij(S
t
ij − (Ci)tM((Cj)t)T )2 + αD(Mt,M),

(11)
whereD(Mt,M) is a regularization function, and α is a con-
trol parameter to place an emphasis between the two criterion
we mentioned above. Note that in this online formulation
we have dropped the rank constraint from the offine model in
order to adapt to fast incoming online data. The overfitting
can be controlled by the regularization term, which requires
the solution M∗t+1 to be close to a low-rank solution we ob-
tained in the offline step, or a solution we obtained at the pre-
vious time stamp. Readers are referred to [Davis et al., 2007;
Jain et al., 2008; Shalev-Shwartz et al., 2004] for details of
the online learning.

4 Experiments
4.1 Experiment Settings
The data we report upon in this paper comes from the server
logs at Samsung where the data is anonymized and encrypted
for privacy reasons. We randomly select a subset of users
to prevent confidential disclosure over 15 consecutive days,
which contains 1,697,374 active users and 17,553 unique TV
shows. It is worth pointing out that the number of items in
our settings is much smaller compared to the e-commerce or
media recommendations. The observation is that typical users
watch less than 20 TV shows each day (93% users) while only
very few of users watch more than 40 shows (0.3% users).

To extract informative and discriminative content features,
we follows the strategy proposed by [Phan et al., 2008] by
utilizing 200 latent topics extracted from Wikipedia where
each topic is associated with 200 keywords. Based on these
latent topics, we present each TV show to a 200-dimensional
vector by using its title, description and genre (after tokeniz-
ing and stemming). In addition, we concatenate it with chan-
nel, program starting time and ending time as three additional
features. The final dimensionality of each TV program in the
content space is 203. We further normalize the content vector
to make the the `2-norm to one.

To evaluate the quality of the recommender systems, we
split these 15 days of data into eight folds, each contain-
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ing eight consecutive days of data. Then we use the first
seven days as the training set and the last day as a cold-start
testing set. By doing so, our settings will be the same to
the real world TV show recommendation scenario as recom-
mending the next day TV shows by using the data of the past
week. Furthermore, we report the recommendation perfor-
mance measured by the top-k mean average precision (MAP)
and recall (MAR) [Herlocker et al., 2004] framework and all
the reported results are averaged over eight folds.

4.2 MapReduce Implementation
In this section we discuss how the proposed SAR algo-
rithm handles recommendation tasks at large-scale using the
MapReduce framework.
Training Model: In training the offline model, the bottle-
neck of efficient learning is to calculate the pair-wise affinity
matrix from the utility matrix. Nevertheless, as the compu-
tation is independent for each pair of TV shows, it can be
efficiently computed in a parallel fashion. A detailed tutorial
on item-item similarity computing within the Hadoop frame-
work can be found in [Apache, ]. Once the similarity matrix S
is obtained, training the offline model only involves top SVD,
which can be readily solved by the Apache Mahout frame-
work [Apache, ].
Making Recommendations: Similar to the training stage,
the similarity between every pair (i, j) ∀i ∈ P, j ∈ F can
be calculated distributively by caching the model M∗ in ev-
ery reducer. The new generated similarity matrix between
past TV shows and cold-start programs can be again easily
adapted to the existing top-k recommendation settings within
Apache Mahout framework.

4.3 Parameter Study
Choice of Rank Constraint: Before proceeding to evaluate
the recommendation performance, we first inspect the qual-
ity of neighborhood reconstructions to validate our assump-
tion. Since the goal of the proposed algorithm is to learn a
good similarity measure from content features that is close
to the one from the CF space, the ideal performance can be
achieved when the program neighborhoods (the top-p most
similar items) computed from the content features can per-
fectly coincide with the ones computed from the user watch
history. Therefore, the assumption of the proposed SAR
method is validated by the percentage of neighborhood cov-
erage from the content space to the CF space. We use the
cosine similarity between each pair of content vectors in the
original content space as a baseline method to compare with,
and the result is shown in figure 3.

We compute the neighborhood coverage on the testing day
and vary the rank from five to 50 for the purposed method.
We note that SAR significantly improves the neighborhood
coverage. By setting the rank as 45 in equation (2), we are
able to achieve around 50% neighborhood overlap, while the
performance of the baseline is less than 10%.

Another observation is that the performance of neighbor-
hood reconstruction of the proposed methods continuously
improves as the rank ofM increases until the rank reaches 45
and start to drop after that. This is because the optimal solu-
tion of the SAR method starts to overfit the training data and
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Figure 3: Results on neighborhood reconstruction.

loses the generalization ability. Throughout this paper, we set
the rank of M in the range of 40-50.

Choice of Neighorhood Size: The proposed SAR method
is built upon the item-item CF approach, where the missing
value is imputed by a weighted average of a neighborhood
given by the similarity matrix. The size of the neighborhood
N is a parameter to be determined, which has significant im-
pact on the recommendation performance [Herlocker et al.,
1999; Sarwar et al., 2001]. We vary N from 5 to 100 and
present the performance in terms of top-k MAP and MAR for
different k values. The graph illustration is presented in fig-
ure 4. We see that for different k values, the best MAP and
MAR are achieved when the neighborhood size is range of
30-50. We use a neighborhood size N = 40 through all our
experiments.

4.4 Recommendation Performance

Related Methods: We compare the proposed algorithm with
other cold-start techniques. The detailed descriptions of the
other baseline methods are as follows:
• CMF [Forbes and Zhu, 2011]: Content-boosted Matrix

Factorization handles the cold-start problem by assuming
the latent item profile as projection of content features.

• A-NMF [Gantner et al., 2010]: Attribute-to-feature map-
ping based on the Non-negative Matrix Factorization (A-
NMF). It performs NMF [Lee and Seung, 2000] on the
training data to obtain user and item latent factors. A re-
gression model is trained from the content space to latent
item space to leverage cold-start recommendations.

• A-PMF [Gantner et al., 2010]: Similar to A-NMF, the only
difference is that A-PMF relies on the Probabilistic Ma-
trix Factorization (PMF) model [Salakhutdinov and Mnih,
2007] to obtain the latent factors.

The parameters of all competing methods are determined by
a 10% validation set separated from the training data.

Results: We compare the proposed SAR algorithm with other
state-of-the-art methods and report the expermiental results
in table 2. In the experiment, we vary top-k from 1 to 30 and
observe that the proposed SAR method significantly outper-
forms existing methods in terms of both precision and recall.
Among the other baselines, CMF achieves the best perfor-
mance followed by A-NMF and then A-PMF. One possible
reason for A-NMF and A-PMF obtaining the worst recom-
mendation performance is that matrix factorization based ap-
proaches predict the user likeness by both user and item la-
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Figure 4: The top k mean average precision (MAP@k) and recall (MAR@k) given different size of neighborhood N . At all k
values, the best performance is obtained using a neighborhood around size 40.
Table 2: Recommendation performance in terms of top-k
mean average precision (P) and recall (R). Both precision and
recall values are shown in percentage.

Top@N @1 @5 @10 @20 @30
A-PMF P 4.33 3.97 3.75 3.53 3.40

R 0.16 0.75 1.42 2.68 3.88
A-NMF P 4.61 4.08 3.85 3.59 3.47

R 0.17 0.79 1.45 2.73 3.91
CMF P 4.91 4.34 3.93 3.68 3.54

R 0.18 0.81 1.51 2.82 4.03
SAR P 5.89 5.30 4.84 4.39 4.12

R 0.22 1.01 1.84 3.38 4.70

tent factors. However, both A-NMF and A-PMF are two step
approaches that rely on a regression model conducted on pre-
factorized item factors only. It essentially overlooks the user
aspect of the rating prediction, which results in a poor perfor-
mance.

CMF handles the cold-start problem in an integrated frame-
work. However, comparing to the proposed SAR method at
top-1 precision, its performance is almost 1% lower. One
reason that the proposed SAR approach can outperform CMF
may be due to the model complexity. From the perspective
of the degree-of-freedom, the SAR method learns a mapping
matrix of size d × r given an input n × n similarity matrix.
While the CMF estimates a d×r mapping matrix as well as a
user profile matrix of size m × r from |Ω| number of inputs,
where |Ω| is the number of non-zero elements in the user-
item matrix X . Especially, in our experiment settings, we
have m = 1.69M, d = 203, n = 17, 553 and |Ω| = 83.6M.
Given both SAR and CMF set the rank of matrix as 50, SAR
estimates d · r = 10K parameters from n2 = 308K observa-
tions, while (d+m)r = 84.8M parameters have to be learned
in the CMF model from |Ω| = 83.6M inputs.

Temporal Dynamics: In this section we study the perfor-
mance of the online evolving model in the TV show recom-
mendation with temporal dynamics. We compare two recom-
mendation settings: the offline SAR model without evolving,
and SAR model with online evolving (SAR Evolve). In the
former setting, we select the data from the first seven days
to learn an offline content mapping parameter M , and use it
to recommend TV programs for the next eight consecutive
days. On the other hand, the evolving model makes use of
the output from the offline model trained by the first seven

Table 3: The recommendation performance of offline SAR
model and online SAR evolving model, in terms of top-1
mean average precision. The online model consistently out-
performs the offline model.

Top-1 MAP day 8 day 9 day 10 day 11
SAR 5.86 5.78 5.80 5.69

SAR Evolve 5.86 5.81 5.81 5.77
Top-1 MAP day 12 day 13 day 14 day 15

SAR 5.82 5.77 5.65 5.81
SAR Evolve 5.84 5.80 5.72 5.82

days as the initialization point. It updates the parameter M
before it proceed to recommend the TV shows for the next
day. For example, before the evolving model performs rec-
ommendation for day 9, we update the model using the 8th
day’s data in an online manner. In both settings we use the
weighted SAR model, where the weight value is given by the
number of supports (shared users) divided by a normalization
factor [Melville et al., 2002].

We present the experimental results for top-1 precision in
Table 3. We see that the online SAR evolving approach deliv-
ers consistently better performance than the offline approach.
However, we notice that the performances of both models are
not stable, i.e., at day 11 and day 14 the performances are
relatively lower than those at other days. This might relate to
the periodic repeat patterns of certain TV shows.

5 Conclusion
In this paper, we proposed a novel hybrid TV show recom-
mendation algorithm termed SAR , which incorporates both
collaborative user-item relationship as well as item content
features. SAR seeks a mapping from the content space to
the CF space so that the similarity between content features
is close to the one computed from the utility matrix. In ad-
dition, an online evolving model is proposed, which is not
only able to refine the model parameter from the rapid input
changes but also considers the trustworthiness of the neigh-
borhood relations. The intensive experimental results provide
strong evidence that the SAR method outperforms other state-
of-the-algorithms in the field TV recommendations.
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