






Algorithm 1 Ambiguity Resolution Algorithm

Input: Labeled manifolds {Mr, TMr
}Kr=1, unlabeled intersection area points X̃J , nearest neighbor parameter k .

1 : Set Xnew
J = X̃J .

while Xnew
J 6= ∅ do

2: Set i = 1, Xnew
J = X̃J , find X̂j∗ = min||Xi − X̂j ||2, Xi ∈Mi, X̂j ∈ X̃J .

3: Extract the sub-manifolds M̃r = {Xr ∈ knn(Xj∗) |Xr ∈Mr} for all r = 1...K

4: Estimate TM̃r
(X̂j∗) , for all r = 1...K.

5: Compute φr(X̂j∗) =
∑k

j=1 arccos(|〈n̂max
M̃rr

(Xj), n̂
max
M̃r

(X̂j∗)〉|), for all r = 1...K

6: Add X̂j∗ ∈Mj , s.t. φj(X̂j∗ =min
{
φr(X̂j∗), r = 1..K

}
.

7: Update: Xnew
J = Xnew

J \X̂j∗
8: Process steps (3-7) with i = i+ 1 if i < K, else i = 1 if i = K
end
Output: Labeled local intersections area points

{
X̂ji

}K

i=1
∈Mi, and their corresponding tangent spaces

{
TMi

(X̂ji)
}K

i=1
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Figure 3: Flow chart of the proposed Ambiguity Resolution
Algorithm

in the smooth parts. Note that in Figure 2 these two cases
coincide since λd + 1 equals the dimensionality of the ball
eigenvalue.

To estimate which points correspond to the local intersec-
tion area, we compute the standard deviation σ of the ball
eigenvalue λN which correspond to all points:

σ = (
1

n

n∑
i=1

(λN (Xi)− λ̄N )2)

1
2

(4)

where λN (Xi) correspond to the ball eigenvalue of point Xi

and λ̄N correspond to the mean of the ball eigenvalues. We
identify points Xi that belong to the local intersection area if
λN (Xi) > 2σ, and all such points are removed for further
processing, since their geometric structure information is not
reliable. Note also that this threshold is not critical, since
the transitions are sharp and distinctive, and only the local
intersection area points are characterized by high values of
the eigenvalue λN .

4.2 Global representation of the smooth manifolds
parts

The second stage is to infer the global structure of the smooth
manifolds parts, from which the intersections areas were re-
moved. The TVG (XC ,WC) is constructed for points corre-
sponding to the smooth manifold parts XC , (XC = X \ X̃J )
such that the local intersection area points X̃J are removed
from X . Finally spectral clustering is applied to the affinity
matrix WC to classify points to manifold labels.

4.3 Ambiguity Resolution
We elaborate on iterative algorithm that can be cast as a
semi-supervised learning algorithm that is incrementally
aggregating support from the labeled smooth manifolds
parts, to determine the labels and geometric structure of the
local intersection area. Based on the manifolds smoothness
properties, in the local intersection area the local tangent
space variation is smaller among pairwise points which
belong to the same manifold. A through theoretical analysis
of the sufficient smoothness conditions will be provided in a
forthcoming technical report.
Formally, our objective is to reconstruct the labels of the
decision set points X̃J and their corresponding tangent
spaces T (X̃J) such that manifold smoothness is maximized
in the local intersection area. This task can be performed
by minimizing the total variation of the tangent spaces. For
each point at the local intersection area, we estimate its local
tangent space independently by using each of the nearby
manifolds (which are known at this stage) and assign it to
the manifold for which the total tangent space variation was
minimal.
Algorithm Description We describe the algorithm for
reconstructing the decision set points (the flow chart of the
algorithm is illustrated in Figure 3).
Let XC , be the labeled manifolds data , and let {TMi

(XC)}
be their corresponding tangent spaces. GC = (XC ,WC)
is the Tensor Voting Graph, with WC corresponding to
the affinity matrix between the labeled manifolds. X̃J is
the set of unlabeled points which correspond to the local









Data/Method SMMC TVG + Ambiguity resolution

CMU MoCap 87.06% 96.01%

Table 5: Classification results of human activities on Motion
Capture data

6 Discussion and Future Work
We have presented a novel method for unsupervised clus-
tering of intersecting multi-manifolds. Our framework ex-
tends previous research by explicitly addressing and resolv-
ing the ambiguities near the intersections, in convoluted ge-
ometric situations such as when the principal angle between
the tangent spaces at the intersection is small, and also in the
presence of large amount of outliers. Experimental results
demonstrate that our method performs clustering with high
accuracy in all of these situations, and significantly outper-
forms the state of the art. The main limitation of the current
framework is robustness to inlier noise, where the method
may fail is the presence of large amounts of noise in the inter-
section area itself. Future work includes testing our approach
on additional applications such as molecular structure analy-
sis in biology [W.Brown, 2008], using our model for offline
training in multivariate time series for human motion [Gong
and Medioni, 2011], and extending our framework to handle
inlier noise in high dimensional spaces.
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