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Abstract
Solving multi-manifolds clustering problems that
include delineating and resolving multiple intersec-
tions is a very challenging problem. In this paper
we propose a novel procedure for clustering inter-
secting multi-manifolds and delineating junctions
in high dimensional spaces. We propose to explic-
itly and directly resolve ambiguities near the in-
tersections by using 2 properties: One is the po-
sition of the data points in the vicinity of the de-
tected intersection; the other is the reliable estima-
tion of the tangent spaces away from the intersec-
tions. We experiment with our method on a wide
range of geometrically complex settings of convo-
luted intersecting manifolds, on which we demon-
strate higher clustering performance than the state
of the art. This includes tackling challenging geo-
metric structures such as when the tangent spaces
at the intersections points are not orthogonal.

1 Introduction
Resolving intersections in high dimensional spaces is essen-
tial in multi-manifold clustering problems that arise in many
applications, such as motion segmentation in computer vision
[Elhamifar and Vidal, 2009]. Recently, a number of multi-
manifold clustering algorithms were proposed, in which a
multi-way affinity measure between data points was sug-
gested to capture complex structure in the data. Typically,
such methods [Wang et al., 2011] [Gong et al., 2012] [Gold-
berg et al., 2009], [E.Arias-Castro and Zhang, 2013] con-
struct affinity which is based on local tangent space distance,
in addition to their Euclidean distance. However, despite im-
portant progress made by this research, they only provide sat-
isfactory results when the angle between the tangent planes
is large (typically > π/4). Moreover, recent work shows
that even though relatively few points may be located near
the intersections, their contribution to the global structure can
be very disruptive to the global manifold structure estima-
tion [Belkin et al., 2012]. Our framework to handle intersect-
ing manifolds or manifolds with singularities is different from
previous research in clustering multi-manifolds [Wang et al.,
2011] [Gong et al., 2012] [Goldberg et al., 2009], [E.Arias-
Castro and Zhang, 2013], as we explicitly and directly resolve
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Figure 1: Flow chart of the proposed method

the ambiguities near the intersections. In particular, we ar-
gue that the position of the points on the manifolds near the
intersections contain valuable information that is necessary
to achieve high-performance clustering. To resolve complex
geometric structures, we suggest decomposing the problem
into three main stages (see Figure 1 for an illustration of our
overall approach): Given a set of unlabeled points with un-
known geometric structure, we first employ a data driven ap-
proach, Tensor Voting [Mordohai and Medioni, 2006] - which
uses the direct communication between data points to inform
whether such intersections occurred, and, most importantly,
provide a reliable estimation of the local support of the in-
tersections. Using the smooth manifolds parts, we construct
a graph in which the affinities between the data points are
based on a local tangent space distance. The smooth mani-
fold parts are then extracted using Spectral Clustering. The
next stage performs ambiguity resolution algorithm in the lo-
cal singularity area, using the classified smooth manifolds and
the positions of the points near the singularities.

We show the advantage of our explicit and direct approach
in resolving manifolds intersections for a wide range of com-
plex geometric settings, which outperforms the state of the
art methods in multi-manifold clustering. We summarize our
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contributions:

• A general approach to the intersecting multi-manifold
clustering problem: although the local intersection area
constitute a small part of the manifolds, we show that
it contain critical information which is necessary to
achieve good clustering performance.

• Handling large amounts of outliers: our suggested
method can perform with high accuracy even in the pres-
ence of large amounts of outliers.

• Validation on complex dataset: we demonstrate that by
using designed tools and algorithms to learn both the lo-
cal and global structures of the manifolds, higher clus-
tering performance result can be achieved, even when
the tangent spaces at the intersections points are not or-
thogonal.

The paper is organized as follows: Section 2 provides
an overview of previous work in multi-manifold clustering
methods. Section 3 includes a brief introduction to Tensor
Voting [Mordohai and Medioni, 2006] and the Tensor Voting
Graph(TVG) [Deutsch and Medioni, 2015], which serves as
core tools in our framework. Section 4 details the proposed
approach which consist of two steps, intersection delineation,
and ambiguity resolution, as illustrated in Figure 1. Section
5 demonstrates the experimental results of our method and
compares it to the state of the art algorithms in clustering
intersecting multi-manifolds. Section 6 concludes the paper
and proposes future work.

2 Related work
The multi-manifold case addresses a general setting where
the clusters are low dimensional manifolds that may intersect
or overlap. Many situations exist where the data is formed by
a number of manifolds. The complexity of the multi-manifold
class of distributions is ruled by the minimum of the mani-
fold curvatures, branch separations, and the overlap between
distinct manifolds [Goldberg et al., 2009]. Early methods in
multi-manifold clustering such as [Zelnik-manor and Perona,
2004] assumed that the manifolds are well separated. Gen-
eralized PCA [Vidal et al., 2003] and Sparse Subspace Clus-
tering [Elhamifar and Vidal, 2009] were suggested to address
clustering of intersecting linear multi-manifolds. Recently, a
number of methods were suggested to address the challenging
problem of non-linear intersecting multi-manifolds. [Gold-
berg et al., 2009] developed a spectral clustering method
within a semi-supervised learning framework. As a com-
plementary approach, Robust Multiple Manifold Structure
Learning [Gong et al., 2012], Spectral clustering on multi-
ple manifolds [Wang et al., 2011] and Spectral Clustering us-
ing local PCA [E.Arias-Castro and Zhang, 2013] are unsuper-
vised learning methods which propose similar approaches for
clustering intersecting manifolds. Spectral Clustering using
local PCA also provides a deep and elegant theoretical anal-
ysis for multi-manifold learning in the context of resolving
intersections. Note however that the algorithms suggested in
[Goldberg et al., 2009] use a coarsening step, which can hin-
der a careful treatment of the intersections. The Tensor Voting
Graph (TVG) [Deutsch and Medioni, 2015], was suggested to

address the limitation of the local Tensor Voting method and
can perform global operations such as estimating geodesic
distance or clustering on single or multi-manifolds which are
intersecting. However, similar to other multi-manifold learn-
ing algorithms, the TVG does not address intersections ex-
plicitly.

3 Tools for Geometric Structure Estimation
Estimation of the local geometric structure, which includes
the local tangent space estimation and the identification of
the local intersection area can be performed using local PCA
[Zhang and Zha, 2005] or Tensor Voting. We have evaluated
both Tensor Voting and Local PCA on a number of synthetic
datasets, and found that the local tangent space estimation ac-
curacy was higher using Tensor Voting than local PCA. Thus
we use Tensor Voting to estimate the local geometric struc-
ture. In the following section we provide a brief introduc-
tion to Tensor Voting and the Tensor Voting Graph [Deutsch
and Medioni, 2015], which provides an efficient tool to learn
the global geometric structure. We refer to [Mordohai and
Medioni, 2010],[Mordohai and Medioni, 2006],[Mordohai
and Medioni, 2005] for a detailed treatment on Tensor Vot-
ing.

3.1 Tensor Voting
The Tensor Voting methodology consists of three important
aspects [Mordohai and Medioni, 2010]:
1.Tensor for representation: each point is encoded as a sec-
ond order, positive semi definite symmetric tensor, which is
equivalent to an N × N matrix, and an ellipsoid in N-D
space. In the Tensor Voting framework, a tensor represents
the structure of a manifold going through the point by encod-
ing the normals to the manifold as eigenvectors of the tensor
that correspond to non-zero eigenvalues, and the tangents as
eigenvectors that correspond to zero eigenvalues. The tensors
can be formed by the summation of the direct products of the
eigenvectors that span the normal space of the manifold. The
tensor T at a point on a manifold of dimensionality d and
with n̂i corresponding to the unit vectors that span the nor-
mal space is expressed as T =

∑d
i=1 n̂in̂i

t.
2. Voting for communication: The core of the Tensor Voting
framework is the way information is propagated from point to
point. Given a tensor at O and a tensor at P, the vote the point
at O (the voter) casts to P (the receiver) has the orientation the
receiver would have, if both the voter and receiver belong to
the same structure. The stick tensor voting is the fundamental
voting element from which all other voting types and voting
in higher dimensions can be derived. The following equation
defines the stick tensor voting:

Svote = DF (s, k, σ)

[
−sin(2θ)
cos(2θ)

]
[−sin(2θ) cos(2θ)]

(1)

DF (s, k, σ) = e−
s2+ck2

σ2

θ = arcsin(
~vê1
‖~v‖

), s =
θ||~v||
‖sinθ‖

, κ =
‖2sinθ‖
||~v||

In the above equation, s is the length of the arc between the
voter and receiver (OP), ~v is the vector connecting O and P, ei
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is the normal vector at the voter, κ is its curvature which can
be computed from the radius of the osculating circle, σ is the
scale of voting, which controls the degree of decay with cur-
vature, and c is a constant defined in [Mordohai and Medioni,
2010]. The magnitude of the vote is a function of proxim-
ity and smooth continuation, and is called the saliency decay
function. No votes are cast if the receiver is at an angle larger
than 45◦ with respect to the tangent of the osculating circle at
the voter, in order to limit votes that are due to high curvature
or from unrelated points.

3. Voting analysis: given an N × N second order, sym-
metric, non-negative definite matrix, the type of structure en-
coded in it can be inferred by examining its eigensystem. Any
such tensor can be decomposed as in the following equation:

T =
∑

λiêiêi
t = (λ1 − λ2)ê1ê1

t+

+(λ2 − λ3)(ê1ê1
t + ê2ê2

t) + . . .

λN (ê1ê1
t + ê2ê2

t + ...êN êN
t)

where λi are the eigenvalues in descending order of magni-
tude and ei are the corresponding eigenvectors. Based on the
tensor spectral decomposition, the normal and tangent spaces,
structure type, dimensionality and outliers are derived. The
term (ê1ê1

t + ê2ê2
t + ...êN êN

t) is called the ball component
and is typically used to identify intersection areas, which cor-
respond to peaks of the eigenvalue λN .
The main limitation of the Tensor Voting framework is that
it is a strictly local method, and performing global opera-
tions such as estimating geodesic distances and clustering
are not reliable. For example, to estimate geodesics dis-
tances on manifolds, previous methods using TV resort to
an iterative, non-linear interpolation methods [Mordohai and
Medioni, 2010] that marches on the manifold by projecting
the desired direction from the starting point. As pointed out in
[Mordohai and Medioni, 2010], this process is very slow and
unreliable, and also diverges in configurations where points
on the path are in deep concavities.

3.2 The Tensor Voting Graph (TVG)
The TVG [Deutsch and Medioni, 2015] employs a graph con-
struction in which the affinity between points on the graph
corresponds to the contribution that was made to the tangent
space point estimation by the neighboring points that partic-
ipated in the voting process. Thus in TVG the affinity be-
tween two points Xi and Xj summarizes the contribution
made to the normal space estimation of Xi by the votes emit-
ted from Xj at Xi using Tensor Voting. Formally, given the
normal space of Xi, N(Xi) = {n̂1, ..n̂d} and the subspace
Ñj(Xi) =

{
ˆ̃n1, .. ˆ̃nd

}
representing the vectors votes emitted

from Xj at Xi ; the affinity value wij between Xi and Xj is
given by:

wij =

{
|〈n̂max, ˆ̃nmax〉|, if arccos |〈n̂max, ˆ̃nmax〉| < 45◦

0, else
(2)

Where Xj is in knn(Xi) - the k nearest neighbors of Xi,
and n̂max, ˆ̃nmax are the vectors corresponding to the maxi-
mal principal angle between the subspaces, N(Xi), Ñj(Xi),
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Figure 2: The graph of the ball eigenvalue λN (shown on the
right hand side), as a function of the positions of the points
which correspond to two intersecting circles(shown on the
left hand side)

respectively. We note that thanks to the duality between the
tangent and normal spaces, we can use the angle between nor-
mal spaces and tangent spaces interchangeably. From now on
we shall use the term angle between tangent spaces since it
is more intuitive and commonly used in the literature. Simi-
lar to other multi-manifold learning algorithms, the TVG does
not address intersections explicitly, and therefore suffers from
similar shortcomings - the failure to handle manifolds inter-
secting at small principal angles, and distortion around the
local intersection area, which we now address.

4 Intersecting Manifolds
We suggest a process that directly untangles the ambiguities
in the local intersection area by aggregating support from the
smooth manifolds parts. Our framework has three main pro-
cessing steps, which we detail in the following sections:

4.1 Intersection Delineation
The first step in our process is to estimate the dimensionality,
tangent space and normal space at every point using Tensor
Voting. Given a set of unlabeled points, X = {Xi}ni=1 , Xi ∈
RN, which are lying on K smooth intersecting manifolds
M1, ..MK . Let XJ = {Xj ∈Mi ∩Mj , |Mi ∩Mj 6= ∅} de-
note the set of intersection points. The set of points which
correspond to the manifolds intersections support will be re-
ferred as the decision set points, and are defined as

X̃J = {Xj ∈ knn(Xi)|Xi ∈ XJ} (3)

To delineate intersections and their local support, we ana-
lyze the Tensor at each point Xi. Votes are inconsistent only
in the area of intersection, which is characterized by sharp
transitions of eigenvalues in non-smooth parts; There are two
alternatives to identify the local intersection area. Eigenvalue
λN is adequate to identify local intersections area in any la-
tent dimension, since normal votes are received in the local
intersection area at different angles and directions from points
lying on a different manifold (see Figure 2 for illustration of
the ball component eigenvalue as a function of the position
of the two intersecting circles). The second alternative is to
use the eigenvalue λd + 1, where d correspond to the nor-
mal dimension of the manifold, to identify the local intersec-
tion area. In the smooth parts, the eigenvalue λd + 1 is very
small, while in the local intersection area the dimensionality
of the normal space is increased by 1 and hence the corre-
sponding eigenvalue λd + 1 will be significantly larger than
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Algorithm 1 Ambiguity Resolution Algorithm

Input: Labeled manifolds {Mr, TMr
}Kr=1, unlabeled intersection area points X̃J , nearest neighbor parameter k .

1 : Set Xnew
J = X̃J .

while Xnew
J 6= ∅ do

2: Set i = 1, Xnew
J = X̃J , find X̂j∗ = min||Xi − X̂j ||2, Xi ∈Mi, X̂j ∈ X̃J .

3: Extract the sub-manifolds M̃r = {Xr ∈ knn(Xj∗) |Xr ∈Mr} for all r = 1...K

4: Estimate TM̃r
(X̂j∗) , for all r = 1...K.

5: Compute φr(X̂j∗) =
∑k

j=1 arccos(|〈n̂max
M̃rr

(Xj), n̂
max
M̃r

(X̂j∗)〉|), for all r = 1...K

6: Add X̂j∗ ∈Mj , s.t. φj(X̂j∗ =min
{
φr(X̂j∗), r = 1..K

}
.

7: Update: Xnew
J = Xnew

J \X̂j∗
8: Process steps (3-7) with i = i+ 1 if i < K, else i = 1 if i = K
end
Output: Labeled local intersections area points

{
X̂ji

}K

i=1
∈Mi, and their corresponding tangent spaces

{
TMi

(X̂ji)
}K

i=1

Input:	  	  	  
Labeled	  Manifold,	  

	  Unlabeled	  intersec7on	  
area	  

	  
While	  local	  intersec7on	  
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Empty	  	  
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classified	  points	  	  
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Figure 3: Flow chart of the proposed Ambiguity Resolution
Algorithm

in the smooth parts. Note that in Figure 2 these two cases
coincide since λd + 1 equals the dimensionality of the ball
eigenvalue.

To estimate which points correspond to the local intersec-
tion area, we compute the standard deviation σ of the ball
eigenvalue λN which correspond to all points:

σ = (
1

n

n∑
i=1

(λN (Xi)− λ̄N )2)

1
2

(4)

where λN (Xi) correspond to the ball eigenvalue of point Xi

and λ̄N correspond to the mean of the ball eigenvalues. We
identify points Xi that belong to the local intersection area if
λN (Xi) > 2σ, and all such points are removed for further
processing, since their geometric structure information is not
reliable. Note also that this threshold is not critical, since
the transitions are sharp and distinctive, and only the local
intersection area points are characterized by high values of
the eigenvalue λN .

4.2 Global representation of the smooth manifolds
parts

The second stage is to infer the global structure of the smooth
manifolds parts, from which the intersections areas were re-
moved. The TVG (XC ,WC) is constructed for points corre-
sponding to the smooth manifold parts XC , (XC = X \ X̃J )
such that the local intersection area points X̃J are removed
from X . Finally spectral clustering is applied to the affinity
matrix WC to classify points to manifold labels.

4.3 Ambiguity Resolution
We elaborate on iterative algorithm that can be cast as a
semi-supervised learning algorithm that is incrementally
aggregating support from the labeled smooth manifolds
parts, to determine the labels and geometric structure of the
local intersection area. Based on the manifolds smoothness
properties, in the local intersection area the local tangent
space variation is smaller among pairwise points which
belong to the same manifold. A through theoretical analysis
of the sufficient smoothness conditions will be provided in a
forthcoming technical report.
Formally, our objective is to reconstruct the labels of the
decision set points X̃J and their corresponding tangent
spaces T (X̃J) such that manifold smoothness is maximized
in the local intersection area. This task can be performed
by minimizing the total variation of the tangent spaces. For
each point at the local intersection area, we estimate its local
tangent space independently by using each of the nearby
manifolds (which are known at this stage) and assign it to
the manifold for which the total tangent space variation was
minimal.
Algorithm Description We describe the algorithm for
reconstructing the decision set points (the flow chart of the
algorithm is illustrated in Figure 3).
Let XC , be the labeled manifolds data , and let {TMi

(XC)}
be their corresponding tangent spaces. GC = (XC ,WC)
is the Tensor Voting Graph, with WC corresponding to
the affinity matrix between the labeled manifolds. X̃J is
the set of unlabeled points which correspond to the local



intersection area. GC = (XC ,WC) together with the
positions of the local intersection area X̃J serve as an input
to the ambiguity resolution algorithm. The goal is to find
the true labels of the points in the local intersection area,
and obtain a reliable estimation of their tangent spaces. We
begin with selecting a point X∗ from the local intersection
area which is the nearest neighbor to one of the manifolds:
X∗ = min||XC − X̂j ||2, X̂j ∈ X̂J , and compute its tangent
spaces TM1

(X∗), TM2
(X∗), ...TMK

(X∗) induced by its
k nearest neighbors in each one of the manifolds
M1,M2, ..MK . We then classify X∗ to belong to the
manifold M∗ for which the tangent space variation
φ(X∗) =

∑k
j=1 arccos(|〈n̂max

M∗ (Xj), n̂
max
M∗ (X̂∗)〉|) was

minimal. We add X∗ and TM∗(X∗) to the correspond-
ing manifold M∗ and remove X∗ from the decision set
X̃new

J = X̃J \ X∗. In a similar way we process all the
remaining decision set points X̃new

J until the procedure is
exhausted. The output is the labels of the entire decision set
points and their corresponding tangent spaces.
In the suggested greedy algorithm, computational complexity
amounts to estimating the tangent space using Tensor Voting
for all the local intersection area points, which requires only
O(jNklogk), where N is the dimension of the ambient
space , k corresponds to the number of k nearest neighbors,
and j is the number of local intersection area points, which
typically constitutes a small portion of the total number of
points n. Also note that the complexity is O(Nnlogn) for
the Tensor Voting computation [Mordohai and Medioni,
2010] and O(n2N2d) for computing the affinity between
the local tangent spaces, where d corresponds to the normal
space dimensionality.

5 Experimental Results
We experimented with synthetic and real data sets of vari-
ous challenging geometric configurations, such as when the
maximal principal angle between the tangent spaces at the in-
tersections points is smaller than 40 degrees.

5.1 Experimental Results without outliers
For comparison and evaluation with the state of the art, we
experimented with the following datasets: (1) two circles in-
tersecting at 18 degrees, (2) two planes intersecting at 40 de-
grees, (3) two Mobius bands, (4) two intersecting spheres,
and (5) a Swiss roll intersecting with a plane. The mani-
folds were uniformly sampled with n=1000 points for each
plane, circle and spheres, n=2000 points for the Mobius
bands, n=2000 points for the Swiss roll. Each simulation
was repeated 10 times. We also compared our method to
state of the art algorithms in clustering multiple manifolds,
Spectral clustering on multiple manifolds (SMMC) [Wang et
al., 2011], and SSC [Elhamifar and Vidal, 2009], which is a
state of the art method in clustering linear intersecting man-
ifolds, For the choice of parameters we tested the k near-
est neighborhood size k ∈ {10, 20, 30, 40, 50, 60, 70, 80}.
For the second parameter in SMMC and SSC we tested in
{10, 20, 30, 40, 50, 60, 70, 80} and {0.001, 0.001, 0.1, 1}, re-
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Figure 4: Manifolds dataset used in table 2

spectively.The results are reported for the best choice of pa-
rameters for each method.

Note that Sparse Subspace Clustering [Elhamifar and Vi-
dal, 2009] was only compared to the case of the intersecting
planes since it is only adequate to handle linear manifolds. In
our method, we chose a scale σ such that the average number
of votes from each point in the Tensor Voting iteration equals
to n/20, and the number of k nearest neighbors on the Ten-
sor Voting was tested in {n/40, n/40 + 5, n/40 + 10}. We
report the classification accuracy percent in each dataset both
for the set of points which correspond to the area near the in-
tersection in addition to the rest of the points. Note that the
most relevant statistics is the clustering accuracy in the area
near the intersections. The comparison results in table 1 show
that our method consistently outperforms the state of the art
both near the intersection areas and in the smooth areas, and
in particular for the challenging geometric setting where the
principal angle at the intersection point is smaller than π/8
(such as in the case of the intersecting planes or two circles).

Finally, we highlight both quantitative and qualitative dif-
ferences between TVG and our new approach. Table 4 shows
the tangent space average angular error for two intersecting
planes and the two circles using Tensor Voting and the new
proposed method. Even though the average error obtained
using the standard TV seems relatively marginal, the clus-
tering performance using TVG deteriorates (which is also the
case for all the other existing methods) as the principal angles
becomes smaller. Using the new approach, the error of the
tangent space is reduced and the clustering results are signifi-
cantly improved . We also note that the choice of parameters
is not critical, and is robust against a wide range of param-
eter selection for the k nearest neighbors on the graph and
the scale of Tensor Voting. However, truly automatic param-
eter selection remains an open problem for future research,
which is also the case in all existing intersecting manifolds
algorithms [Goldberg et al., 2009] and [E.Arias-Castro and
Zhang, 2013].
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Dataset / Method SSC[Elhamifar and Vidal, 2009] SMMC[Wang et al., 2011] TVG+Ambiguity Resolution
outside Intersection outside Intersection outside Intersection

intersection area intersection area intersection area
area area area

Two circles - - 69.47% 59.09% 100% 99.22%
Two Mobius bands - - 95.14% 75.3% 99.98% 98.44%

Two spheres - - 96.79% 80.33% 100% 98.58%
Two planes 71% 59.58% 72.22% 59.58% 99.9% 96.07%

Swiss Roll and a plane - - 96.5% 95.57% 99.95% 95.9%

Table 1: comparison with state of the art

Dataset / Method SMMC [Wang et al., 2011] TVG + Ambiguity Resolution
outside intersection area Intersection area outside intersection area Intersection area

Two circles 65.91% 59.72% 99.75% 94.5%
Two Mobius bands 87.09% 62.31% 99.94% 98.09 %

Two spheres 54.9% 53.9% 99.61% 90.05 %
Two planes 60% 58% 94.16% 99.94 %

Swiss Roll and a planes 59.03% 52.37% 98.34% 97.29 %
Table 2: Comparison results in the presence of outliers

Dataset / Method Spectral Clustering TVG + Ambiguity Resolution
in high dimensional space on multiple manifolds [Wang et al., 2011]

outside intersection Intersection outside intersection Intersection
area area area area

2D Sphere embedded in 50D 95.56% 94.04% 97.64% 99.3%
3D Hyper Sphere embedded in 50D 85.5% 62.16% 98.71% 94.2%

Table 3: Manifolds in high dimensional space
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Figure 6: Evaluation on challenging dataset of manifolds with small maximal principal angle reveal the degradation in perfor-
mance of both linear and non-linear multi-manifold clustering methods
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(c)	  
	  

(d)	  
	  Figure 5: Figures of manifolds with outliers used in the exper-

iments :(a) Intersecting Mobius bands (b) Intersecting Swiss
Roll with a plane (c) Intersecting Spheres (d) Intersecting
planes

5.2 Experiments with outliers
We also apply our method in the presence of a large amount
of outliers. Robustness to outlier noise is a critical issue in
manifold clustering and current methods are very sensitive in
their presence. This shortcoming was pointed out in previous
works [Wang et al., 2011], [Gong et al., 2012] as a challeng-
ing open problem and was partially addressed in [Gong et
al., 2012], however using only a number of outliers which
is 10% of the number of inliers. The Tensor Voting frame-
work, on the other hand, is robust to outliers and since it
serves as an integral part of our method, removing the out-
liers by examining the eigenvalues of the Tensors obtained
after the first TV iteration is straightforward to incorporate in
our scheme. We experiment our method with outlier noise us-
ing the same intersecting manifolds experimented in the pre-
vious section. The two circles, Mobius bands, spheres, two
planes and Swiss roll intersecting with a plane manifolds are
contaminated with 1000 and 2000, 1500, 1500, and 1500 out-
liers, respectively. To remove outliers, the eigenvalues which
correspond to the eigenvalue λ1 of the tensor at each point are
sorted. We remove the points which correspond to the small-
est sorted eigenvalues. The experimental results, shown in
table 2 demonstrate that our method is robust against outliers
while it severely affects the results of the other methods.

5.3 Experiments with manifolds embedded in high
dimensional spaces

We also apply our method on manifolds which reside in a
high dimensional space for two cases including 1) intersect-
ing spheres corresponding to 2D manifolds and 2) intersect-
ing hyper spheres corresponding to 3D manifolds. In each
case, these manifolds were generated using uniform sampling
with 2,000 samples for each manifold in 3D and 4D, which
were then embedded in 50-D by using a random orthonormal
matrix. Experimental results demonstrated in table 3, show

that our method remains robust when applied in the high di-
mensional space, both in the area near the intersections and
in the smooth parts.

5.4 Experiments with Real Data sets

For experiments with real data-sets, we tested our method on
the problems of human action classification and two view mo-
tion segmentation problems.
Motion Capture using the CMU Motion capture data set
Classification of human motion sequences as a prepossess-
ing step is important for many tasks in video annotation. The
CMU motion capture data-set is a popular and widely used
real data set for motion capture. In order to perform eval-
uation in a strictly unsupervised framework, we remove the
temporal information from the data, thus the data provided
correspond to static information. In this case, the problem
can be considered as clustering multiple manifolds with edge
singularity type, which correspond to abrupt change due to a
transition of a human action to a different motion activity.

We choose five mixed sequences from subject 86, which
includes mixed activities such as walking, turning around,
sitting, running, jumping, squats, and stretching. We extract
approximately 500 frames per each sequence since it corre-
spond to two or three distinct motion activities. Each point
correspond to a human pose, which is represented by 62 di-
mensional feature vector. The experimental results compar-
isons in table 5 show that our method outperforms the state of
the art. The errors obtained using our framework correspond
to the frames which occur during transitions between differ-
ent motion activities, which are difficult also for humans to
evaluate.
Motion segmentation using 155 motion segmentation
benchmark Next we show evaluation on the problem of mo-
tion segmentation from two-views, using the 155 motion seg-
mentation data-set benchmark, which is a well known data-
set for motion segmentation. Trajectory based motion seg-
mentation is a classic and fundamental problem in computer
vision which is important for understanding dynamic scenes.
We evaluate our method on two image sequences with per-
spective effects [Li et al., 2013], and compare them to SSC
[Elhamifar and Vidal, 2009], which showed state of the art
results in the case of motion segmentation based on feature
trajectory. The problem of segmenting motions using only
2-views is a challenging task since the feature trajectories lie
on quadratic surfaces of dimension at most 3 in R4 [Arias-
Castro, 2011] which may be overlapping or intersecting. Ap-
plying our method for motion segmentation achieves an av-
erage classification error of 10.8% outperforming SSC which
obtained 20.43% classification error.

Method/sequence two circles two planes
Tensor Voting 0.4% 1.8%
New Method 0.01% 0.17%

Table 4: Tangent space average angular error results for the
two intersecting planes and intersecting circles data(Figure 6)
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Data/Method SMMC TVG + Ambiguity resolution

CMU MoCap 87.06% 96.01%

Table 5: Classification results of human activities on Motion
Capture data

6 Discussion and Future Work
We have presented a novel method for unsupervised clus-
tering of intersecting multi-manifolds. Our framework ex-
tends previous research by explicitly addressing and resolv-
ing the ambiguities near the intersections, in convoluted ge-
ometric situations such as when the principal angle between
the tangent spaces at the intersection is small, and also in the
presence of large amount of outliers. Experimental results
demonstrate that our method performs clustering with high
accuracy in all of these situations, and significantly outper-
forms the state of the art. The main limitation of the current
framework is robustness to inlier noise, where the method
may fail is the presence of large amounts of noise in the inter-
section area itself. Future work includes testing our approach
on additional applications such as molecular structure analy-
sis in biology [W.Brown, 2008], using our model for offline
training in multivariate time series for human motion [Gong
and Medioni, 2011], and extending our framework to handle
inlier noise in high dimensional spaces.
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