
Online Robust Low Rank Matrix Recovery

Xiaojie Guo
State Key Laboratory of Information Security

Institute of Information Engineering, Chinese Academy of Sciences
xj.max.guo@gmail.com

Abstract
Low rank matrix recovery has shown its importance
as a theoretic foundation in many areas of informa-
tion processing. Its solutions are usually obtained
in batch mode that requires to load all the data into
memory during processing, and thus are hardly ap-
plicable on large scale data. Moreover, a fraction
of data may be severely contaminated by outliers,
which makes accurate recovery significantly more
challenging. This paper proposes a novel online ro-
bust low rank matrix recovery method to address
these difficulties. In particular, we first introduce an
online algorithm to solve the problem of low rank
matrix completion. Then we move on to low rank
matrix recovery from observations with intensive
outliers. The outlier support is robustly estimated
from a perspective of mixture model. Experiments
on both synthetic and real data are conducted to
demonstrate the efficacy of our method and show
its superior performance over the state-of-the-arts.

1 Introduction
Low Rank Matrix Recovery (LRMR) aims to seek a low-
dimensional subspace from given data such that the resid-
ual between the given and the recovery is minimized with
respect to some optimality criterion [Recht et al., 2010;
Chandrasekaran et al., 2011]. Its benefit, besides being a stan-
dard tool for dimensionality reduction, has been witnessed by
a wide spectrum of low level signal processing applications,
such as image denosing [Gu et al., 2014], colorization [Wang
and Zhang, 2012], reflection separation [Guo et al., 2014a]
and rectification [Zhang et al., 2012], as well as higher level
tasks, like collaborative filtering [Jamali and Ester, 2011;
Park et al., 2013; Shi et al., 2013; Chen et al., 2014], visual
salience detection [Shen and Wu, 2012], video editing [Guo
et al., 2013] and dictionary learning [Mairal et al., 2010].

The quality of LRMR largely depends on the choice of
optimality criteria for different tasks. Principle Component
Analysis (PCA) [Pearson, 1901] adopts the `2 loss (also
known as the squared loss) by assuming that the residual ex-
isting in the observation follows a Gaussian distribution. Al-
though the `2 is arguably the most commonly used loss, its
performance may sharply degenerate when dealing with data

polluted by outliers, which is frequently encountered in real-
world applications. To be robust against outliers, the `0 loss
is the ideal option. Unfortunately, the non-convexity, non-
smoothness and difficulty of being approximated (NP-hard)
make the `0 unsuitable for practical use. Alternatively, its
tightest convex surrogate, the `1, is employed to achieve the
robustness, which corresponds to the least absolute deviations
technique and is actually optimal for Laplacian noises. In this
way, Candès et al. proved that their proposed method, namely
PCP [Candès et al., 2011], can exactly recover the underling
low rank matrix from the observation even with the fraction
of outlier up to about 1

3 under some conditions. In parallel,
there are a few works carried out from probabilistic stand-
points. Probabilistic Matrix Factorization (PMF) [Salakhut-
dinov and Mnih, 2008] and Probabilistic Robust Matrix Fac-
torization (PRMF) [Wang et al., 2012] are two representa-
tives, the residual penalties of which are equivalent to using
the `2 (PCA) and `1 (PCP), respectively. Although the tech-
niques above have made great progresses in LRMR, the tol-
erance to outliers is expected to be further improved.

Another issue should be concerned is the applicability to
large-scale data. Conventional solvers of LRMR, like PCA
[Pearson, 1901], PCP [Candès et al., 2011], PMF [Salakhut-
dinov and Mnih, 2008] and PRMF [Wang et al., 2012] pro-
cess data in batch mode, which are both computationally ex-
pensive and memory exhausting. Moreover, they are inflex-
ible to incrementally add samples. To overcome the short-
comings of batch mode, several online strategies have been
developed recently. GROUSE [Balzano et al., 2011], an on-
line extension of PCA, is derived by analyzing incremental
gradient descent on the Grassmannian manifold of subspaces.
GRASTA [He et al., 2012] follows the same technical line as
GROUSE with further consideration of outliers, which can
be seen as an online version of PCP. Wang et al. modified
PRMF as Online PRMF for sequentially processing samples
[Wang et al., 2012]. Online Robust PCA (OR-PCA) [Feng
et al., 2013] has proven that it converges to the same optimal
solution as PCP [Candès et al., 2011] does asymptotically.
The methods mentioned above indeed enable the traditional
schemes with the scalability, but the improvement space ex-
ists, especially in terms of the robustness to more corruptions.

This work proposes an online technique to robustly recover
the low rank component from the observation with heavy out-
liers. Please notice that if the outlier support is given or pre-
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cisely estimated, the problem reduces to the completion task
that is much easier to conquer. Specifically, we first develop
an online algorithm to solve the low rank matrix completion.
Then, we step forward to a more challenging problem, say on-
line low rank matrix recovery with robust outlier support esti-
mation. As regards residual modeling, we employ a Gaussian
component to fit the noise while a uniform distributed com-
ponent to host the oultier. With this strategy, we are capable
to handle more severely contaminated data. Extensive exper-
iments on both synthetic and real data are conducted to verify
the effectiveness of the proposed technique and demonstrate
its advantages over the state-of-the-arts.

2 Our Method
Suppose we are given a finite set of data vectors Y =
[y1, ...,yn] ∈ Rm×n. It will be helpful to consider that
low rank matrices can be factorized by Y = UV T , where
U ∈ Rm×r and V ∈ Rn×r. In such a way, the rank of re-
covered matrices is guaranteed to be never over r. This work
formally concentrates on the following general problem:

min
U ,V
‖W � (Y −UV T )‖2F . (1)

To prevent U from being with arbitrarily large values, the
common manner is to enforce the `2 norm of each column
to be less than or equal to one. For the rest of the paper, the
discussion is always under this constraint.

Having W = [w1, ...,wn] ∈ {0, 1}m×n that indicates
which elements of Y are observed, the associated problem
is designated as Low Rank Matrix Completion (LRMC). The
difficulty, however, greatly increases when the data are ruined
by outliers, as the outlier support is unknown, we call this
problem Robust Low Rank Matrix Recovery (RLRMR). In
the next subsections, we will first develop an online algorithm
based on stochastic optimization to handle LRMC, and then
design a robust outlier support estimation scheme for solving
RLRMF in an online fashion.

2.1 Online Low Rank Matrix Completion
With the data matrix Y and its corresponding support W ,
solving the problem (1) is indeed equivalent to minimize the
following empirical cost function:

Fn(U) ≡ 1

n

n∑
i=1

f(yi,wi,U), (2)

where the loss function for each sample is defined as:

f(yi,wi,U) ≡ min
vi

‖wi � (yi −Uvi)‖22. (3)

As pointed out by Bottou and Bousquet [Bottou and Bous-
quet, 2008], one may be interested in the minimization of the
expected cost instead of the empirical cost, as the empirical
is just an approximation of the expected. The corresponding
expected cost function is:

F(U) ≡ Ey,w [f(y,w,U)] = lim
n→∞

Fn(U) a.s.1 (4)

1Here, “a.s.” means almost sure convergence.

where the expectation is taken with respect to the distribution
of the samples and the known supports. However, classical
batch optimization methods become impractical in terms of
speed and/or memory requirements to do so. As a conse-
quence, online techniques are desired.

In the following, we first establish an online algorithm to
minimize the empirical cost function (2). At the end of this
subsection, we show that the proposed algorithm converges to
the solution of the expected cost function (4) asymptotically.
When a new sample yt arrives, two things have to be dealt
with, i.e. computing vt and updating U (t). With the help of
alternating minimizing strategy, we first focus on vt, which
associates with the following optimization problem with fixed
U (t−1) (obtained from previous iteration):

vt = argmin
vt

‖wt � (yt −U (t−1)vt)‖22

= argmin
vt

‖Dtyt −DtU
(t−1)vt‖22,

(5)

where Dt ≡ Diag(wt). As can be seen from (5), it is a
classic least squares problem and has a closed-form solution:

vt = (DtU
(t−1))†Dtyt, (6)

where (DtU
(t−1))† denotes the Moore-Penrose pseudoin-

verse of DtU
(t−1).

For updating U in the tth time instance, say U (t), we min-
imize the following objective function:

St(U) ≡ 1

t

t∑
i=1

‖Diyi −DiUvi‖22. (7)

We can observe that St(U) is quadratic in U and aggregates
the past data with a few sufficient vi. It is obvious that St(U)
upper-bounds Ft(U) defined in (2). Similar to [Mairal et al.,
2010], we can adopt U (t−1) as the warm restart for calcu-
lating U (t). Because St−1(U) and St(U) become closer as
t gets larger, and so do U (t−1) and U (t). This inspires us to
employ the block-coordinate decent with warm restarts [Bert-
sekas, 1999] to update U efficiently. Moreover, considering
some entries in the samples may be missing leads us to han-
dle different rows of U separately based on the visibility of
the corresponding elements, for the sake of information bal-
ance. In other words, if an element in a sample is invisible, it
should contribute nothing to the update of the corresponding
row of U . Derived from (7), for each row U j·, we have:

St(U j·) ≡
1

tj

tj∑
ij=1

([yij ]j −U j·vij )2, (8)

where [yij ]j denotes the jth entry of vector yij , tj represents
the number of times that the jth row of samples is observed,
and ij is the refreshed observation index. The details of solv-
ing the problem (7) are provided in Algorithm 1. Please note
that, Aj

(t) ≡
∑tj
ij=1 vijv

T
ij

, and bj
(t) ≡

∑tj
ij=1[yij ]jvij .

For clarity, we summarize the whole procedure to solve the
problem (2) in Algorithm 2.
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Algorithm 1: The Basis Update
Input: U = [u1, ...,ur] ∈ Rm×r , ∀k ∈ {1, ...,m}

Ak = [ak1, ...,akr] ∈ Rr×r and bk ∈ Rr .
for j = 1 to r do

for k = 1 to m do
[uj ]k ← 1

[akj ]j
([bk]j −Uk·akj) + [uj ]k;

end
uj ← uj

max(‖uj‖2,1)
;

end
Output: Newly updated U

Algorithm 2: Online Low Rank Matrix Completion
Input: The observed data that will be revealed sequentially

{y1, ...,yT }, and the corresponding support
{w1, ...,wT }, U0 ∈ Rm×r .

∀k ∈ {1, ...,m}Ak ← 0 ∈ Rr×r; bk ← 0 ∈ Rr;
for t = 1 to T do

vt ← argminvt
‖wt � (yt −U t−1vt)‖22 ;

for k = 1 to m do
Ak

(t) ← Ak
(t−1) + [wt]k × vtv

T
t ;

bk
(t) ← bk

(t−1) + ([wt]k × [yt]k)vT
t ;

end
Update U (t) using U (t−1) as warm restart by Algorithm 1;

end
Output: U (T )

Prior to analyzing the convergence of the designed online
solver for LRMC, we state some assumptions under which
our analysis holds. The first assumption is that the data are
bounded, which is natural for the realistic data, such as audio
signals, images and videos. The second is the uniqueness of
the solution to vt (5) is satisfied. The solution is unique if
and only if DtU

(t−1) is full column rank. In practice, this
condition is easy to meet as r � m and the fraction of miss-
ing elements in yi is not extremely large typically. The third
is that the quadratic surrogate functions St(U (t)

j· ) are strictly
convex with lower-bounded Hessians. This hypothesis is ex-
perimentally verified after processing several data points with
reasonable initialization (we will see the random initialization
also works sufficiently well in Sec. 3), which has also been
experimentally verified on the task of online dictionary learn-
ing [Mairal et al., 2010]. The convergence property of the
proposed Algorithm 2 is given by Theorem 1.

Theorem 1. Assume the observations are always bounded.
Given the rank of the optimal solution to (4) provided as r,
and the solution U (t) ∈ Rm×r obtained by Algorithm 2 is
full column rank, then U (t) converges to at least a stationary
point of the problem (4) asymptotically.

Proof Sketch. From formula (7), we can obtain a set of
row-wise sub-problems as given in (8), which are indepen-
dent to each other. It indicates that the theorem can be
recognized if each sub-problem holds. Please note that the
separated sub-problems have the same form as the problem
(6) shown in [Mairal et al., 2010], and thus can be proved
in the way offered by [Mairal et al., 2010]. Due to space

limit, instead of the complete proof, we here only provide the
proof sketch including three steps: 1) the surrogate function
St(U (t)

j· ) converges almost surely; 2) the variations of U (t)
j·

are asymptotic, i.e. ‖U (t+1)
j· − U

(t)
j· ‖F = O( 1

t ); and 3)

F(U
(t)
j· )− St(U (t)

j· )→ 0 almost surely.

2.2 Online Robust Low Rank Matrix Recovery

In many real world applications, the observed data are very
likely contaminated by outliers, the support of which is usu-
ally unknown in advance. For the purpose of accurate recov-
ery of underling matrices, it is essential to eliminate or reduce
the disturbance from these outliers. Now we move on from
OLRMC to its upgraded problem, say Online Robust Low
Rank Matrix Recovery (ORLRMR). It is sure that, if the out-
lier support is at hand, ORLRMR degenerates to OLRMC.
Thus, compared with OLRMC, ORLRMR requires to detect
outliers from observations automatically and robustly.

Recall that each entry [yi]j(i = 1, ..., n; j = 1, 2, ...,m)
of the sample yi can be modeled as [yi]j = U j·vi + [ei]j .
Suppose observations are always bounded, an outlier can be
with any value in the range with equal probability instead
of either Gaussian (`2–PCA and PMF) or Laplacian (`1–
PCP and PRMF). Therefore, we assume the outliers follow
the uniform distribution 1

ε . As for the residuals caused by
other factors, we simply assume they (approximately) follow
a Gaussian distribution N (0, σ2

i ). Let πui and πgi , such that
πui + πgi = 1, respectively denote the percentages of out-
lier and the other in the ith sample, which are also unknown
in advance. As a result, each [ei]j can be viewed as a sam-
ple from a mixture model of distributions with probability
p([ei]j) = πui N (0, σ2

i ) + πgi
1
ε . The likelihood of Y can be

written in the following form:

p(Y |U ,V ,Θ) =
∏
i,j

(πui N ([yi]j |U j·vi,Θi) +
πgi
ε

), (9)

where Θi = {σ2
i , π

u
i , π

g
i } is a parameter vector. The non-

negative log-likelihood function of (9) is:

L(U ,V ,Θ) ≡ −
∑
i,j

log

(
πui N ([yi]j |U j·vi,Θi) +

πgi
ε

)
.

(10)
So far, the outlier support has not been explicitly touched

upon. But, as can be seen from (10), it is a typical mixture
model that can be immediately minimized by Expectation-
Maximization algorithms. This reminds us that there involve
latent variables [zki ]j ∈ {0, 1} with

∑K
k=1[zki ]j = 1, which

indicate the assignment of [ei]j to a specific component of
the mixture containing K models in total. In this task, zgi
that corresponds the Gaussian component, can be employed
as the desired support. To be explicit with respect to the la-
tent variables, and make the model more compatible to addi-
tional constraints, by applying Proposition 1, we obtain the
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Algorithm 3: Online Robust LRMR
Input: The observed data that will be revealed sequentially

{y1, ...,yT }, and non-negative λ.
∀k ∈ {1, ...,m}Ak ← 0 ∈ Rr×r; bk ← 0 ∈ Rr;
for t = 1 to T do

while not converged do
Update Φt via (13), (14);
Update Θt via (15);
Update v̂t via (16);

end
wt ← binarize(Φg

t );
vt ← argminvt

‖wt � (yt −U t−1vt)‖22 ;
for k = 1 to m do

Ak
(t) ← Ak

(t−1) + [wt]k × vtv
T
t ;

bk
(t) ← bk

(t−1) + ([wt]k × [yt]k)vT
t ;

end
Update U t via Algorithm 1;

end
Output: Newly updated U

cost function like:

C(U ,V ,Θ,Φ) ≡
∑
i,j

 [Φgi ]j log
[Φgi ]j

πgiN ([yi]j |U j·vi, σ2
i )

+ [Φui ]j log
ε[Φui ]j
πgi

 .

(11)
Proposition 1. Given two functions πk(x) > 0 and pk(x) >
0, we have the following [Liu et al., 2013; Guo et al., 2014b]:

− log

K∑
k=1

πk(x)pk(x) = min
Φ(x)∈∆+

K∑
k=1

Φk(x) log
Φk(x)

πk(x)pk(x)
,

where Φ(x) = {Φ1(x), ...,ΦK(x)} are hidden variables,
and ∆+ = {Φ(x) : 0 < Φk(x) < 1, and

∑K
k=1 Φk(x) = 1}

is a convex relaxation of a characteristic function decompo-
sition.

Proof. The proof can be easily done via Lagrangian Multi-
plier method. Due to the limited space, we omit it here.

With the modification on (10), the cost function (11) is ex-
plicit to the latent variables Φ, and more importantly, is ready
to take into account extra constraints on Φ, such as sparsity
of outlier and smoothness of support. In the following, for
instance, we introduce the sparsity of outlier into (12), i.e.
‖Φu‖0, which is a commonly used prior to a variety of real
cases. It is well known that the `0 norm is non-convex and
usually replaced with the `1. As the elements in Φ distribute
between 0 and 1, by slight algebraic transformation, we have
the following formula:

Ĉ ≡
∑
i

∑
j

 [Φgi ]j log
[Φgi ]j

πgiN ([yi]j |U j·vi, σ2
i )

+ [Φui ]j log
ε[Φui ]j
πgi

+ λ[Φui ]j

 , (12)

where λ is a coefficient controlling the weight of outlier spar-
sity. Please note that we use Ĉ to present Ĉ(U ,V ,Θ,Φ) for

brevity. Following the same spirit of solving the problem (2),
we can seek the solution of (12) in an online manner.

When a new data vector yt comes, we first calculate Φt, Θt

and vt over the previously updated U (t−1) by the alternating
minimizing strategy as follows:

[Φ̂ut ]j = argmin
[Φu

t ]j

[Φut ]j log
[Φut ]jε

πut
+ λ[Φut ]j =

πut
ε exp(1 + λ)

.

[Φ̂gt ]j = argmin
[Φg

t ]j

[Φgt ]j log
[Φgt ]j

πgtN ([yt]j |U
(t−1)
j· vt, σ2

t )

=
πgt√
2πσ2

t

exp

(
− 1−

([yt]j −U
(t−1)
j· vt)

2

2σ2
t

)
.

(13)
To further enforce the summation of [Φut ]j and [Φgt ]j to be 1,
simply normalizing them gives:

[Φut ]j =
[Φ̂ut ]j

[ ˆΦgt ]j + [Φ̂ut ]j
; [Φgt ]j =

[Φ̂gt ]j

[Φ̂gt ]j + [Φ̂ut ]j
. (14)

It is worth noting that the above processing corresponds to
the E step of EM. Next, we focus on updating the parameters
of the mixed model including σ2

t , πut and πgt , which can be
achieved via [Dempster et al., 1977]:

πut =

∑
j [Φ

u
t ]j

m
; πgt =

∑
j [Φ

g
t ]j

m
;

σ2
t =

∑
j [Φ

g
t ]j([yt]j −U

(t−1)
j· vt)

2∑
j [Φ

g
t ]j

.

(15)

In turn, vt can be obtained through optimizing the following:

vt = argmin
vt

m∑
j=1

[Φgt ]j log
[Φgt ]j

πgtN ([yt]j |U
(t−1)
j· vt, σ2

t )

= argmin
vt

‖Ωt � (yt −U (t−1)vt)‖22,
(16)

where [Ωt]j ≡
√

[Φgt ]j . This is in the same form with (5),
and can be solved in the same way. Please notice that the up-
dating of Θt and vt can be viewed as the M step of EM. Φt,
Θt and vt are iteratively updated via the procedure above un-
til converge. Moreover, the element of Φt is in (0, 1) instead
of binary, although very close to either 0 or 1. To make the
weight Φgt consistent with the binary support (LRMC), we
pre-define a threshold (e.g. 0.5) to binarize Φgt as ŵt. With
the well constructed support ŵt and vt, we are ready to up-
date the basis U . For completeness, the solver of ORLRMF
is summarized in Algorithm 3.

3 Experimental Verification
In this section, we conduct experiments on synthetic data to
reveal the convergence speed and the robustness to outliers
of the proposed ORLRMR, and on real data for showing the
advantages of our method compared against alternative ap-
proaches. Because OLRMC is a special case of ORLRMR,
we concentrate on ORLRMR. Please note that ORLRMR has
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one free parameter λ for balancing the outlier sparsity. From
Eqs. (12) and (13), we can see that the effect of λ is actu-
ally to pull down 1

ε to 1
ε exp(λ) . No doubt that when λ grows,

the probability for a residual of being assigned to the outlier
component decreases. But, the margin between the tail of
Gaussian distribution and 1

ε is usually large, therefore ORL-
RMR can perform stably with a relatively wide range of λ,
especially for Gaussian noises with small variances. For the
experiments shown in this paper, we uniformly set λ to 2. The
experiments are carried out on a MacBook Pro running OS X
64bit operating system with Intel Core i.7 2.8GHz CPU and
16GB RAM. Our code is implemented in Matlab.

3.1 Synthetic Data
Data Preparation. For fair comparison, we generate data in
a similar way with PCP [Candès et al., 2011] and ORPCA
[Feng et al., 2013]. That is, a set of n clean data points is
produced by Y ∈ Rm×n = UV T , where U ∈ Rm×r and
V ∈ Rn×r. The entries of both U and V are i.i.d. sam-
pled from the N (0, 1/n) distribution, and then the data are
projected into [−1, 1]. The basis of the generated subspace
is U , and r is the intrinsic rank (dimension) of the spanned
subspace. As for the corruption, we contaminate the data by
replacing a fraction po of Y with outliers drawn from a uni-
form distribution over the interval of [−1, 1].
Task and Quantitative Metric. We evaluate the ability of
correctly recovering the subspace of corrupted observations
under varying settings of the error density and intrinsic sub-
space rank. The U (0) that feeds to the competitors is ran-
domly initialized in the same fashion as data generation. To
measure the similarity between the recovered subspace Û and
the ground-truth U , the Expressed Variance (E.V.) [Xu et al.,
2010; Feng et al., 2013] is employed as our metric, the defi-
nition of which is:

E.V.(Û ,U) ≡
tr

(
orth(Û)TUUT orth(Û)

)
tr(UUT )

, (17)

where orth(·) and tr(·) stand for the orthogonalizing and
trace operators, respectively. The averaged results from 10
independent trials are finally reported.
Competitors. We compare our ORLRMR with recently pro-
posed online techniques, i.e. GRASTA and OR-PCA. The
code of GRASTA is downloaded from the authors’ website,
the core of which is implemented in C++. Its most important
parameter is the sub-sampling ratio, to obtain its best possi-
ble results, we turn off the sub-sampling to take into account
whole information. The code of OR-PCA is not available
when this paper is prepared. So we implement it in Matlab
by strictly following the pseudo code given in [Feng et al.,
2013], and adopt the parameters suggested by the authors.
Performance Analysis. We provide the performance curves
of ORLRMR, OR-PCA and GRASTA against the number of
samples in Fig. 1, under the setting of m = 400 and n =
104, to see the robustness of the contestants to corruptions
and how the performance is improved when more samples
are revealed. As can be seen from the pictures, all the three
methods achieve better results with more observations. For
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Figure 1: Expressed variance versus number of samples.
Top-Left: intrinsic rank r = 80 and outlier ratio po = 0.2.
Top-Right: r = 80 and po = 0.3. Bottom-Left: r = 80 and
po = 0.4. Bottom-Right: r = 120 and po = 0.3.

the four cases, the performance of GRASTA is much inferior
to the others, possibly because the intrinsic dimensions versus
the ambient are relatively large for GRASTA, as well as the
basis updating by GRASTA only takes one gradient descent
step while both ORLRMR and OR-PCA have closed-form
solutions. We will see that GRASTA attains reasonably well
results when the intrinsic rank is relatively small later. In the
case of intrinsic rank r = 80 and outlier ratio po = 0.2, the
plots of OR-PCA and ORLRMR are very close, both of which
reach about E.V. = 0.9 after processing 104 samples. As the
outlier ratio increases, the convergence speed drops. Even
though, ORLRMR gives E.V. ≈ 0.7 and E.V. ≈ 0.6 for
po = 0.3 and po = 0.4, respectively, which outperforms OR-
PCA by about 0.2. This indicates that ORLRMR can bear
more corruptions than the others. In addition, we show a case
of r = 120 and po = 0.3 to view the effect of r. The curves
tell us that OR-PCA and ORLRMR perform similarly with
those of r = 80 and po = 0.3 with very slight depression,
which means the change of r influences not much to them.
Please note that, the E.V. of the initialized basis increases as
the intrinsic rank approaches to the ambient dimension.

3.2 Real Data
Dataset. The Star dataset consists of 9 real world surveil-
lance videos, which has a variety of scenarios including Esca-
lator (Esc: indoor, dynamic background, crowd), Hall (Hal:
indoor, static background, crowd), BootStrap (BS: indoor,
static background, crowd), Lobby (Lob: indoor, light switch,
people), ShoppingMall (SM: indoor, static background, peo-
ple), Campus (Cam: outdoor, dynamic background, cars),
WaterSurface (WS: outdoor, dynamic background, lingering
person), Fountain (Fou: outdoor, dynamic background, peo-
ple), and Curtain (Cur: indoor, dynamic background, people).
Task and Quantitative Metric. This task is to separate fore-
grounds from surveillance videos, in which the ground-truth
foreground is given but the ground-truth background model
is not available. Moreover, different to the simulation, the
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Figure 2: Quantitative results on the Star dataset.

background may comprise dynamic factors, such as foun-
tains and waving curtains. To assess the performance on fore-
ground detection, we use the Receiver Operating Characteris-
tic (ROC) curve as our metric. As the rank of the background
of surveillance videos is typically small, we empirically set it
to 5 for all the 9 sequences.
Competitors. Besides GRASTA and OR-PCA, we further
employ a batch method, i.e. PRMF [Wang et al., 2012], as
our reference. PRMF is a probabilistic approach to robust
matrix factorization, which holds an equivalent relation with
PCP. PCP [Candès et al., 2011] is not used, mainly because its
costs in both memory and time are too expensive to process
long sequences. The Matlab code of PRMF is downloaded
from the authors’ website, the parameters are set as the val-
ues provided in the implementation package released by the
authors. In addition, to obtain best possible performance of
GRASTA and OR-PCA, the first 5 frames of each sequence
are used to initialize the basis for GRASTA and OR-PCA2. To
show the insensitivity of ORLRMR to initialization, its basis
is randomly generated as the previous experiment do.

2Without a good initialization, OR-PCA can not give reasonable
results in this experiment. The reason possibly is that the subspace
rank versus the ambient dimension is too small and the number of
samples is inadequate for converging.

Performance Analysis. Figure 2 summarizes the ROC plots
for the 9 videos. From the top row, we can see that our ORL-
RMR outperforms GRASTA, OR-PCA and even the batch
approach PRMF. The reason is that these three videos are
in presence of crowd, and ORLRMR can handle heavy out-
liers better than the others. For the rest videos, PRMF at-
tains the best results (except for the Campus sequence, in
which GRASTA slightly exceeds PRMF), while ORLRMR
competes very favorably with PRMF in most cases. The only
exception is the Curtain video, the background of which con-
tains intensively moving curtains. Although the ground-truth
foreground excludes these curtains, from the perspective of
low rank recovery, they are more like outliers, and ORL-
RMR treats these as outliers. Please notice that GRASTA
performs reasonably well on these real videos, since the sub-
space dimension is relatively small. As regards OR-PCA, its
inferior performance for most cases may be because of the
large fractions of foreground and/or the insufficient number
of streaming samples for achieving convergence. Together
with the simulation, we can conclude that ORLRMR is better
at dealing with heavily polluted data and is of faster conver-
gence speed than OR-PCA. In terms of time, PRMF costs,
without surprise, the most (5.7 frames per second on average
over the 9 sequences) among the contestants, due to its batch
nature. ORLRMR achieves 48.3 fps, which outperforms OR-
PAC 40.6 fps and is competitive with GRASTA 52.9 fps, even
though the core of GRASTA is implemented in C++. The fps
numbers corresponding to each sequence can be found in the
legends of Fig. 2. We would like to emphasize that the ex-
periments in this part do not intend to verify our ORLRMR
wins over those special designs on the task of foreground de-
tection. The aim is to demonstrate the merits of our general
model without involving domain knowledge. It is certain that
equipping with proper priors for specific problems can fur-
ther improve the performance of any of the general models
like GRASTA, OR-PCA, ORLRMR and PRMF.

4 Conclusion
In this paper, we have proposed to address the low rank ma-
trix completion and recovery tasks in an online fashion, which
scales up gracefully to large data sets. The mixture model
consisted of a Gaussian and a uniform distributed components
has shown its significant improvement on the robustness to
heavy outliers. The theoretical and experimental results have
demonstrated the properties and advantages of our scheme
compared alternative methods. It is worth noting that our
technical framework is ready to embrace additional specific
constraints for further boosting the performance on different
tasks. For instance, the spatial smoothness can be introduced
to accurately detect foregrounds in surveillance videos. It is
positive that our proposed technique can be widely applied to
tabulated data processing applications.
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