
Active Imitation Learning of Hierarchical Policies

Mandana Hamidi, Prasad Tadepalli, Robby Goetschalckx, Alan Fern

School of EECS, Oregon State University, Corvallis, OR, USA
{ hamidi, tadepall, goetschr, afern}@eecs.oregonstate.edu

Abstract

In this paper, we study the problem of imitation
learning of hierarchical policies from demonstra-
tions. The main difficulty in learning hierarchical
policies by imitation is that the high level intention
structure of the policy, which is often critical for un-
derstanding the demonstration, is unobserved. We
formulate this problem as active learning of Proba-
bilistic State-Dependent Grammars (PSDGs) from
demonstrations. Given a set of expert demonstra-
tions, our approach learns a hierarchical policy by
actively selecting demonstrations and using queries
to explicate their intentional structure at selected
points. Our contributions include a new algorithm
for imitation learning of hierarchical policies and
principled heuristics for the selection of demon-
strations and queries. Experimental results in five
different domains exhibit successful learning using
fewer queries than a variety of alternatives.

1 Introduction

Hierarchical structuring of policies and procedures is a com-
mon way to cope with the intractability of sequential decision
making for both people and machines. Almost any complex
task from cooking to arithmetic is taught by hierarchically
decomposing it to simpler tasks. Indeed, hierarchical task
structures are known to improve the efficiency of automated
planning and [Nau et al., 2003] reinforcement learning [Diet-
terich, 2000] in many complex domains.

In hierarchical imitation learning, we seek to imitate an
agent who has an effective hierarchical policy for a sequen-
tial decision making domain. One reason to do this is the
ubiquity and naturalness of hierarchical policies relative to
the non-hierarchical (flat) policies. Another virtue of hierar-
chical policies is their transferability to other related domains.
A third, perhaps more practical reason, is their utility in learn-
ing from humans and tutoring other humans. The tutoring ap-
plication suggests that the policy needs to be constrained by
the human vocabulary of task names for machines to com-
municate naturally with people [Byrne and Russon, 1998;
Whiten et al., 2006; Koechlin and Jubault, 2006].

Recent research in reinforcement learning and hierarchical
planning has considered the problem of automatically discov-

ering hierarchical structure by analyzing the dynamics and in-
teractions of state variables during execution [Hengst, 2002;
Jonsson and Barto, 2006], by finding bottlenecks in the state
space [Mcgovern and Barto, 2001], and by doing a causal
analysis based on known action models [Mehta et al., 2008;
Hogg et al., 2009; Nejati et al., 2006]. However, by being au-
tonomous, these approaches have the problem of discovering
unnatural hierarchies, which may be difficult to interpret and
communicate to people.

In this paper, we study the problem of learning policies
with hierarchical structure from demonstrations of a teacher
whose policy is structured hierarchically, with natural appli-
cations to problems such as tutoring arithmetic, cooking, and
furniture assembly. A key challenge in this problem is that the
demonstrations do not reveal the hierarchical task structure of
the teacher. Rather, only ground states and teacher actions are
directly observable. This can lead to significant ambiguity in
the demonstration data from the perspective of learning the
teacher policy. For example, it might only be clear in hind-
sight why the teacher opened a drawer in a given state, and
might require substantial reasoning.

Indeed, theory suggests that imitation learning of hierarchi-
cal policies in the form of decision lists is NP-Hard [Khardon,
1999]. One approach for learning hierarchical policies is
to apply algorithms such as Expectation-Maximization (EM)
which work by iteratively guessing the intentional structure
and learning the policy Our extensive experiments in this di-
rection showed that the hierarchies produced by these meth-
ods are often poor local optima and are typically inconsis-
tent with the true intentional structure of the teacher. Further,
even if the correct intention structure was learned, in order
to communicate about that structure, a mapping to human-
understandable terms would need to be learned. Thus, in this
paper we follow a different learning approach where we di-
rectly work with a human to efficiently uncover the intention
structure of demonstrations.

Our approach is motivated by the work of Khardon (1999)
which showed that if demonstrations are annotated with the
teacher’s intention structure, then learning hierarchical poli-
cies becomes tractable. An analogous lesson from the tutor-
ing literature is that learning can be made efficient if the ex-
amples illustrate one simple new concept at a time [VanLehn,
1987]. However, carefully ordering the examples to satisfy
this constraint or fully annotating every trajectory with its in-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3554

tention structure are too prohibitive. We address both of these
problems by making the example selection and the task anno-
tation active and incremental.

Our contributions are as follows. We first show that Prob-
abilistic State-Dependent Grammars (PSDGs) [Pynadath and
Wellman, 2000] strictly generalize common prior represen-
tations such as MAXQ hierarchies [Dietterich, 2000] to rep-
resent hierarchical policies. Second, we develop a new al-
gorithm for efficiently learning PSDGs from sets of demon-
strations and answers to intention queries, leveraging the re-
lationship of PSDGs to probabilistic context-free grammars.
Third, we introduce a novel two-level active learning ap-
proach for selecting demonstrations to annotate and then ac-
quiring the intention annotations. For acquiring annotations
we draw on ideas from Bayesian active learning. However,
for trajectory selection, the natural heuristic of selecting max-
imum entropy trajectory can perform poorly. We analyze this
observation and develop a principled heuristic for selecting
trajectories that is significantly more effective. Our final con-
tribution is to demonstrate the effectiveness of the learning al-
gorithm and our active learning heuristics compared to com-
petitors in five domains, including a domain relevant to arith-
metic tutoring.

2 Problem Setup and Background

We consider a rewardless Markov Decision Process (MDP)
defined by a a set of states S, a set of primitive actions A,
and a transition function P(s′|s, a) which represents the dis-
tribution of next states s′ given the state s and action a. A set
of task names T , and their associated termination conditions
are known to the learner. Following the MAXQ hierarchical
reinforcement learning framework [Dietterich, 2000], we de-
fine a task hierarchy as a directed acyclic graph over T

⋃
A,

where there is an edge between two tasks if the first task can
call the second task as a subroutine. The primitive actions A
are the leafs of the hierarchy and can be executed directly in 1
step and change the state. The child nodes of a task are called
its subtasks. We assume that all hierarchies have a special
root task labeled Root. Some tasks have a small number of
parameters which allows more efficient generalization. Some
example task hierarchies (those used in the experiments in
this paper) are shown in Figure 1 (e).

A task is executed by repeatedly calling one of its subtasks
based on the current state until it terminates. When a subtask
terminates, the control returns to its parent task. We define a
deterministic hierarchical policy π as a partial function from
T × S to T

⋃
A which is defined only for states that do not

satisfy their termination conditions for any task and maps to
one of its subtasks. A trajectory or a demonstration d of a
policy π starting in state s is a sequence of alternating states
and primitive actions generated by executing that policy from
s starting with the Root task. We also assume that every task
ti has a special symbol t′i that denotes its termination, which
is included in the trajectory at the point the task terminates.1

1When these termination symbols are not given, they can be in-
ferred from the task definitions (which are known) and by asking
additional queries to the user to rule out accidental task fulfillment.
We ignore this complication in this paper.

More formally, a demonstration d of a policy π in a state s
can be defined as follows, where ; is used for concatenation,
tiγ represents a task stack with ti as the topmost task and γ
is the rest of the stack to be executed.
d(s, π) = d(s, π,Root)
d(s, π, tiγ) = t′id(s, π, γ) if ti ∈ T and ti terminates in s
d(s, π, tiγ) = d(s, π, π(s, ti)tiγ) if ti ∈ T and ti does not
terminate in s
d(s, π, tiγ) = ti; s

′; d(s′, γ) where ti ∈ A and s′ ∼ P(.|s, a)
In this paper we consider the problem of learning a deter-

ministic hierarchical policy from a set of demonstrations. We
assume that the different task definitions are known but the
task hierarchy is not. The key problem in learning is that the
demonstrations only include the primitive actions and the ter-
mination symbols of the subtasks when they are completed.
In particular, they do not indicate the starting points of various
subtasks, which leaves significant ambiguity in understand-
ing the demonstration. Indeed, it was shown that the problem
of inferring hierarchical policies is NP-hard when such an-
notations of subtasks are not given [Khardon, 1999]. This is
true even when there is a single subtask whose policy is fully
specified and it is known where the subtask ends in each tra-
jectory. All the complexity comes from not knowing where
the subtasks begins. In this paper, we consider the problem of
efficiently acquiring such annotations by asking a minimum
number of queries to the expert.

3 Probabilistic State-Dependent Grammars

The above formulation suggests that a hierarchical policy can
be viewed as a form of Push Down Automata (PDA), which
can be automatically translated into a Context Free Gram-
mar (CFG). Unfortunately such a CFG will have a set of
variables that corresponds to S × T × S, which makes it
prohibitively complex. Instead, we adapt an elegant alter-
native formalism called Probabilistic State-Dependent Gram-
mar (PSDG) to represent the task hierarchies [Pynadath and
Wellman, 2000]. A PSDG is a 4-tuple 〈V,Σ, P, Z〉, where V
is a set of variables (represented by capital letters), Σ is the
terminal alphabet, P is a set of production rules, and Z is the
start symbol. PSDGs generalize CFGs in that each produc-
tion rule is of the form s, ti → γ, where s is a state, ti is a
variable, and γ is a string over variables and terminal sym-
bols. The above production rule is only applicable in state s,
and reduces the variable ti to the sequence of variables and
terminals described by γ.

It is desirable for a PSDG to be in Chomsky Normal Form
(CNF) to facilitate parsing. We can represent the hierarchical
policies in the MAXQ hierarchy as a PSDG in CNF as fol-
lows. For each task t ∈ T , we introduce a variable Vt ∈ V ,
and a terminal symbol t′ that represents the termination of t.
For each primitive action a ∈ A and state s ∈ S, we intro-
duce a variable Va ∈ V and a terminal string a; s. Root is
the start symbol. Further, it suffices to restrict the rules to the
following 3 types:

1. s, ti → tj ti, where tj is a non-primitive subtask of ti
2. s, ti → aj ; δ(s, aj), where aj is a primitive action, and

δ is the transition function
3. s, ti → t′i where t′i is a symbol representing the termi-

nation of task ti.

3555

The first rule represents the case where ti calls tj ∈ T when
in state s and returns the control back to ti after it is done.
The second rule allows a primitive action in A to be exe-
cuted, changing the state as dictated by the transition func-
tion. The third rule is applicable if s satisfies the termination
test of ti. In a deterministic hierarchical policy, there is a sin-
gle rule of the form s, ti → γ for each state-task pair s, ti. A
PSDG, on the other hand, allows multiple rules of the above
form with right hand sides r1, . . . , rm, and associates a prob-
ability distribution p(.|s, ti) over the set r1, . . . , rm. As is
normally the case, we assume that a state is represented as a
feature vector. Since only a small set of features is usually
relevant to the choice of a subtask, we specify the above dis-
tributions more compactly in the form of p(ri|s1, . . . , sk, ti),
where s1, . . . , sk are the only features which are relevant for
choosing the subtask. Table 1 represents the skeleton PSDG
equivalent to the task hierarchy of the Taxi domain (see Fig-
ure 1(e)) without the probability distributions that correspond
to a specific policy. It is easy to see that for any deterministic
hierarchical policy, initial state and action dynamics, the cor-
responding deterministic PSDG, when started from the Root
symbol and the same initial state, will derive the same distri-
bution of demonstrations.

However, the PSDG formalism is more general in that it
allows us to represent stochastic hierarchical policies. In this
work, we exploit this property and view the PSDG as repre-
senting a distribution over deterministic hierarchical policies.
This allows us to adapt the efficient algorithms developed
for probabilistic CFGs such as the inside-outside algorithm
to learn PSDGs [Lari and Young, 1990].2 It also allows us
to efficiently compute some information-theoretic heuristics
which are needed to guide active learning.

Root → Get,Root Up → up Goto(L) → Left,Goto(L)
Root → Put,Root Root → root′ Goto(L) → Right,Goto(L)
Root → Refuel,Root Put → put′ Goto(L) → Up,Goto(L)
Dropoff → dropoff Left → left Goto(L) → Down,Goto(L)
Get → Goto(L),Get Goto(L) → goto′ Refuel → refuel′
Get → Pickup,Get Get → get′ Put → Goto(L),Put
Put → Dropoff,Put Down → down Right → right
Refuel → Goto(L),Refuel Pickup → pickup
Refuel → Fillup,Refuel Fillup → fillup

Table 1: An Example of PSDG skeleton of Taxi Domain with-
out the state information. Primitive actions start with small
letters and the task names start with capitals.

4 Active Learning of Hierarchical Policies

We now present our main algorithm for active learning of PS-
DGs from sets of demonstrations (see Algorithm 1), followed
by a more detailed description of each algorithm component.
The algorithm takes a set of task names, primitive actions, and
trajectories as input (lines 1 & 2). It then constructs an initial
uninformed distribution of PSDGs by including every possi-
ble production in some MAXQ hierarchy with all production

2This view is not exactly correct in that a distribution over deter-
ministic grammars requires us to first choose a deterministic gram-
mar and use it to parse all parts of the trajectory, as opposed to mak-
ing a different choice at each point. However, in practice this is
perfectly adequate as we rarely encounter the same production dis-
tribution twice while parsing the same trajectory.

Algorithm 1: Learning Hierarchical Policies
1: Input: A set of trajectories Trjs, tasks T , actions A
2: Output: Hierarchical policies.

3: Initialize the PSDG
4: loop
5: trj = SelectTrajectory(Trjs)
6: Generate CYK table for trj
7: Sample N parse trees for trj from CYK table
8: L ← ∅ // a set of answered queries
9: while there is not a unique parse tree do

10: for each query q ∈ Q= {(si, taskj)|trj|i=1}|T |
j=1

11: Compute H(Answer)
12: end for
13: newQuery = argmaxq∈Q{H(Answer)}
14: answer = AskQuery(newQuery)
15: L ← (L

⋃
answer)

16: UpdateCYKTable(L)
17: if there is a unique parse (L) for a sub-trajectory
18: GenerateExamples(CYK, L)
19: run TILDE
20: end if
21: end while
22: end loop

distributions initialized to be uniform (line 3). It then iter-
ates over the following steps. First, the learner heuristically
selects a trajectory, trj, to annotate (line 5, details in Section
4.4). It then parses the trajectory using a version of the inside-
outside algorithm and constructs a CYK table data structure,
which compactly represents all possible parse trees of the tra-
jectory and their probabilities (line 6, details in Section 4.1)
. Finally in lines 7 through 21 (details in Section 4.2), it uses
Bayesian active learning to ask queries about the intention
structure of the trajectory. The information gathered from the
queries is used to update the CYK-table (line 16). When-
ever an unambiguous parse is found for a sub-trajectory, it is
used to generate concrete examples to learn a production rule
(lines 17-20, details in Section 4.3). The rest of the section
describes the different steps of the algorithm in more detail.

4.1 Parsing the Trajectories

We apply the inside-outside algorithm to parse a given tra-
jectory using the current PSDG, which is assumed to be in
CNF. The algorithm is based on dynamic programming and
incrementally builds a parsing table called CYK table to com-
pactly represent all possible parse trees of all segments of the
trajectory. For each segment of the trajectory trj and indices
i, j, and each variable B, it recursively computes two differ-
ent probabilities: 1) the inside probability, αi,j(B), which is
the probability that B derives the subsequence of trj from i to
j, and 2) the outside probability, βi,j(B), which is the prob-
ability that trajectory trj1, ..., trji−1, B, trjj+1, ..., trjn can
be derived from the start symbol S. The current parameters
of the distributions of the PDSG (which are uniform in the
beginning) are used to compute these probabilities. Since all
the intermediate states are observed, the state-dependence of
the grammar does not pose any additional problems. Thanks

3556

to the context-free nature of PSDG, and the full observation
of the intermediate states, the α’s and β’s allow us to effi-
ciently compute various other probabilities. For example, the
probability that a trajectory (of length n) is generated start-
ing from the Root task is α1:n(Root). See [Lari and Young,
1990] for details.

4.2 Query Selection via Bayesian Active Learning

We now consider selecting the best queries to ask in order
to uncover the intention structure (parse tree) of a selected
trajectory. In particular, each query highlights a certain tra-
jectory state s and asks if a particular task B is part of the
intention of the user in that state (i.e. part of the task stack).
The answer is “yes” if B is part of the true task stack at that
point, and “no” otherwise.

The question now is how to select such queries in order
to efficiently identify the parse tree of the trajectory. For this
we follow the framework of Bayesian Active Learning (BAL)
for query selection [Golovin et al., 2010] , which considers
the efficient identification of a target hypothesis among can-
didates via queries. We begin by generating a large set of N
hypothesis parse trees for the trajectory by sampling from the
parse tree distribution induced by our current PSDG estimate
(line 7). BAL then attempts to heuristically select the most
informative query for identifying the correct parse tree. Af-
ter receiving the answer to each query the learner removes all
parse trees or hypotheses that are not consistent with the an-
swer and updates the CYK table appropriately. It also updates
the CYK table to exclude all entries that are not consistent
with the answer to the query. Querying continues until a sin-
gle parse tree remains, which is taken to be the target. If all
parse trees happen to be eliminated then we move on to se-
lect another trajectory, noting that information gathered dur-
ing the querying process is still useful for learning the PSDG.

It remains to specify the query selection heuristic. A stan-
dard heuristic inspired by generalized binary search is to se-
lect the query that maximizes the expected information gain
(IG) of the answer. Prior work has shown that this heuris-
tic achieves near optimal worst case performance [Dasgupta,
2004]. It is straightforward to show that this heuristic is
equal to the entropy of the answer distribution, denoted by
H(Answer). Thus, we select the question that has maximum
entropy over its answer distribution (line 13).

4.3 Example Generation and Generalization

Recall that the answers to the queries are simultaneously used
to update the CYK table as well as removing the inconsistent
parse trees from the sample. We consider a parse of a trajec-
tory segment between the indices i and j to be unambiguous
if the inside and outside probabilities of some variable (task)
B for that segment are both 1. When that happens for some
task B, and its subtasks, say C and B, we create positive and
negative training examples of the production rule for the pair
(s,B), where s is the state at the trajectory index i where B
was initiated. The positive examples are those that cover the
correct children of B, namely C and B, and the negative ex-
amples are those that were removed earlier through queries.
To generalize these examples and ignore irrelevant features in

the state, we employ a relational decision tree learning algo-
rithm called TILDE [Blockeel and De Raedt, 1998]. TILDE
uses a form of information gain heuristic over relational fea-
tures and learns the probabilities for different right hands
sides of production rules of PSDG. Ideally only the features
of the state relevant for the correct choice of the subtask are
tested by the tree. These probabilities are used to compute the
αs and βs during the future parsing steps.

4.4 Trajectory Selection Heuristics

In this section we focus on the problem of trajectory selec-
tion. On the face of it, this appears to be an instance of
the standard active learning problem for structured prediction
problems such as parsing and sequence labeling [Baldridge
and Osborne, 2003; Settles and Craven, 2008]. A popular
heuristic for these problems is based on “uncertainty sam-
pling,” which can be interpreted in our context as picking the
trajectory whose parse is most ambiguous. A natural mea-
sure of the ambiguity of the parse is the entropy of the parse
tree distribution, which is called the “tree entropy” given by
TE(trj) = − ∑

v∈V

p(v|trj)× log(p(v|trj)) where V is a set

of all possible trees that our current model generates to parse
trj. The probability of each trj is p(trj) =

∑

v∈V

p(v, trj),

which is the sum over the probability of all possible trees,
where p(v, trj) denotes the probability of generating trj via
the parse tree v. Both p(trj) and TE(trj|M) can be effi-
ciently computed using the CYK table without enumerating
all parse trees [Hwa, 2004].

Tree entropy (TE) is one of the first heuristics we consid-
ered and evaluated. Somewhat surprisingly we found that it
does not work very well and is in fact worse than random
sampling. One of the problems with tree entropy is that it
tends to select long trajectories, as their parse trees are bigger
and have a bigger chance of ambiguity. As a result they re-
quire more effort by the user to disambiguate. To compensate
for this researchers have tried length-normalized tree entropy
(LNTE) as another heuristic [Hwa, 2004]. We also evaluated
this heuristic in our experiments.

Our third heuristic, cost-normalized information (CNI), is
based on the observation that the tree entropy represents the
amount of information in the correct parse tree, and hence
can be viewed as a proxy for the number of binary queries we
need to ask to identify the parse. Indeed, we have empirically
verified that the number of queries needed grows linearly with
the tree entropy. However it is not a good proxy for the infor-
mation we gain from a labeled trajectory. Indeed, it would be
best to use a trajectory with zero tree entropy, i.e., a trajectory
with an unambiguous parse to learn, as it needs no queries at
all. However, such trajectories might also be useless from
the learning point of view, if they are already predicted by
the current model. An ideal trajectory would be something
the learner has only a low probability of generating by it-
self, but would require the least number of queries to learn
from, given that trajectory. This suggests that given the same
cost, we should select the trajectories that are most informa-
tive or most surprising. The amount of surprise or novelty
in an event E is nicely formalized by Shannon’s information

3557

function I(E) = − log(p(E)). Thus we are led to the heuris-
tic of maximizing cost-normalized information of the trajec-
tory, which is approximated by − log(p(trj))/TE(trj). For-
tunately the probability of the trajectory is something we can
easily compute from the CYK table.

5 Empirical Results

5.1 Domains

We consider five domains for evaluating our active learning
approach. The hierarchies for each domain are depicted in
Figure 1.

Subtraction Domain: This domain is motivated by ap-
plications to automated tutoring systems, which raises the
problem of allowing human teachers to easily specify hier-
archical tasks without necessarily understanding the seman-
tics and syntax of a formal hierarchy description language.
There are two multi-digit numbers A = An, ..., A1 and B =
Bm, ..., B1, where A > B, and the goal is to induce the stan-
dard “pencil and paper” hierarchical procedure for subtract-
ing B from A (similar to [VanLehn, 1987]). This procedure
is shown in Figure 1 and involves primitive actions such as
crossing numbers out, overwriting numbers, and higher-level
tasks such as borrowing. The state consists of the two digits
being subtracted annotated by the result of all prior primitive
actions. The trajectories used for training involve a number
of digits ranging from 1 to 15 as in [VanLehn, 1987].

Kitchen Domain: This stochastic version of the kitchen
domain originally described in [Natarajan et al., 2011], mod-
els the process of preparing a meal involving a main dish
and one or more side dishes. The primitive actions involve
steps such as pouring, fetching ingredients, and baking. Each
training trajectory specifies the main meal and side dishes and
ends when they have been successfully prepared.

Assembly Domain: This domain models a furniture as-
sembly problem, which is another domain where a computer
assistant would need knowledge of a hierarchical assembly
procedure. The agent’s objective is to assemble cabinets,
which contain one or more shelves. There are two types of
shelves: shelves with a door and shelves with drawers. The
agent starts by assembling shelves and connecting them to-
gether. For assembling each shelf, it first assembles a frame
and a door or a drawer, then it connects the door or drawer to
the frame. Each door, drawer and frame have different pieces,
such as a handle, left side, right side, etc. Each frame has a
connector for connecting doors or drawers. The actions are
to add each side of the frame, add the door connector, add the
door handle, connect shelves, etc.

Taxi Domain: This is a stochastic version of a domain
that is a commonly used benchmark from hierarchical rein-
forcement learning, described in [Dietterich, 2000]. We use
the more complex version that involves refueling the taxi. In
each episode, the taxi starts in a randomly chosen location
and with a randomly chosen amount of fuel (ranging from 5
to 12 units). The episode ends when the passenger is success-
fully transported. The stochastic dynamics dictates that with
certain probability the taxi fails to move.

RTS Domain: This stochastic version of the RTS domain
originally described in [Natarajan et al., 2011], models a real-

time strategy (RTS) game where an agent must move around
a map collecting resources and attacking enemies.

5.2 Experiments

In each domain, we collected a set of training and test tra-
jectories from a hand-coded hierarchical policy that follows
the hierarchical structure shown in Figure 1. The trajectories
are stored with the corresponding hierarchical intention struc-
tures which are used to answer queries. We use 10 training
trajectories and 30 test trajectories in total. The results are av-
eraged over 10 runs of the system with the same hierarchical
policy but with a different set of randomly generated training
and test trajectories. We used 70 sampled parse trees to select
subgoal queries in each iteration.

Accuracy of Hierarchy Learning: Since one of the main
motivations of this work is to learn the same hierarchical
structure as used by the teacher, we first evaluate the accu-
racy of the hierarchies learned by our approach. In each do-
main, we compared the performance of our preferred heuris-
tic, namely, maximizing cost-normalized information (CNI),
with three other trajectory selection strategies for learning hi-
erarchical policies: 1) Random selection, 2) Maximizing tree
entropy (TE), and 3) Maximizing length-normalized tree en-
tropy (LNTE). Each heuristic was trained on the same hier-
archical policy and the same set of training examples. Our
performance metric is accuracy, which measures the fraction
of times along the trajectory that the learned hierarchical pol-
icy agrees with the target policy about both primitive actions
and the intention stack on test set.

Figures 1 (a)-(d), and (f) show accuracy vs. the number
of queries for each domain. Each point on the plot shows
the performance after learning from one more trajectory than
the previous point. Unlike typical learning curves, the dif-
ferent points are not uniformly spaced because the number
of queries used to learn each trajectory is usually different.
One clear trend is that fewer queries are needed to disam-
biguate each successive trajectory. This is expected because
it gets easier to infer the intentions behind actions, as more
is learned about the target policy. Indeed, towards the end of
the trial, many trajectories disambiguated using only 1 or 2
queries.

We first observe that selecting trajectories using TE per-
forms poorly, even worse than random in all domains. The
reason is that maximizing tree entropy encourages the selec-
tion of the most ambiguous trajectory, which maximizes the
number of queries asked. Normalizing by length mitigates
this effect somewhat and makes it perform closer to or better
than the random strategy in the RTS and the Kitchen domains.
However, the random strategy still performs better in the Taxi
domain. This is because length does not necessarily reflect
the number of queries needed to disambiguate a trajectory.

Our preferred heuristic, CNI, consistently performs better
than all other heuristics in all domains with a possible ex-
ception of LNTE in RTS. These results indicate that CNI’s
approach of taking both the information gain and the cost
of querying into account is effective. The shapes of the dif-
ferent curves suggests that CNI allows the learner to learn
from more trajectories by spending fewer queries on each tra-
jectory, achieving better performance after the same number

3558

(a) Subtraction Accuracy

(e) Taxi Hierarchy

(b) Assembly Accuracy

(f) Taxi Accuracy

(c) Kitchen Accuracy

(g) Taxi goal-success %

(d) RTS Accuracy

(h) RTS goal-success %

Figure 1: First row and Figure (e) : The task hierarchies of Subtraction, Assembly, Kitchen, RTS and Taxi Domains.
Second row and Figure (f): Comparison between different heuristics on trajectory selection strategies in five domains. The X-
axis shows the number of queries and the Y-axis shows the accuracies of the task stacks at different points in the test trajectory.
Figures (g) and (h): Comparison between flat and hierarchical policy learning in Taxi and RTS domains. The X-axis shows the
number of training trajectories and the Y-axis shows the goal-success percentage.

queries as other heuristics.

Comparing to Flat Policy Learning: Here we compare
the performance of actively learned hierarchical policies to
traditional imitation learning of flat (non-hierarchical) poli-
cies. We compared the performance of our algorithm using
CNI trajectory selection with the flat policy learning algo-
rithm, whose policies are learned using TILDE [Blockeel and
De Raedt, 1998]. Figures 1 (g) and (h) show goal-success
percentage on a test set of problems vs. the number of the
training trajectories for the Taxi and RTS domains. The re-
sults show that our active hierarchy learning approach is able
to learn the tasks much more quickly in terms of number of
training trajectories compared to the flat learning algorithm.
Note, however, that this evaluation does not take into account
the cost to the expert of answering the intention queries on the
generated trajectories, which is zero for the flat learner. Thus,
an overall comparison of the two approaches would need to
weigh the relative cost of generating trajectories and answer-
ing queries. However, we see that the learning curve for the
flat method is increasing very slowly for both problems, sug-
gesting that for reasonable query costs the hierarchical learner

would likely make the most efficient use of the expert’s time.

6 Summary

We studied active learning of hierarchical policies in the
form of PSDGs from trajectories generated by a hierarchi-
cal policy. We developed a novel two-level active learning
framework, where the top level selects a trajectory and the
lower level actively queries the teacher about the intention
structure at selected points along the trajectory. We devel-
oped a new information-theoretically justified heuristic, cost-
normalized information, for selecting trajectories, and em-
ployed Bayesian active learning for the lower-level query se-
lection. Experimental results on five benchmark problems
indicate that our approach compares better to a number of
baselines in learning hierarchical policies in a query-efficient
manner.

3559

7 Acknowledgments

The authors thank the reviewers for their comments and ac-
knowledge the support of ONR’s ATL program N00014-11-
1-0106.

References

[Baldridge and Osborne, 2003] J. Baldridge and M. Os-
borne. Active learning for hpsg parse selection. In Pro-
ceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03,
pages 17–24, Stroudsburg, PA, USA, 2003. Association
for Computational Linguistics.

[Blockeel and De Raedt, 1998] H. Blockeel and
L. De Raedt. Top-down induction of first-order log-
ical decision trees. Artif. Intell., 101(1-2):285–297, May
1998.

[Byrne and Russon, 1998] R W Byrne and A E Russon.
Learning by imitation: a hierarchical approach. Behav-
ioral and Brain Sciences, 21:667–84; discussion 684–721,
1998.

[Dasgupta, 2004] Sanjoy Dasgupta. Analysis of a greedy ac-
tive learning strategy. In Lawrence K. Saul, Yair Weiss,
and Lon Bottou, editors, Advances in Neural Information
Processing Systems 17, pages 337–344. MIT Press, Cam-
bridge, MA, 2004.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical rein-
forcement learning with the MAXQ value function decom-
position. J. Artif. Intell. Res. (JAIR), 13:227–303, 2000.

[Golovin et al., 2010] Daniel Golovin, Andreas Krause, and
Debajyoti Ray. Near-optimal bayesian active learning with
noisy observations. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 766–774, 2010.

[Hengst, 2002] B. Hengst. Discovering hierarchy in rein-
forcement learning with HEXQ. In Maching Learning:
Proceedings of the Nineteenth International Conference
on Machine Learning, pages 243–250. Morgan Kaufmann,
2002.

[Hogg et al., 2009] C. Hogg, U. Kuter, and H. Munoz-Avila.
Learning hierarchical task networks for nondeterministic
planning domains. In Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence,
pages 1708–1714. AAAI Press, 2009.

[Hwa, 2004] R. Hwa. Sample selection for statistical pars-
ing. Computational Linguistics, 30:253–276, 2004.

[Jonsson and Barto, 2006] A. Jonsson and A.G. Barto.
Causal graph based decomposition of factored mdps. Jour-
nal of Machine Learning Research, 7:2259–2301, 2006.

[Khardon, 1999] Roni Khardon. Learning to take actions.
Mach. Learn., 35(1):57–90, April 1999.

[Koechlin and Jubault, 2006] E. Koechlin and T. Jubault.
Broca’s area and the hierarchical organization of human
behavior. Neuron, 50(6):963–974, June 2006.

[Lari and Young, 1990] K. Lari and S.J. Young. The estima-
tion of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 4:35–
56, 1990.

[Mcgovern and Barto, 2001] A. Mcgovern and A.G. Barto.
Automatic discovery of subgoals in reinforcement learning
using diverse density. In Proceedings of the eighteenth
international conference on machine learning, pages 361–
368. Morgan Kaufmann, 2001.

[Mehta et al., 2008] Neville Mehta, Soumya Ray, Prasad
Tadepalli, and Thomas G. Dietterich. Automatic discovery
and transfer of MAXQ hierarchies. In Machine Learning,
Proceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, pages
648–655, 2008.

[Natarajan et al., 2011] S. Natarajan, S. Joshi, P. Tadepalli,
K. Kersting, and J. Shavlik. Imitation learning in rela-
tional domains: a functional-gradient boosting approach.
In Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence - Volume Volume Two,
IJCAI’11, pages 1414–1420. AAAI Press, 2011.

[Nau et al., 2003] D. Nau, T.-C. Au, O. Ilghami, U. Kuter,
W. Murdock, D. Wu, and F.Yaman. SHOP2: An HTN
planning system. J. Artif. Intell. Res. (JAIR), 20:379–404,
2003.

[Nejati et al., 2006] N. Nejati, P. Langley, and T. Konik.
Learning hierarchical task networks by observation. In
Proceedings of the Twenty-Third International Conference
on Machine Learning, pages 665–672. ACM Press, 2006.

[Pynadath and Wellman, 2000] David V. Pynadath and
Michael P. Wellman. Probabilistic state-dependent gram-
mars for plan recognition. In Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence,
UAI’00, pages 507–514, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[Settles and Craven, 2008] Burr Settles and Mark Craven.
An analysis of active learning strategies for sequence la-
beling tasks. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, EMNLP
’08, pages 1070–1079, Stroudsburg, PA, USA, 2008. As-
sociation for Computational Linguistics.

[VanLehn, 1987] Kurt VanLehn. Learning one subprocedure
per lesson. Artif. Intell., 31(1):1–40, 1987.

[Whiten et al., 2006] A. Whiten, E. Flynn, K. Brown, and
T. Lee. Imitation of hierarchical action structure by young
children. Dev Sci, 9(6):574–82, 2006.

3560

