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Abstract
Mixed occlusions commonly consist in real-world
face images and bring with it great challenges for
automatic face recognition. The existing methods
usually utilize the same reconstruction error to code
the occluded test image with respect to the labeled
training set and simultaneously to estimate the oc-
clusion/feature support. However, this error coding
model might not be applicable for face recognition
with mixed occlusions. For mixed occlusions, the
error used to code the test image, called the dis-
criminative error, and the error used to estimate
the occlusion support, called the structural error,
might have totally different behaviors. By combin-
ing the two various errors with the occlusion sup-
port, we present an extended error coding model,
dubbed Mixed Error Coding (MEC). To further en-
hance discriminability and feature selection abil-
ity, we also incorporate into MEC the hidden fea-
ture selection technology of the subspace learning
methods in the domain of the image gradient orien-
tations. Experiments demonstrate the effectiveness
and robustness of the proposed MEC model in deal-
ing with mixed occlusions.

1 Introduction
Real-world face recognition system has to contend with a lot
of uncontrolled variations [Hua et al., 2011], such as bad
lighting conditions [Lai et al., 2014], large pose variations
[Cai et al., 2013], a range of facial expressions [Bettadapura,
2012], apparels, changes in facial hair, eyewear, and partial
occlusions. In spite of the diversity, most of these variations
can be viewed as different instances of occlusion. When there
exists occlusion in a test face image, the classical holistic fea-
ture extraction methods, such as Eigenfaces [Turk and Pent-
land, 1991] and Fisherfaces [Belhumeur et al., 1997], are not
applicable since the whole extracted features would be dis-
torted by local occlusion, and robust classifiers, such as SRC
[Wright et al., 2009] and CESR [He et al., 2011], might fail
to perform recognition due to the common high order statisti-
cal structures (localization, orientation, and bandpass) shared
by occlusions and face images. Moreover, there often ex-
ists practical scenarios that more than one kind of occlusion,

which we call mixed occlusions, are simultaneously imposed
on one face image and greatly increase the difficulty of the
recognition task. Apparels and extreme illumination vari-
ations are commonly seen mixed occlusions and have long
been considered as one of the most difficult problems of face
recognition [Tzimiropoulos et al., 2012]. We therefore focus
on this challenge in this work.

There are a lot of schemes to deal with occlusion related
problems. We put our focus mainly within the framework
of sparse coding. In this framework, the test occluded im-
age y ∈ Rm is supposed to be a superposition of its clean
reconstruction ŷ ∈ Rm and an error image e ∈ Rm, and
ŷ is supposed to be sparsely coded by a linear combination
of the training images A = [A1, A2, · · · , AK ] ∈ Rm×n of
K subjects, where Ak =

[
ak1 , a

k
2 , · · · , aknk

]
∈ Rm×nk is

a data matrix consisting of nk training samples from sub-
ject k and n =

∑K
k=1 nk. The error image e is also called

the reconstruction error, since it calculates the difference be-
tween y and its reconstruction ŷ. By simultaneously imposing
sparse constraint on the coding coefficient and various proba-
bilistic assumptions on the reconstruction error e, researchers
have presented a lot of solving methods [Tibshirani, 1996;
Chen et al., 2001; Wright et al., 2009; Wright and Ma, 2010;
Jia et al., 2012], which can be summarized as

max p (e) s.t. e = y −Ax, x is sparse, (1)

where we denote by p (·) a probability density function (PDF)
and x ∈ Rn is the coding coefficient of y with respect to
(w.r.t.) A.

The main limitation of the error coding model (1) is that it
usually has a low breakdown point in dealing with the occlu-
sion problems [Wright et al., 2009]. To improve the classifi-
cation performance of (1), researchers proposed the weighted
error coding scheme

max p (e, w) s.t. e = y −Ax, x is sparse, (2)

where w ∈ Rm is the weight vector. Two representa-
tive methods of the weighted error coding model are the
Robust Sparse Coding (RSC) [Yang et al., 2011] and the
CorrEntropy-based Sparse Representation (CESR) [He et al.,
2011]. Due to the capability of feature selection by weight-
ing the features, the weighted error coding model (2) usually
outperforms the error coding model (2) in dealing with real-
world occlusion. However, the feature selection ability of the
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weighted error coding model (2) is still not very strong, since
it just weakens (but not removes) the bad features with large
errors, and also, due to the shared statistical structures of face
images and occlusions, the really bad features not always in-
duce large errors.

To enhance the feature selection ability of the model (2),
researchers exploit, instead of the structures of the useful fea-
tures, the spatial structures shared by occlusions, such as lo-
cality, continuity [Lin and Tang, 2007; Zhou et al., 2009] and
boundary regularity [Li et al., 2013]. Harnessing the contigu-
ous structure, [Zhou et al., 2009] first built the following error
coding model

max p (e, s) s.t. e = y −Ax, x is sparse, (3)

where s ∈ {−1, 1}m denotes the occlusion/feature support,
that is, si = −1 indicates pixel yi is non-occluded (use-
ful feature) and si = 1 indicates pixel yi is occluded (use-
less feature). The two state-of-the-art methods deriving from
model (3) are the Sparse Error Correction with Markov Ran-
dom Fields (SEC_MRF) [Zhou et al., 2009] and the Struc-
tured Sparse Error Coding (SSEC) [Li et al., 2013]. Due to
efficiently excluding the bad features incurred by occlusion,
SEC_MRF and SSEC outperform significantly the methods
of model (1) and (2) in dealing with the problem of face
recognition with occlusion. However, both SEC_MRF and
SSEC require that the number of the training images should
be sufficient enough to predict the variations except for oc-
clusions which might consist in the test images. This require-
ment is hardly available in practice, especially for the sce-
nario of mixed occlusions.

Different from the above three error coding models (1), (2)
and (3), [Tzimiropoulos et al., 2012] introduced a robust sub-
space learning framework in the domain of image gradient
orientations (IGO) for appearance-based object recognition.
The robustness of the IGO subspace learning methods (such
as IGO-PCA and IGO-LDA) owes to the robust IGO features
and the capability of hidden feature selection. Specifically,
by applying a cosine-based distance measure to the IGO fea-
tures, the useless features caused by outliers, to some extent,
could be automatically eliminated. However, the face recog-
nition experiment in Figure 11 of [Tzimiropoulos et al., 2012]
shows that the recognition rates of IGO-PCA drop sharply
once the occlusion level exceeds 60%. This indicates that
with occlusion level increasing, the IGO-methods might not
effectively eliminate the effect of the occlusion.

In this work, we try to solve the problem of face recogni-
tion with mixed occlusions by incorporating the robust IGO
features into the error coding model (3). For mixed occlusion,
we note that the error used to code the test image, we call the
discriminative error, and the error used to estimate the occlu-
sion/feature support, we call the structural error, should be
coded in different ways. The coding schemes of the two er-
rors are unified in an extended version of the error coding
model (3), called the mixed error coding (MEC). By con-
sidering the MEC model in the IGO domain, we exploit the
three conditional PDFs induced by the MEC model, based
on which we give the solving algorithm of MEC under the
framework of the Gibbs sampling algorithm. Experiments
corroborate the effect of the proposed MEC model.

e s e s
e

Discriminative 
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Figure 1: The cyclic interaction relationships between various
errors and the occlusion support: (a) the existing model; (b)
the proposed mixed error coding model.

2 The Proposed Mixed Error Coding Model
The error model (3) shows that the reconstruction error e ac-
tually simultaneously serves for two targets: reconstructing
the test image y and estimating the occlusion support s.The
interactive relationships of e and s are illustrated in Figure 1
(a). For simple occlusions, the same error might be enough
to cope with the two cases, while for mixed occlusions, the
scenarios might be completely different. Mixed occlusions
usually incur a wide range of variations in the test image and
squeeze the useful features into a very low dimensional space,
which results in the difficulty of reconstructing y. A com-
mon way to solve this problem is to transform the low dimen-
sional features into a high dimensional discriminative feature
space (See detail in Subsection 3.1 for constructing high di-
mensional features in the IGO domain). This will lead to a
high dimensional discriminative reconstruction error, which
we call the discriminative error and denote by ĕ. Since ĕ usu-
ally has different dimension and structure with the original
test image y, it cannot be directly used to recover the occlu-
sion support s. To estimate s, we need an error that fully con-
siders the spatial and statistical structure of occlusion, which
we call the structural error and denote by ẽ. The structural
error ẽ usually has the same dimension with the test image y.

We therefore have three interactive factors: the discrimina-
tive error ĕ, the structural error ẽ and the occlusion support s,
whose interactive relationships are illustrated in Figure 1 (b).
Clearly, the discriminative error ĕ depends on the occlusion
support s since s helps to select the discriminative features
in calculating ĕ, and the occlusion support s depends on the
structural error ẽ as the spatial and statistical structure of oc-
clusion reflected in ẽ can be used to recover s. We would like
to emphasize that the structural error ẽ depends on the dis-
criminative error ĕ. Actually, the structural error ẽ calculates
the structural difference between the test image y and its re-
construction ŷ, and ŷ is reconstructed from the training set A
by a sparse coding coefficient x, and finally x is calculated
by the discriminative error ĕ. By formulating the interaction
relationships between ĕ, ẽ and s with a joint PDF p (ĕ, ẽ, s),
we propose a new error coding model, called the Mixed Error
Coding (MEC), as follows

max p (ĕ, ẽ, s) s.t. ĕ = Ĕ (y,Ax) ,

ẽ = Ẽ (y,Ax) , x ≥ 0, (4)
where we impose the nonnegative constraint on x to guaran-
tee its sparsity and denote by Ĕ (·, ·) and Ẽ (·, ·) the discrim-
inative error metric and the structural error metric, respec-
tively. Since it is difficult to give a definitive formulation of

3629



p (ĕ, ẽ, s), according to the interaction relationships between
ĕ, ẽ and s shown in Figure 1 (b), we adopt the Gibbs sampling
algorithm to solving (4) as follows(

ĕ(t), x(t)
)

= arg max
ĕ,x

p
(
ĕ
∣∣∣s(t−1)

)
,

s.t. ĕ = Ĕ (y,Ax) , x ≥ 0, (5)

ẽ(t) = arg max
ẽ
p
(
ẽ
∣∣∣ĕ(t)

)
,

s.t. ẽ = Ẽ
(
y,Ax(t)

)
, (6)

s(t) = arg max
s
p
(
s
∣∣∣ẽ(t)

)
, (7)

where the superscript (t) denotes the tth iteration.

3 Three Statistical Inferences for Mixed
Error Coding in IGO Domain

To infer the three interacted factors (ĕ, ẽ, s) from (5), (6)
and (7), a primary task is first to establish the three condi-
tional probabilistic density/mass functions p (ĕ|s), p (ẽ|ẽ) and
p (s|ẽ). Due to the robustness of the IGO features we discuss
in the introduction, we explore each of the three conditional
probabilistic models in the IGO domain in the following sub-
sections. For convenience, we denote by Φ (·) the IGO trans-
formation function and briefly denote the IGO features of y
and A by ẙ = Φ (y) and Å = Φ (A), respectively.

3.1 Gaussian Distribution of Discriminative Error
We first consider the conditional PDF p (ĕ|s). As an impor-
tant discriminative information to search for the right sub-
space (class) that the test image comes from, the discrimina-
tive error ĕ should be only considered in the non-occluded
region to avoid the effect incurred by occlusion. To compen-
sate for the losses caused by occlusion, we transform the fea-
tures in the non-occluded region into a high dimensional fea-
ture space. As demonstrated by [Wright et al., 2009], in the
framework of sparse coding, it is the dimension of the feature
that plays a critical role in determining the discriminability.
For the IGO features, [Tzimiropoulos et al., 2011] suggested
imposing cosine and sine kernel on the angular data and then
stacking the outputs as columns to form new feature vectors,
that is, the new high dimensional features of the test and train-
ing images can be formulated as y̆ =

[
cos ẙT sin ẙT

]T ∈
R2m and Ă =

[
cos ÅT sin ÅT

]T
∈ R2m×n. Then, in this

high dimensional feature space, it is reasonable to assume that
the DE ĕ follows the Gaussian distribution with zero mean

p (ĕ|s) =
2m∏
i=1

1√
2πσ̆

exp

(
− (1− s̆i) ĕ2

i

2σ̆2

)
, (8)

where ĕ = y̆ − Ăx, s̆ =
[
sT sT

]T
and σ̆ is the Gaussian

kernel size. Figure 3 (b) shows the histograms of 5 discrim-
inative errors produced during the iteration of our proposed
algorithm for a test image.

For inference of ĕ, substituting (8) into (5), we have(
ĕ(t), x(t)

)
= arg min

ĕ,x

∥∥∥∥1

2

(
1− s̆(t−1)

)
� ĕ
∥∥∥∥2

2

s.t. ĕ = y̆ − Ăx, x ≥ 0, (9)
where is the Hadamard product. The optimization problem
(9) is a nonnegative least squares problem (NNLS) and can be
solved by the classical active set algorithm [He et al., 2011].

3.2 Uniform Distribution of Structural Error
We now consider the conditional PDF p (ẽ|ĕ). The structural
error ẽ reflects the structural difference between the test im-
age ẙ and its reconstruction ˚̂y. Using the coding coefficient
x(t) solved from (9), we could reconstruct a clean version
˚̂y(t) = Φ

(
Ax(t)

)
of the test image ẙ. In the original pixel

domain, [Li et al., 2013] pointed out that the structural error
between y and its reconstruction ŷ calculated by a well de-
signed error metric would present a special distribution struc-
ture: the errors corresponding to the occluded part concen-
trate on a large value, and the errors corresponding to the
non-occluded part concentrate on zero. However, in the IGO
domain, we will show that the structural error measured by a
well designed structural error metric would follow a uniform
distribution which is independent of the occlusion support.
Therefore, what is critical for building the conditional PDF
p (ẽ|ĕ) is to design a reasonable structural error metric.

We first review a robust distance measure in the IGO do-
main. [Tzimiropoulos et al., 2012] statistically verified that
the gradient orientation differences of any two pixel-wise dis-
similar images follow a uniform distribution in the interval
[−π, π) with a high significant level. Furthermore, this uni-
form distribution is subtly used to approximately cancel out
the error caused by outliers according to the following theo-
rem:
Theorem 1. Let u (·) be a mean ergodic stochastic process
and u (t) follows a uniform distribution in [−π, π), then for
any non-empty interval X ∈ R,

r
X cos (u (t)) dt = 0.

Based on Theorem 1, [Tzimiropoulos et al., 2012] defined a
cosine-based distance measure (CDM):

CDM
(
ẙ,˚̂y
)
,

m∑
i=1

(
1− cos

(
ẙi − ˚̂yi

))
. (10)

Ideally, according to Theorem 1, all of the errors incurred
by outliers would be summed up to zero in (10) and hence
CDM only calculates the distance of the clean parts of the
two compared images.

In spite of its robustness, CDM cannot be directly used to
estimate the distribution of the error between two compared
images, since its calculating result is a scalar. We therefore
need to vectorize CDM to form a new error metric. In fact,
if we shrink the action scope of the CDM to the neighbor-
hood of one feature point of the two compared images and
use the distance calculated by CDM on this neighborhood as
the final observed error value at this point, we then obtain the
following cosine-based error metric (CEM)

CEM
(
ẙi,˚̂yi

)
,

∑
j∈N (i)

(
1− cos

(
ẙj − ˚̂yj

))
, (11)
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Figure 2: The calculating flow of the proposed structural error
metric Ẽ (·, ·) in (13). Here, Kf (·) is a K-means filtering
operator and g (·) is a Gaussian kernel.

where N (i) is the neighborhood of feature point i. A fast
implementation of CEM can be given by imposing K-means
filtering on the error vector ε = 1 − cos

(
ẙ − ˚̂y

)
. Note that

CEM only harnesses the spatial (local and contiguous) struc-
ture of occlusion. In order to enhance the clustering effect of
CEM, we further consider the statistical structure of the error
calculated by CEM. To integrate the statistical local informa-
tion of the input error, [He et al., 2011] suggested using the
correntropy induced metric (CIM)

CIM (ei) , 1− exp

(
e2
i

2σ2

)
. (12)

We therefore incorporate CEM into CIM to form a new struc-
tural error metric

Ẽ
(
ẙi,˚̂yi

)
, CIM

(
CEM

(
ẙi,˚̂yi

))
. (13)

Figure 2 illustrates the whole calculating flow of (13). In
essence, the structural error metric (13) amounts to orderly
imposing three smoothing operations (cosine, K-means and
Gaussian) on the gradient orientation difference ẙ− ˚̂y, which
finally smooth the diversity of the whole error values and thus
induce a uniform distribution of the measured SE ẽ on the
interval [0, 1). The experiment in Figure 3 (f) demonstrates
that p (ẽ|ĕ) is more and more close to a uniform distribution
with the improvement of the quality of the recovering image
ŷ.

The uniform distribution of the structural error ẽ calculated
by (13) can not be used to infer ẽ, but can be utilized as a stop-
ping iterative criterion of our proposed algorithm, as shown
in Figure 3 (f). We calculate ẽ by directly inputting the entries
of ẙ and ˚̂y(t) = Φ

(
Ax(t)

)
into the error metric (13).

3.3 Bayesian Inference of Occlusion Support
We now consider the conditional probabilistic mass function
(PMF) p (s|ẽ). Since s and ẽ have the same dimension and
similar structure (i.e., the larger the structural error ẽi, the
more tendency si = 1), we explore p (s|ẽ) from a Bayesian
perspective

p (s|ẽ) ∝ p (ẽ|s) p (s) , (14)

where p (s|ẽ) is viewed as a posterior PMF, p (ẽ|s) is the like-
lihood function, and p (s) is the prior probability of s. This
Bayesian model has been explored deeply in [Zhou et al.,
2009]. By summarizing the work of [Zhou et al., 2009] and
incorporating (14) into (7), we have the following optimiza-
tion problem

s(t) = arg max
s

m∑
i=1

∑
j∈N (i)

λssisj

+
m∑
i=1

(
1− 3

2
Kτ
(
ẽ

(t)
i

)
+ λµ

)
si (15)

where Kτ (ẽi) =

{
1, |ẽi| > τ

0, |ẽi| ≤ τ
. (15) can be solved using

graph cuts [Kolmogorov and Zabih, 2004].

4 The Algorithm
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Figure 3: Detailed illustration of the iterative procedure of
the proposed algorithm. (a) The selected features marked by
red point. (b) The histograms (Gaussian distribution) of the
discriminative errors. (c) The reconstructed images. (d) The
IGO transformed faces of the reconstructed images. (e) The
structural errors. (f) The histograms (uniform distribution) of
the structural errors. (g) The detected occluded points marked
by red points.

By iteratively using (9), (13) and (15), we could solve the
MEC problem (4). The important outputs of this iterative pro-
cedure are the the occlusion/feature support s and the coding
coefficient x. Using s and x, we are able to identify the test
image y from the training set A based on some measure of
goodness-of-fit. In this work, we adopt a subject specific re-
construction classifier similar to the sparse classifier proposed
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by [Wright et al., 2009], but the major difference is that the
classifier introduced here is based on the selected features.

Algorithm 1 summarizes the whole procedure of optimiz-
ing the MEC model (4). Figure 3 gives a detailed illustration
of the iterative procedure.

Algorithm 1 Mixed Error Coding (MEC)
Input: training data A, test sample y.
Output: occlusion/feature support s, identity (y).

1. Calculate the mean face ŷ of the training image A;
2. Transform y, ŷ and A into the IGO domain: ẙ = Φ (y),

˚̂y = Φ (ŷ), Å = Φ (A);
3. Repeat
4. Calculate the structural error ẽ: ∀i ∈ {1, 2, · · · ,m},
ẽi = CC

(
ẙi,˚̂yi

)
;

5. Recover the occlusion support s by solving (15);
6. Calculate the discriminative error ĕ and the coding co-

efficient x by solving (9);

7. Calculate the reconstruction ˚̂y = Φ (Ax);
8. Until maximum iterations or convergence.
9. For k = 1, · · · ,K, compute the residuals rk =∥∥∥ 1

2 (1− s̆)�
(
y̆ − Ăδk (x)

)∥∥∥2

2
, where δk (x) is a new

vector whose only nonzero entries are the ones in x that
correspond to subject k;

10. identity (y) = arg mink rk.

5 Experiments
To evaluate the performance of the proposed MEC algorithm,
we compare it with four related popular methods for robust
face recognition with occlusion: IGO-PCA [Tzimiropoulos
et al., 2012], SSEC [Li et al., 2013], CESR [He et al., 2011]
and RSC [Yang et al., 2011]. The parameters of our MEC
algorithm are selected as: λµ = 0, τ = 0.3,λs = 2 and
σ = 0.75 in CIM. The parameters of the other methods are
set according to the strategy suggested in their papers.

We conduct a set of experiments on the Extended Yale
B database [Georghiades et al., 2001] and the AR database
[Martínez, 1998]. The Extended Yale B database contains
2414 frontal face images of 38 persons under 64 different
illumination conditions. The AR database, which is one of
the very few databases that contain real disguise, consists
of over 4,000 color images corresponding to 126 persons’
frontal view faces with different facial expressions (neutral,
smile, anger, and scream), illumination conditions (left light
on, right light on, and all side lights on), and occlusions (sun-
glasses and scarves). 26 pictures were taken for each person
in two sessions.

5.1 Synthetic Occlusions Mixed with Various
Illuminations

In this experiment, we use the Extended Yale B database
to test the robustness of our algorithm against various lev-
els of synthetic occlusions under various illumination con-
ditions. The illumination conditions of the Extended Yale
B database are partitioned to 5 subsets: from normal illu-
mination variations to extreme ones. For training, we use
images from Subset I and II (717 images, with normal-to-
moderate illumination conditions); for testing, we use im-
ages from Subset III (453 images, with extreme illumina-
tion conditions), Subset IV (524 images, with more extreme
illumination conditions) and Subset V (712 images, with
the most extreme illumination conditions), respectively. To
simulate different levels (from 0% to 90%) of contiguous
occlusion, we replace a random block of each test image
with a mandrill image, which has similar structure with the
human face and has been widely used as synthetic occlu-
sion in robust face recognition testing [Wright et al., 2009;
Zhou et al., 2009; Yang et al., 2011; He et al., 2011;
Li et al., 2013].All images are cropped and resized to 96 ×
84 pixels. Note that this experimental setting is similar to the
one in [Wei et al., 2012].

Figure 4 compares the recognition rates of MEC with other
related approaches on the three different test subsets, respec-
tively. Compared to MEC and IGO-PCA, the recognition per-
formances of SSEC, CESR and RSC drop sharply with the il-
lumination conditions worsening from Subset III to IV, which
manifests the importance of the IGO features against illumi-
nation changes. Clearly, in this experiment, the nearest com-
petitor of MEC is IGO-PCA, which performs almost as well
as MEC when the occlusion level is lower than some break-
down point. This breakdown point, however, rapidly declines
with the illumination conditions of the test images worsening.
This illustrates that the illumination conditions greatly inten-
sify the effect of occlusions in face recognition. Especifically
for the most extreme illumination conditions of Subset V, the
breakdown point almost decreases to 0 and MEC significantly
outperforms IGO-PCA, as seen from Figure 4 (c). This indi-
cates the important role of the feature selection of MEC.

5.2 Real-world Disguises Mixed with Highlight
Illuminations

We next test our algorithm on real disguises mixed with non-
uniform illuminations using the AR Face database. We se-
lect a subset of the database that consists of 65 male subjects
and 54 female subjects. The grayscale images are resized to
resolution 112 × 92. For training, we use 952 non-occluded
frontal view images (8 images for each subject) with vary-
ing facial expressions but normal illuminations. For testing,
we use images that simultaneously contain illumination vari-
ations (normal/right-side/left-side light conditions) and dis-
guises (sunglasses and scarves).

Figure 5 compares the recognition rates of different meth-
ods using different downsampled images of dimensions 154,
644, 2576, and 1,0304, which correspond to downsampling
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Figure 4: Recognition against mandrill occlusion with various levels (0%~90%) on the Extended Yale B database. The synthetic
occluded images are imposed on 3 different illuminations subsets, respectively: (a) Subset III, (b) Subset IV, and (c) Subset V.

Log of Feature Dimension

R
ec

og
ni

tio
n 

R
at

e 
(%

)

154 644 2576 10304

20

30

40

50

60

70

80

 

 

MEC
IGO-PCA
SSEC
CESR
RSC

(a)

(b)
Log of Feature Dimension

R
ec

og
ni

tio
n 

R
at

e 
(%

)

154 644 2576 10304
0

10

20

30

40

50

60

70

80

90

 

 

MEC
IGO-PCA
SSEC
CESR
RSC

Figure 5: Recognition rates of various algorithms under var-
ious feature spaces against real-world occlusions in the AR
database: (a) sunglasses occlusion, (b) scarf occlusion.

ratios of 1/8, 1/4, 1/2, and 1, respectively. With feature
dimensions increasing, the recognition performance of our
MEC dramatically outperforms the other four methods. Spe-
cially, at the dimension of 1,0304, compared to the nearest
competitors IGO-PCA and RSC, MEC achieves over 20%

and 25% higher recognition rates for the sunglasses and scarf
disguises, respectively. Note that the recognition rate gaps
between MEC and IGO-PCA in Figure 4 are much smaller
than the ones in Figure 5. This is mainly caused by the oppo-
site illumination conditions: the illuminations in Figure 4 are
dark and shadowed, while the illuminations in Figure 5 are
mostly with highlight conditions. Clearly, the high speculari-
ties cannot be well normalized in the IGO domain. In this sce-
nario, feature selection becomes very important. The signifi-
cantly higher recognition rates of our MEC than those of the
other four methods at high dimensions show that MEC has a
strong feature selection ability in high feature space. We also
observe that the recognition rate of SSEC against scarf dis-
guises (see Figure 5 (b)) significantly outperforms the other
compared methods at the low dimension. This inspires us to
further study the occlusion structure of the low dimensional
image from SSEC in the IGO domain in the future.

6 Conclusions
We propose a mixed error coding (MEC) model for robust
classification of face images with mixed occlusions. To cope
with the complex variations caused by mixed occlusions,
MEC distinguishes the error used to code the occluded image
from the error used to estimate its occlusion/feature support,
and explores the statistical correlations between the two var-
ious errors and the occlusion support in the domain of image
gradient orientations. An important result of this exploration
is a well-designed structural error metric, which fully uses
the spatial and statistical structure of the gradient orientation
differences of two compared images and plays an important
role in feature selection. Experiments demonstrate the effec-
tiveness and robustness of MEC in dealing with mixed occlu-
sions.
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