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Abstract
Kernel sparse coding is an effective strategy to cap-
ture the non-linear structure of data samples. How-
ever, how to learn a robust kernel dictionary re-
mains an open problem. In this paper, we propose
a new optimization model to learn the robust ker-
nel dictionary while isolating outliers in the training
samples. This model is essentially based on the de-
composition of the reconstruction error into small
dense noises and large sparse outliers. The outlier
error term is formulated as the product of the sam-
ple matrix in the feature space and a diagonal coef-
ficient matrix. This facilitates the kernelized dictio-
nary learning. To solve the non-convex optimiza-
tion problem, we develop a whole sequence conver-
gent algorithm which guarantees the obtained solu-
tion sequence is a Cauchy sequence. The experi-
mental results show that the proposed robust ker-
nel dictionary learning method provides significant
performance improvement.

1 Introduction
Sparse coding, which assumes that the signal can be sparsely
represented by a dictionary, has become an active topic
for scholars in the fields of machine learning and signal
processing[Cheng et al., 2009]. However, the linear recon-
struction assumption which is explicitly imposed by many
existing work is not valid for many practical signals[Cheng et
al., 2013][Yang et al., 2015], particularly those well-modeled
by manifolds[Hussein et al., 2013][Ma et al., 2014]. [Gao et
al., 2010] showed that one can use the kernel trick to perform
sparse coding in the high-dimensional feature space instead
of the input space in order to capture the non-linear structure
of signals more efficiently. Kernel sparse coding has therefore
extensive applications in many fields. On one hand, the high
dimensionality of the feature space typically yields a more
discriminative representation than input data space[Gao et al.,
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2013][Nguyen et al., 2013]. On the other hand, kernel trick
provides effective strategy for sparse coding on Riemannian
manifold[Harandi and Salzmann, 2015], of which structure
is more complicated than the Euclidean space[Wang et al.,
2014].

Similar to the linear sparse coding, the dictionary learn-
ing problem of kernel sparse coding is also very important.
If we map the training samples into a higher dimensional
feature space by a proper mapping function, and learn the
dictionary in this feature space, we expect a better linear
representation. In [Gao et al., 2010], the dictionary learn-
ing problem was tackled by gradient descent over the ba-
sis set in the input space directly. To compute the gradi-
ent, they had to resort to a specific kernel function such as
the Gaussian kernel. Similarly, [Harandi et al., 2012] and
[Li et al., 2013] addressed the dictionary learning problem
on Symmetry-Positive-Definite (SPD) manifold, using Stein
kernel and Log-Euclidean kernel, respectively. Very recently,
[Zhang et al., 2015] investigated the online dictionary learn-
ing on SPD manifold. All of those work deal with speci-
fied kernel and can limit their applicability considerably. In
[Xie et al., 2013], a nonlinear generalization of sparse cod-
ing and dictionray learning on manifold was proposed. This
method is not based kernel and requires an extra affine con-
straint on the coding coefficients, which may be unexpected
in practice. [Li and Ngom, 2012] revealed that the dictionary
optimization only needs inner products of samples and this
property can be used to kernelize linear sparse coding. Re-
cently, some scholars proposed more principled kernel dic-
tionary learning method[Anaraki and Hughes, 2013][Nguyen
et al., 2013][Liu et al., 2014][Kim, 2014][Harandi and Salz-
mann, 2015]. Those methods are based on the basic con-
clusion that the dictionary atoms in the feature space can be
linearly reconstructed by the samples in the feature space.
As a result, the complicated dictionary learning problem in
feature space is formulated as the rather simpler search of a
coefficient matrix.

Nevertheless, existing kernel sparse coding and dictionary
learning methods utilize square loss to measure the recon-
struction capability. Such a loss function may be sensitive
to the outliers[Liu et al., 2015]. Although the above litera-
tures proposed various methods for dictionary learning, none
investigated the outliers which may lie in the training sam-
ple set. It should be noted that in [Nguyen et al., 2013], the
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authors concerned the robustness but only added the corrup-
tions on the testing samples and the training samples are still
clean. Therefore, the robust kernel dictionary learning prob-
lem, which aims to learn a dictionary in the feature space
while isolating the outliers, has not been addressed. As a
comparison, the robust dictionary learning problem on Eu-
clidean space has been extensively studied by many scholars.
In [Chen and Wu, 2013], the error source decomposition tech-
nology was developed to solve the robust dictionary learning,
and [Pan et al., 2014] investigated the robust non-negative
dictionaries learning. It is not clear how to extend their work
to the kernel case. In [Nie et al., 2013], a robust kernel dic-
tionary selection method was developed for active learning.
However, this work addressed the problem of dictionary se-
lection, but not dictionary learning. In addition, [Kong et al.,
2011] addressed the robust nonnegative matrix factorization.
[Xia et al., 2012] investigated the robust kernel nonnegative
matrix factorization. Both work did not consider the influence
of sparsity.

In this work, we address the robust dictionary learning
problem under the framework of kernel sparse coding. The
main contributions are listed as follows:

1. A new optimization model is proposed to learn the ro-
bust kernel dictionary while isolating outliers in the
training samples. This model is essentially based on
the decomposition of the reconstruction error into small
dense noises and large sparse outliers. The latter is for-
mulated as the product of the sample matrix in the fea-
ture space and a diagonal coefficient matrix. This facili-
tates learning kernel dictionary.

2. A whole sequence convergent algorithm is developed
to solve the non-convex robust kernel dictionary learn-
ing problem. The solution sequence is proved to be a
Cauchy sequence and convergences to the critical point
of the original optimization problem.

3. We perform empirical comparisons of the proposed
method with the existing dictionary learning methods in
the applications to image classification, which justifies
that our method yields more robust results.

The rest of the organization of this paper is as follows: Sec-
tion 2 gives the problem formulation, followed by the algo-
rithm design and analysis in Section 3. Section 4 gives the
experimental results.

Notations: For a matrix M. The matrix norm ||M||2 is
defined as ||M||2 =

√
Tr(MTM). The pseudo-norm ||M||0

is defined as the number of the non-zero element in M. The
pseudo-norm ||M||0,2 is defined as the number of the non-
zero columns in M. For a vector u, we use ||u||2 to denote
its 2-norm, and ||u||0 to count the number of the non-zero
elements. The symbol I represents the identity matrix with
compatible dimension.

2 Problem formulation
Given the N training samples {yi}Ni=1 ⊂ M, where M is
a Riemannian manifold which also can be a subset of a Eu-
clidean space. If we map the training samples into a higher
dimensional space by a proper mapping function, we expect

a better linear representation. The linearity in feature space
corresponds to the nonlinearity in the original space. To this
end, we denote Φ(·) : M → H to be the implicit nonlinear
mapping fromM into a high-dimensional (maybe infinite di-
mensional) dot product spaceH. This mapping function is as-
sociated with some kernel κ(yi,yj) = ΦT (yi)Φ(yj), where
yi,yj ∈ M. For convenience, we denote the dimension of
H as d, which may be infinite.

The aim of dictionary learning is to empirically learn a dic-
tionary adapted to the training sample set {yi}Ni=1 that we
want to sparsely code. Therefore we need to determine some
atoms d1,d2, · · · ,dK ∈ H, where K < N is the size of the
dictionary, to sparsely represent each training sample in the
feature space. By denoting Φ(Y) = [Φ(y1), ...,Φ(yN )] ∈
Rd×K and D = [d1, ...,dK ] ∈ Rd×K , we can formulate the
kernel dictionary learning problem as

min
C,D
||Φ(Y)−DC||22 + λ1||C||0, (1)

where C ∈ RK×N is the sparse coding matrix and λ1 is the
sparsity penalty parameter.

By using the mapping function Φ(·), we can transform the
problem on Riemannian manifold to the linear coding prob-
lem in feature space. This is the great advantage of the ker-
nel sparse coding[Gao et al., 2013][Harandi and Salzmann,
2015]. While achieving great success in nonlinear sparse
coding, such a formulation admits challenge to the dictionary
learning since the dictionary atoms dj may be in infinite di-
mensional space. Fortunately, some recent literature pointed
that the dictionary can be represented by D = Φ(Y)A,
where A ∈ RN×K is a coefficient matrix. This means
that the dictionary atoms can be linearly reconstructed by the
training samples in the feature space. This conclusion was
proved in [Nguyen et al., 2013] and [Kim, 2014]. Based on
this formulation, the dictionary learning problem becomes

min
A,C
||Φ(Y)− Φ(Y)AC||22 + λ1||C||0. (2)

To avoid the non-unique solution, we impose the constraint
that ||aj ||2 = 1, where aj is the j-th column of A. Such a
formation provides significant convenience since the learning
of dictionary becomes the search of the matrix A and pro-
vides a principled derivation for nonlinear dictionary learning
and sparse coding that essentially reduces to linear problems
for any type of kernel function.

However, the reconstruction error term in Eq.(2) is the
squared loss function in the feature space and therefore it is
very sensitive to the data outliers, which may dominate the
objective function. To attenuate the influence of outlier, we
introduce an error matrix E = [e1, · · · , eN ] ∈ Rd×N , where
ei ∈ H for i = 1, 2, · · · , N , to give

min
A,C,E

||Φ(Y)−Φ(Y)AC−E||22+λ1||C||0+λ2||E||0,2 (3)

where λ2 is the parameter to penalize the column sparsity
of E. The motivation of this model is to isolate some few
columns in Φ(Y), which cannot be well reconstructed by the
dictionary. However, the challenge in solving model (3) lies
in the fact that ei is in the feature space and may be infinite
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dimension. To this end, we try to represent E using the sam-
ples Φ(Y). Since the non-zero columns of E correspond to
the columns of Φ(Y), we can represent

E = Φ(Y)R,

where R ∈ RN×N is a diagonal matrix. As a result, the
problem of outlier search is transformed into the problem of
determination of R. Furthermore, we assume that there does
not exist all-zero column in Φ(Y), i.e., ||Φ(Y)||0,2 = N ,
then we have

||E||0,2 = ||R||0,2 = ||r||0,

where r = diag(R) is defined as a column vector accommo-
dating the diagonal elements of the diagonal matrix R.

Therefore the robust kernel dictionary learning problem
can be formulated as the following optimization problem:

min ||Φ(Y)−Φ(Y)AC−Φ(Y)R||22 + λ1||C||0 + λ2||r||0
(4)

Please note that although the number of outlier is small, we
cannot impose the sparsity on R since it is a diagonal matrix
and therefore it is highly sparse. Instead, we encourage the
sparsity of the vector which is formed by the diagonal ele-
ments. This shows that the outlier isolation term in (4), key
to the robust dictionary learning, can be kernelized. Please
note that the reconstruction error term now can be formulated
as ||Φ(Y)(I−AC−R)||22 = Tr{(I−AC−R)TKY Y (I−
AC−R)}, where KY Y = ΦT (Y)Φ(Y).

The model in (4) provides twofold roles: (1) Learn the dic-
tionary coefficient A from the training sample set; and (2)
Isolate the outliers. However, the model (4) is highly non-
convex due to the coupling term AC and the zero norm terms
imposed on C and r. Neglecting the robustness problem,
[Harandi and Salzmann, 2015] and [Nguyen et al., 2013] de-
veloped method for dictionary learning. Both method are es-
sentially based on the Method of Optimal Directions (MOD)
method and Kernelized KSVD (K-KSVD) method. However,
no whole sequence convergency can be guaranteed for such
algorithms. That is to say, those algorithms at most can be
proved that the functional value decreases at each iteration,
but the solution sequence itself may not convergent. Moti-
vated by the alternating proximal linearized method proposed
by [Bolt et al., 2013] and [Bao et al., 2014], we develop a
whole sequence convergent algorithm to solve the optimiza-
tion problem in (4).

3 Algorithm design and analysis
To design the whole sequence convergent algorithm, we de-
note

H(A,C,R) = ||Φ(Y)− Φ(Y)AC− Φ(Y)R||22
F (A) = IA(A)
G(C) = λ1||C||0 + IC(C)
Q(R) = λ2||Re||0 + IR(R),

where IA(A) denotes the indicator function of A which sat-
isfies IA(A) = 0 if A ∈ A and +∞ otherwise, where
A = {A ∈ RN×K : ||aj ||2 = 1, j = 1, 2, · · · ,K}. Sim-
ilarly, the symbol IC(C) denotes the indicator function of C,

where C = {C ∈ RK×N : |Cij | ≤ cm}. The symbol IR(R)
denotes the indicator function, where R = {R ∈ RN×N :
|Rii| ≤ rm for i, j = 1, 2, · · · , N, and Rij = 0 for i 6=
j}. The values of cm and rm are simply set to serve as the
upper bounds.

Motivated by the alternating proximal linearized
method[Bao et al., 2014], we need to alternatively up-
date C, A and R. Before further processing, we formally
define the proximal operator as

ProxFµ (U) = arg min
X

F (X) +
µ

2
||U−X||22. (5)

In the following we introduce how to solve the three un-
known matrices C, A and R. For conveniens, we use the
superscript (k) to denote the values at the k-th iteration.

3.1 Calculating C

This step essentially realizes sparse coding. At the (k + 1)
iteration, we are given C(k), A(k), R(k), then we have

C(k+1) ∈ ProxG
µ
(k)
c

(C(k) − 1

µ
(k)
c

∇CH(A(k),C(k),R(k))),

where µ(k)
c is appropriately selected step size, and the gradi-

ent is calculated as

∇CH(A,C,R) = −2ATKY Y (I−R) + ATKY YAC.

Denote C∗ = C(k) − 1

µ
(k)
c

∇CH(A(k),C(k),R(k)), then
we have

C(k+1) ∈ argmin
C∈C

µ
(k)
c

2λ1
||C−C∗||22 + ||C||0. (6)

The (i, j)-element of C(k+1) can then be easily obtained as

C
(k+1)
ij =

{
min{C∗ij , cm} C∗ij ≥

√
2λ1/µ

(k)
c

0 Otherwise.
(7)

3.2 Calculating A

This step tries to update the dictionary coefficient ma-
trix. Since A is column normalization, we can update

it column by column as a
(k+1)
j ∈ Prox

F (Ā(k))

µ
(k)
aj

(a
(k)
j −

1

µ
(k)
aj

∇ajH(Ã(k),C(k+1),R(k))), where{
Ā(k) = [a

(k+1)
1 , · · · ,a(k+1)

j−1 ,aj ,a
(k)
j+1 · · · ,a

(k)
K ]

Ã(k) = [a
(k+1)
1 , · · · ,a(k+1)

j−1 ,a
(k)
j ,a

(k)
j+1 · · · ,a

(k)
K ].

In addition, µ(k)
aj is appropriately selected step-size and the

gradient is calculated as ∇ajH(A,C,R) = −2KY Y (I −
R)CTqj + 2KY YACCTqj , where qj is a K-dimensional
vector of which the j-th element is 1 and the other elements
are zeros.

Denote a∗j = a
(k)
j − 1

µ
(k)
aj

∇aj
H(Ã(k),C(k+1),R(k)), then

we have
a

(k+1)
j ∈ argmin

||a||2=1

||a− a∗j ||22, (8)
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and the solution is easily obtained as a
(k+1)
j = a∗j/||a∗j ||2.

After obtaining a
(k+1)
j for j = 1, 2, · · · ,K, we can naturally

obtain the dictionary coefficient matrix solution A(k+1) =

[a
(k+1)
1 , · · · ,a(k+1)

K ].

3.3 Calculating R

Given C(k+1), A(k+1) and R(k), the value of R
can be updated as R(k+1) ∈ ProxQ

µ
(k)
r

(R(k) −
1

µ
(k)
r

∇RH(A(k+1),C(k+1),R(k))), where µ
(k)
r is ap-

propriately selected step size and the gradient is calculated
as

∇RH(A,C,R) = −2KY Y + 2KY YAC + 2KY YR.

Denote R∗ = R(k) − 1

µ
(k)
r

∇RH(A(k+1),C(k+1),R(k)),
then we have

R(k+1) ∈ argmin
R∈R

µ
(k)
r

2λ2
||R−R∗||22 + ||r||0. (9)

The solution can be obtained as

R
(k+1)
ii =

{
min{R∗ii, rm} R∗ii ≥

√
2λ2/µ

(k)
r

0 Otherwise.
(10)

3.4 Selection of step sizes
The step-sizes µ(k)

c , µ(k)
aj , µ(k)

r should be determined during
the solving procedure. To this end, we need to calculate
the Lipschitz constants L(k)

c , L(k)
aj and L

(k)
r which satisfy

||∇CH(A(k),C1,R
(k)) − ∇CH(A(k),C2,R

(k))||2 ≤
L

(k)
c ||C1 − C2||2, ||∇ajH(aj1,C

(k),R(k)) −
∇ajH(aj2,C

(k),R(k))||2 ≤ L
(k)
aj ||a

(k)
j1 − a

(k)
j2 ||2, and

||∇RH(A(k),C(k),R1) − ∇RH(A(k),C(k),R2)||2 ≤
L

(k)
r ||R1 − R2||2, respectively. By simple calcu-

lation, we can select L
(k)
c = ||A(k)TKY YA

(k)||2,
L

(k)
aj = 2||KY Y ||2||C(k)C(k)Tqj ||2, and L(k)

r = 2||KY Y ||2.
After obtaining the values of L(k)

c , L(k)
aj , and L(k)

r , we can
determine the step-sizes as µ(k)

c = max(ρL
(k)
c , µmin), µ(k)

aj =

max(ρL
(k)
aj , µmin) and µ(k)

r = max(ρL
(k)
r , µmin), where ρ >

1 and µmin is a prescribed upper bound. In our work, we set
ρ = 1.1 and µmin = 0.1.

From the above derivation we can clearly see that the se-
quences {L(k)

c }, {L(k)
aj } and {L(k)

r } are all bounded sequence
because the sequences {C(k)} and {A(k)}, and the value of
KY Y are bounded.

3.5 Algorithm analysis
The iteration procedure developed in the above sections
presents excellent property which is summarized in the fol-
lowing theorem.

Theorem 1: The solution sequence {A(k),C(k),R(k)},
which is generated by the iteration procedure in Eqs.(7), (8)
and (10), is a Cauchy sequence and converges to a critical
point of (4).

Proof: The proof is essentially based on the results in [Bao
et al., 2014] and [Bolt et al., 2013]. Here we provide a
straightforward sketch proof. First, the objective functions
H(A,C,R), F (A), G(C) and Q(R) are obviously semi-
algebraic functions and therefore the whole objective func-
tion in (4), which can be written as H(A,C,R) + F (A) +
G(C) + Q(R), is a semi-algebraic function, and therefore
satisfy the Kurdyka-Lojasiewicz property. Secondly, the se-
quence {A(k),C(k),R(k)} is bounded and the step-sizes
µ

(k)
c , µ(k)

aj and µ(k)
r are bounded. Thirdly, ∇H(A,C,R) =

(−2KY Y (I−R)CT +2KY YACCT ,−2ATKY Y (I−R)+
ATKY YAC,−2KY Y + 2KY YAC + 2KY YR) has Lips-
chitz constant on any bounded set. Therefore, by adopting the
results of Theorem 6.1 in [Bao et al., 2014], the solution se-
quence is a Cauchy sequence and converges to a critical point
of (4).

The conclusion in Theorem 1 clearly illustrates that the
sequence {A(k),C(k),R(k)} is a sequence whose elements
become arbitrarily close to each other as the sequence pro-
gresses. Therefore, the developed algorithm achieves whole
sequence convergence. Such a property provides important
practical values since the number of iterations does not need
to be determined empirically[Bao et al., 2014].

4 Experimental results
In this section we present several experimental results demon-
strating the effectiveness of the proposed robust kernel dictio-
nary learning.

4.1 Synthetic Data
The synthetic data is used to illustrate the outlier rejec-
tion role of the proposed method. Similar to the setting in
[Nguyen et al., 2013], we learn the dictionary from 500 data
sample set {yi}500

i=1 that is generated from a 2-dimensional
parabola {yi = [yi,1, yi,2]T ∈ R2|yi,2 = y2

i,1}. To corrupt
the data, we replace yj for j = {120, 220, 320, 420} as newly
generated random vectors. Therefore 4 outliers are incorpo-
rated into the sample set. We then preprocess all the samples
to have unit L2 norm,

We use a polynomial kernel of degree 2 and set the size of
the dictionary to be 20. For K-KSVD, the sparsity is set to 5.
For the proposed method, we solve the optimization problem
in Eq.(2) with λ1 = 0.01 and λ2 = 0.001.

Fig.1 shows the results. The left panel shows the conver-
gence behavior of the proposed method. It shows that the
increment indeed converges to zero after several iterations.
We also show the convergence behavior of the sparse coding
coefficient matrix of K-KSVD method in the right-top panel,
which illustrates that the generated sequence does not con-
verge to zero. This validates that K-KSVD has at most sub-
sequence convergence, while the proposed method has whole
sequence convergence. Finally, we show the elements of the
vector r which is the diagonal elements of R in the right-
bottom panel. It clearly shows that the imposed outlier can be
reliably isolated, while K-KSVD has no capability to isolate
outliers. The results clearly indicate the effectiveness of the
proposed algorithm.
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Figure 1: The results of the synthetic example.

4.2 Dataset
In this section we use 4 publicly available datasets to com-
pare several dictionary learning methods. For USPS dataset,
we use the vector feature and Gaussian kernel κ(yi,yj) =
exp(−γ||yi − yj ||22). For the rest three datasets, we cal-
culate specified feature vector fu,v for each pixel at (u, v)
in one image and use the popular Region Covariance De-
scriptor (RCovD)[Hussein et al., 2013] to represent the im-
age. Since RCovDs do not lie in Euclidean space, we use
the Log-Euclidean kernel κ(yi,yj) = exp(−γ||logm(yi) −
logm(yj)||22)[Li et al., 2013]. By such settings we show that
the kernel dictionary learning can be adapted different ker-
nel forms. In all of the experiments, the parameter is set as
γ = 0.02. In the following we list some details about the
datasets.

1. USPS digit recognition[Nguyen et al., 2013]: This
dataset contains 10 classes of 256-dimensional hand-
written digits. For each class, we randomly select N =
500 samples for training and 200 samples for testing.
This setting was suggested in [Nguyen et al., 2013] for
K-KSVD method.

2. Virus image classification[Harandi and Salzmann,
2015]: This dataset includes 15 different classes. Each
class has 100 images of size 41 × 41. For each class,
we randomly select N = 80 samples for training and 20
samples for testing. At each pixel (u, v) of an image,
we compute the 25-dimensional feature vector fu,v =
[Iu,v, |∂I/∂u|, |∂I/∂v|, |∂2I/∂u2|, |∂2I/∂v2|, |G0,0

u,v|,
· · · , |G4,5

u,v|]T , where Iu,v is the intensity value, Go,su,v is
the response of a 2D Gabor wavelet with orientation o
and scale s, and | · | denotes the magnitude of a com-
plex value. Therefore, we generated 20 Gabor filters at
4 orientations and 5 scales.

3. Kylberg texture classification[Kylberg, 2011]: This
dataset includes 28 classes. Each class has 160 samples
which are resized as 128 × 128. For each class, we
randomly select N = 80 samples for training and 80
samples for testing. At each pixel (u, v) of an image,

we compute the 5-dimensional feature vector fu,v =
[Iu,v, |∂I/∂u|, |∂I/∂v|, |∂2I/∂u2|, |∂2I/∂v2|]T ,
where Iu,v is the intensity value.

4. UCMERCED scene classification[Yang and Newsam,
2010]: This dataset includes 21 challenging scene
categories with 100 samples per class. For each class,
we randomly select N = 80 samples for training
and 20 samples for testing. At each pixel (u, v) of
an image, we compute the 15-dimensional feature
vector fu,v = [fTR,u,v, f

T
G,u,v, f

T
B,u,v]

T , where fTC,u,v =

[IC,u,v, |∂IC/∂u|, |∂IC/∂v|, |∂2IC/∂u
2|, |∂2IC/∂v

2|]
and IC is the intensity image for the C channel and
C ∈ {R,G,B} represents one of the color channel.

In all of the above datasets, the training/testing split is
randomly repeated for 10 times and the average results are
reported. In addition, we generate corresponding corrupt
datasets by selecting ρ% training samples in each class and
replace them with the corresponding outlier images. The out-
lier image is produced by overlaying a rand noise block of
which area is a half of the original image. The value of ρ is
selected from {0, 10, 20, 30, 40, 50}.

For comparison, we designed the following dictionary
learning methods:

1. randDict: This method just randomly selects K atoms
subset {s1, · · · , sK} from the training sample set
{yi}Ni=1to construct the dictionary.

2. K-Means method: For vector descriptor, we just use
the conventional k-means clustering method to get the
K dictionary atoms. For RCovD, we first map the co-
variance matrices to the linear space by matrix loga-
rithm, in which the clustering is performed and the re-
sults are then mapped back to the Symmetry-Positive-
Definite manifold. As a result, we also get the dictionary
as {s1, · · · , sK}.

3. GRADient method. For the dataset using Gaussian ker-
nel, we follow the method in [Gao et al., 2010] to learn
the dictionary. For the datasets using Log-Euclidean
kernel, we follow the method in [Li et al., 2013] to
learn the dictionary. The dictionary is also denoted as
{s1, · · · , sK}.

4. K-KSVD method: This method was originally devel-
oped in [Nguyen et al., 2013]. It utilizes the kernelized
KSVD method to learn the dictionary. In this case, the
obtained dictionary is denoted as Φ(Y)A ∈ Rd×K . The
default parameter suggested in [Nguyen et al., 2013] are
used for this implementation.

As to the proposed method, we fix the regularization pa-
rameters λ1 = 0.001 and λ2 = 0.0001 and the maximum
iteration number is 100. Please note that the dictionaries in
K-KSVD and the proposed method are learned in the feature
space, while randDict, K-Means and GRAD methods learn
the dictionaries in the input space. Nevertheless, the relation
{si}Ki=1 ⊂ {yi}Ni=1 holds for randDict only.

Because the dictionary learning is essentially non-convex
problem, for GRAD, K-KSVD and the proposed one, we ran-
domly initialize the dictionary ten times and pick the one with
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Figure 2: The results on the public datasets. From left to right: USPS, Virus, Kylberg, UCMERCED.

Figure 3: The influences of λ2. From left to right: USPS, Virus, Kylberg, UCMERCED. Legend: ——– ρ = 0, ——– ρ = 10,
——– ρ = 20, ——– ρ = 30, ——– ρ = 40, ——– ρ = 50.

minimum reconstruction error over the training set. In all our
experiments, we fix the size of the dictionary to be K = 30.
Since all of the compared methods except the proposed one
does not equip outlier rejection capability, we resort the clas-
sification task to evaluate their performance. We use simi-
lar approaches as in [Nguyen et al., 2013] for classification.
The algorithm starts with learning a dictionary for each class.
In particular, we aggregate all training images for each cat-
egory into Yc = {yc,1, · · · ,yc,Nc}, where c represents the
c-th class and Nc is the number of the samples in the c-th
class. Let Sc = {sc,1, · · · , sc,K} denotes the learned dictio-
nary in the original space for the c−th class. Such a dictio-
nary can be obtained by using the methods of randDict, K-
Means, and GRAD. For K-KSVD and the proposed one, the
dictionaries are learned in the feature space and therefore we
use Dc = Φ(Yc)Ac to denote the learned kernel dictionary
for the c-th class, where Ac is the learned coefficient matrix.
Given a query sample z, we first perform the spare coding for
each Dc to get the sparse code cc. The sparse setting is the
same as the training phase. The reconstruction error for the
c-th class is denoted as rc = ||Φ(z) − Φ(Sc)cc||22 for rand-
Dict, K-Means and Grad, and rc = ||Φ(z) − Φ(Yc)Accc||22
for K-KSVD and the proposed one. Finally, The test sample
is simply classified to the class that gives the smallest recon-
struction error.

The classification accuracies on the 4 datasets are reported
in Fig.2. It is not surprising that all the curves are monoton-
ically decreasing along the increasing of ρ. From those re-
sults we summarize the following observations: (1)K-Means
and GRAD do not show significant advantages over rand-
Dict. In some especial cases when ρ is large, their perfor-
mances are even worse than randDict. The main reason is
that the dictionary atoms in K-Means and GRAD are learned
but not selected and all of atoms are contaminated by the out-

liers. This means the learning procedures in k-means clus-
tering and gradient learning are strongly affected by the out-
liers. On the contrary, randDict selects some existing training
samples to be the dictionary atoms and therefore some atoms
may be clean samples. (2) The performance of the proposed
method and K-KSVD is consistently better than that of the
other methods. The reason is partially due to the fact that
both methods learn dictionaries in the feature space, but not
the input space. (3) When the outlier level ρ is small, the
performance difference between the proposed method and K-
KSVD is not significant. However, with the increasing of
ρ, the advantage of the proposed method becomes obvious.
The intrinsic reason is that the proposed dictionary learning
method explicitly isolates the outliers in the training samples.
In this sense, the proposed method learns a cleaner dictionary.

Empirically the proposed algorithm works well when the
parameter λ2 is in the interval [10−5, 10−3]. When λ2 is too
large, the outlier cannot be isolated. On the contrary, when
λ2 is too small, too many training samples may be mistak-
enly isolated as outliers. To study the influence of λ2, we fix
λ1 = 0.001 and vary λ2 from 10−6 to 1 and run the algorithm
on the 4 datasets. In Fig.3 we show the classification accura-
cies corresponding to different noise levels. The results show
that the proposed algorithm is not very sensitive to the pa-
rameter λ2 and a properly-designed robust term indeed plays
important role in dictionary learning. In addition, the role of
outlier isolation diminishes when λ2 is larger than 10−2.

5 Conclusions
In this paper, we propose an optimization model for robust
kernel dictionary learning which has capability to isolate the
outliers. A whole sequence convergent algorithm is devel-
oped to solve the non-convex optimization problem and the
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experimental results show that the proposed robust kernel dic-
tionary learning method provides significant performance im-
provement.
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