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Abstract
This paper deals with the problem of nonparamet-
ric independence testing, a fundamental decision-
theoretic problem that asks if two arbitrary (possi-
bly multivariate) random variables X,Y are inde-
pendent or not, a question that comes up in many
fields like causality and neuroscience. While quan-
tities like correlation of X,Y only test for (univari-
ate) linear independence, natural alternatives like
mutual information of X,Y are hard to estimate
due to a serious curse of dimensionality. A recent
approach, avoiding both issues, estimates norms of
an operator in Reproducing Kernel Hilbert Spaces
(RKHSs). Our main contribution is strong empir-
ical evidence that by employing shrunk operators
when the sample size is small, one can attain an im-
provement in power at low false positive rates. We
analyze the effects of Stein shrinkage on a popu-
lar test statistic called HSIC (Hilbert-Schmidt Inde-
pendence Criterion). Our observations provide in-
sights into two recently proposed shrinkage estima-
tors, SCOSE and FCOSE - we prove that SCOSE
is (essentially) the optimal linear shrinkage method
for estimating the true operator; however, the non-
linearly shrunk FCOSE usually achieves greater
improvements in test power. This work is impor-
tant for more powerful nonparametric detection of
subtle nonlinear dependencies for small samples.

1 Introduction
The problem of nonparametric independence testing deals
with ascertaining if two random variables are independent
or not, making no parametric assumptions about their under-
lying distributions. Formally, given n samples (xi, yi) for
i ∈ {1, ..., n} where xi ∈ Rp, yi ∈ Rq , that are drawn from
a joint distribution PXY supported on X × Y ⊆ Rp+q , we
want to decide between the null and alternate hypotheses

H0 : PXY = PX × PY vs. H1 : PXY 6= PX × PY
where PX , PY are the marginals of PXY w.r.t. X,Y . A test
is a function from the data to {0, 1}. Tests aim to have high
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power (probability of detecting dependence, when it exists)
at a prespecified allowable type-1 error rate α (probability of
detecting dependence when there isn’t any).

Independence testing is often a precursor to further anal-
ysis. Consider for instance conditional independence testing
for inferring causality, say by the PC algorithm [Spirtes et
al., 2000], whose first step is (unconditional) independence
testing. It is also useful for scientific discovery like in neu-
roscience, to see if a stimulus X (say an image) is indepen-
dent of the brain activity Y (say fMRI) in a relevant part of
the brain. Since detecting nonlinear correlations is much eas-
ier than estimating a nonparametric regression function (of
Y onto X), it can be done at smaller sample sizes, with fur-
ther samples collected for estimation only if an effect is de-
tected by the hypothesis test. For such situations, correla-
tion only tests for univariate linear independence, while other
statistics like mutual information that do characterize multi-
variate independence are hard to estimate from data, suffer-
ing from a serious curse of dimensionality. A recent popular
approach for this problem (and a related two-sample testing
problem) involve the use of quantities defined in reproducing
kernel Hilbert spaces (RKHSs) - see [Gretton et al., 2006;
Harchaoui et al., 2007; Gretton et al., 2005b; 2005a].

This paper will concern itself with increasing the statistical
power at small samples of a popular kernel statistic called
HSIC, by using shrunk empirical estimators of the unknown
population quantity (introduced below).

1.1 Hilbert Schmidt Independence Criterion
Due to limited space, familiarity with RKHS terminology is
assumed - see [Scholkopf and Smola, 2002] for an introduc-
tion. Let k : X ×X → R and l : Y×Y → R be two positive-
definite reproducing kernels that correspond to RKHSs Hk
andHl respectively with inner-products 〈·, ·〉k and 〈·, ·〉l. Let
k, l arise from (implicit) feature maps φ : X → Hk and
ψ : Y → Hl. In other words, φ, ψ are not functions, but
mappings to the Hilbert space. i.e. φ(x) ∈ Hk, ψ(y) ∈ Hl
respectively. These functions, when evaluated at points in the
original spaces, must satisfy φ(x)(x′) = 〈φ(x), φ(x′)〉k =
k(x, x′) and ψ(y)(y′) = 〈ψ(y), ψ(y′)〉l = l(y, y′).

The mean embedding of PX and PY are defined as µX :=
Ex∼PX

φ(x) ∈ Hk and µY := Ey∼PY
ψ(y) ∈ Hl whose

empirical estimates are µ̂X := 1
n

∑n
i=1 φ(xi) and µ̂Y :=

1
n

∑n
i=1 ψ(yi). Finally, the cross-covariance operator of
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X,Y is defined as

ΣXY := E(x,y)∼PXY
(φ(x)− µX)⊗ (ψ(y)− µY )

where ⊗ is an outer-product. For unfamiliar readers, if we
used the linear kernel k(x, x′) = xTx′ and l(y, y′) = yT y′,
then the cross-covariance operator is just the cross-covariance
matrix. The plug-in empirical estimator of ΣXY is

SXY :=
1

n

n∑
i=1

(φ(xi)− µ̂X)⊗ (ψ(yi)− µ̂Y )

For conciseness, define φ̃(xi) = φ(xi) − µ̂X , ψ̃(yi) =

ψ(yi) − µ̂Y , k̃(x, x′) = 〈φ̃(x), φ̃(x′)〉k and l̃(y, y′) =

〈ψ̃(y), ψ̃(y′)〉l. The test statistic Hilbert-Schmidt Indepen-
dence Criterion (HSIC) defined in [Gretton et al., 2005a] is
the squared Hilbert-Schmidt norm of SXY , and can be cal-
culated using centered kernel matrices K̃, L̃, where K̃ij =

k̃(xi, xj), L̃ij = l̃(yi, yj), as

HSIC := ‖SXY ‖2HS =
1

n2
tr(K̃L̃) (1)

For unfamiliar readers, if we used the linear kernel, this just
corresponds to the Frobenius norm of the cross-covariance
matrix. The most important property is: when the kernels
k, l are “characteristic”, then the corresponding population
statistic ‖ΣXY ‖2HS is zero iff X,Y are independent [Gretton
et al., 2005a]. This gives rise to a natural test - calculate
‖SXY ‖2HS and reject the null if it is large.

Examples of characteristic kernels include Gaussian
k(x, x′) = exp

(
−‖x−x

′‖22
γ2

)
and Laplace k(x, x′) =

exp
(
−‖x−x

′‖1
γ

)
, for any bandwidth γ, while the aforemen-

tioned linear kernel is not characteristic — the correspond-
ing HSIC tests only linear relationships, and a zero cross-
covariance matrix characterizes independence only for multi-
variate Gaussian distributions. Working with the infinite di-
mensional operator with characteristic kernels, allows us to
identify any general nonlinear dependence (in the limit) be-
tween any pair of distributions, not just Gaussians.

1.2 Independence Testing using HSIC
A permutation-based test is described in [Gretton et al.,
2005a], and proceeds in the following manner. From the
given data, calculate the test statistic T := ‖SXY ‖2HS . Keep-
ing the order of x1, ..., xn fixed, randomly permute y1, ..., yn
a large number of times, and recompute the permuted HSIC
each time. This destroyed any dependence between x, y sim-
ulating a draw from the product of marginals, making the
empirical distribution of the permuted HSICs behave like
the null distribution of the test statistic (distribution of HSIC
whenH0 is true). For a pre-specified type-1 error α, calculate
threshold tα in the right tail of the null distribution. RejectH0

if T > tα. This test was proved to be consistent against any
fixed alternative, meaning for any fixed type-1 error α, the
power goes to 1 as n → ∞. Empirically, the power can be
calculated using simulations by repeating the above permuta-
tion test many times for a fixed PXY (for which dependence

holds), and reporting the empirical probability of rejecting the
null (detecting the dependence). Note that the power depends
on PXY (unknown to the user of the test).

1.3 Shrunk Estimators of SXY

Even though SXY is an unbiased estimator of ΣXY , it typi-
cally has high variance at low sample sizes. The idea of Stein
shrinkage [Stein, 1956] is to trade-off bias and variance, first
introduced in the context of Gaussian mean estimation. This
strategy of introducing some bias and decreasing the variance
to get different estimators of ΣXY was followed by [Muandet
et al., 2014] who define a linear shrinkage estimator of SXY
called SCOSE (Simple Covariance Shrinkage Estimator) and
a nonlinear shrinkage estimator called FCOSE (Flexible Co-
variance Shrinkage Estimator). When we refer to shrunk es-
timators, we implicitly mean SCOSE and FCOSE. We will
describe these briefly in Section 2.

1.4 Contributions
Our first contribution is the following :

1. We provide evidence that employing shrunk estimators
of ΣXY , instead of SXY , to calculate the aforementioned
test statistic, can increase the power of the associated inde-
pendence test at low false positive rates, when the sample
size is small (there is higher variance in estimating infinite-
dimensional operators).

Our second contribution is to analyze the effect of shrink-
age on the test statistic, to provide some practical insight.

2. The effect of shrinkage on the test-statistic is very sim-
ilar to soft-thresholding (see Section 4), shrinking very small
statistics to zero, and shrinking other values nearly (but not)
linearly, and nearly (but not) monotonically.

Our last contribution is an insight on the two estimators
considered in this paper, SCOSE and FCOSE.

3. We prove that SCOSE is (essentially, up to lower order
terms) the optimal/oracle linear shrinkage estimator with re-
spect to quadratic risk (see Section 5). However, we observe
that FCOSE typically achieves higher power than SCOSE.
This indicates that it may be useful to search for the optimal
estimator in a larger class than linearly shrunk estimators, and
also that quadratic loss may not be the right loss function for
the purposes of test power.

The rest of this paper is organized as follows. Section 2 in-
troduces SCOSE, FCOSE and their corresponding shrunk test
statistics. Section 3 presents illuminating experiments that
bring out the statistically significant improvement in power
over HSIC. Section 4 conducts a deeper investigation into
the effect of shrinkage and proves the oracle optimality of
SCOSE under quadratic risk.

2 Shrunk Estimators and Test Statistics
Let HS(Hk,Hl) represent the set of Hilbert-Schmidt opera-
tors fromHk toHl. We first note that SXY can be written as
the solution to the following optimization problem.

SXY := min
Z∈HS(Hk,Hl)

1

n

n∑
i=1

∥∥∥φ̃(xi)⊗ ψ̃(yi)− Z
∥∥∥2
HS

Using this idea [Muandet et al., 2014] suggest the following
two shrunk/regularized estimators.
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From SCOSE to HSICS

This is derived in [Muandet et al., 2014] by solving

min
Z∈HS(Hk,Hl)

1

n

n∑
i=1

∥∥∥φ̃(xi)⊗ ψ̃(yi)− Z
∥∥∥2
HS

+ λ‖Z‖2HS

and the optimal solution (called SCOSE) is

SSXY :=

(
1− λ

1 + λ

)
SXY

where λ (and hence the shrinkage intensity) is estimated by
leave-one-out cross-validation (LOOCV), in closed form as

ρS :=

(
λCV

1 + λCV

)

=

[
1
n

∑n
i=1 K̃iiL̃ii − 1

n2

∑n
i,j=1 K̃ijL̃ij

]
(n− 2) 1

n2

∑n
i,j=1 K̃ijL̃ij + 1

n2

∑n
i=1 K̃iiL̃ii

Observing the expression for λCV in [Muandet et al., 2014],
the denominator can be negative (for example, with the Gaus-
sian kernel for small bandwidths, resulting in a kernel ma-
trix close to the identity). This can cause λCV to be nega-
tive, and ρS to be (unintentionally) outside the range [0, 1].
Though not discussed in [Muandet et al., 2014], we shall
follow the convention that when ρS < 0, we shall use
ρS = 0 and if ρS > 1, we use ρS = 1. Indeed, one
can show that

(
1− λ

1+λ

)
+
SXY dominates

(
1− λ

1+λ

)
SXY

where (x)+ = max{x, 0}. In Section 4, we prove that SSXY
is (essentially) the optimal/oracle linear shrinkage estimator
with respect to quadratic risk.

We can now calculate the corresponding shrunk statistic
HSICS = ‖SSXY ‖2HS =1−

1
n

∑n
i=1 K̃iiL̃ii − HSIC

(n− 2)HSIC +
1
n

∑n
i=1 K̃iiL̃ii

n

2

+

HSIC (2)

While the above expression looks daunting, one thing to
note is that the amount that HSIC is shrunk (i.e. the multi-
plicative factor) depends on the value of HSIC. As we shall
see in section 4, small HSIC values get shrunk to zero, but as
can be seen above, the shrinkage of HSIC is non-monotonic.

From FCOSE to HSICF

The Flexible Covariance Shrinkage Estimator is derived by
relying on the Representer theorem, see [Scholkopf and
Smola, 2002], to instead minimize

1

n

n∑
i=1

∥∥∥∥∥φ̃(xi)⊗ ψ̃(yi)−
n∑
i=1

βi
n
φ̃(xi)⊗ ψ̃(yi)

∥∥∥∥∥
2

HS

+ λ‖β‖22

over all β ∈ Rn, and the optimal solution (called FCOSE) is

SFXY :=
n∑
i=1

βλi
n
φ̃(xi)⊗ ψ̃(yi)

where βλ = (K̃ ◦ L̃+ λI)−1K̃ ◦ L̃1

where ◦ denotes elementwise (Hadamard) product, 1 is the
vector [1, 1, ..., 1]T , and as before the best λ is determined by
LOOCV. The procedure to evaluate the optimal λ efficiently
is described by [Muandet et al., 2014] - a single eigenvalue
decomposition of K̃◦L̃ costingO(n3) can be done, following
which evaluating LOOCV is only O(n2) per λ, see [Muandet
et al., 2014], section 3.1 for more details. As before, after
picking the λ by LOOCV, we can derive the corresponding
shrunk test statistic as

HSICF = ‖SSXY ‖2HS

=
1

n2
tr(M(M + λI)−1M(M + λI)−1M)

where M = K̃ ◦ L̃. Note here that the shrinkage is not
linear, and the effect on HSIC cannot be seen immediately.
Similar to SCOSE, we shall see in section 4, small HSIC val-
ues get shrunk to zero (LOOCV chooses a large λ).

3 Linear Shrinkage and Quadratic Risk
In this section, we prove that SCOSE is (essentially) optimal
within a particular class of estimators. Such “oracle” argu-
ments also exist elsewhere in the literature, like [Ledoit and
Wolf, 2004], so we provide only a brief proof outline.

Proposition 1. The oracle (with respect to quadratic risk)
linear shrinkage estimator and intensity is defined as

S∗, ρ∗ := arg min
Z∈HS,Z=(1−ρ)SXY ,0≤ρ≤1

‖Z − ΣXY ‖2HS

and is given by S∗ := (1− ρ∗)SXY where

ρ∗ :=
E‖SXY − ΣXY ‖2HS

E‖SXY ‖2

Proof. Define α2 = ‖ΣXY ‖2HS , β2 = E‖SXY − ΣXY ‖2HS ,
δ2 = E‖SXY ‖2. Since E[SXY ] = ΣXY , it is easy to verify
that α2 + β2 = δ2. Substituting and expanding the objective,
we get:

E‖Z − ΣXY ‖2HS = E‖ − ρSXY + (SXY − ΣXY )‖2HS
= ρ2δ2 + β2 − 2ρ(δ2 − α2)

= ρ2α2 + (1− ρ)2β2

Differentiating and equating to zero, gives ρ∗ = β2

δ2 .

This ρ∗ appears in terms of quantities that depend on
the unknown underlying distribution (hence the term ora-
cle estimator). We use plugin estimates b, d for β, δ. Let
d2 = ‖SXY ‖2HS = 1

n2

∑n
i,j=1 K̃ijL̃ij = HSIC. Since

β2 is the variance of SXY , let b2 be the sample variance
of SXY , i.e. b2 = 1

n
1
n

∑n
k=1 ||φ̃(xi) ⊗ ψ̃xi − SXY ||2 =

1
n

[
1
n

∑n
i=1 K̃iiL̃ii − 1

n2

∑n
i,j=1 K̃ijL̃ij

]
. Plugging these

into S∗ and simplifying, we see that HSIC∗ := ‖S∗‖2HS is

HSIC∗ =

(
1−

1
n

∑n
i=1 K̃iiL̃ii − HSIC

nHSIC

)2

HSIC (3)
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Comparing Eq.(3) with Eq.(2) shows that SCOSE is essen-
tially S∗, up to a factor in the denominator which is of the
same order as the bias of the HSIC empirical estimator1 (see
Theorem 1 in [Gretton et al., 2005a]). In other words, SCOSE
just corresponds to using a slightly different estimator for δ2
than the simple plugin d2, which varies on the same order as
the bias δ2−Ed2. Hence SCOSE, as estimated via regulariza-
tion and LOOCV, is (essentially) the optimal linear shrinkage
estimator under quadratic risk.

To the best of our knowledge, this is the first such char-
acterization of optimality of an estimator achieved through
leave-one-out cross-validation. We are only able to prove
this because one can explicitly calculate both the oracle linear
shrinkage intensity ρ∗ as well as the optimal λCV (as men-
tioned in Section 2). This raises a natural open question —
can we find other situations where the LOOCV estimator is
optimal with respect to some risk measure? (perhaps when
explicit calculations are not possible, like ridge regression).

4 Experiments
In this section, we run three kinds of experiments: a) to verify
that SCOSE has better quadratic risk than FCOSE and orig-
inal sample estimator, b) detailed synthetic experiments to
verify that shrinkage does improve power, across interesting
regimes of α = {0.01, 0.05, 0.1}, and c) real data obtained
from MNIST, to show that we shrinkage detect dependence
at much lower samples than the original data size.

4.1 Quadratic Risk
Figure 1 shows that SCOSE is indeed much better than both
SXY and FCOSE with respect to quadratic risk. Here, we cal-
culate E‖Z − ΣXY ‖2HS for the distribution given in dataset
(A) for Z ∈ {SXY , SSXY , SFXY }. The expectation is calcu-
lated by repeating the experiment 1000 times. Each time Z
is calculated according to N ∈ {20, 50, 100} samples and
ΣXY is approximated by the empirical cross-covariance ma-
trix on 5,000 samples. The four panels use four different
kernels which are linear, polynomial, Laplace and Gaussian
from top to bottom. The shrunk estimators are always better
than the unshrunk, with a larger difference between SCOSE
and FCOSE for finite-dimensional feature spaces (top two).
In infinite-dimensional feature spaces (bottom two), SCOSE
and FCOSE are much better than the unshrunk estimator but
very similar to each other. The differences between all esti-
mators decreases with increasing n, since the sample cross-
covariance operator itself becomes very accurate.

4.2 Synthetic Data
We perform synthetic experiments in a wide variety of set-
tings to demonstrate that the shrunk test statistics achieve
higher power than HSIC in a variety of settings. We fol-
low the schema provided in the introduction for indepen-
dence testing and calculating power. We only consider dif-
ficult distributions with nonlinear dependence between X,Y ,
on which linear methods like correlation are shown to fail to

1HSIC and HSIC − 2HSIC/n−C/n2 both converge to popula-
tion HSIC at same rate determined by the dominant term (HSIC).
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Figure 1: All panels show quadratic risk E‖X − ΣXY ‖2HS
for X ∈ {SXY , SSXY , SFXY }. Dataset (A) was used in all
four panels, but the kernels were varied - from top to bottom
is the linear, quadratic, Gaussian and Laplace kernel.

detect dependence (some of them were used in previous pa-
pers on independence testing like [Gretton et al., 2007] and
[Chwialkowski and Gretton, 2014]).

For all experiments, α ∈ {0.01, 0.05, 0.1} is chosen as the
type-1 error (for choosing the threshold level of the null dis-
tribution’s right tail). For every setting of parameters of each
experiment, power is calculated as the percentage of rejec-
tion over 200 repetitions (independent trials), with 2000 per-
mutations per repetition (permutation testing to find the null
distribution threshold at level α). We use the Gaussian ker-
nel where the bandwidth is chosen by the common median
heuristic [Scholkopf and Smola, 2002].

Table 1 is a representative sample from what we saw on
other examples - either large, small or no improvement in
power was seen but almost never a worsening of power. The
improvements in power may not always be huge, but they are
statistically significant - it is difficult to detect such non-linear
dependencies at low sample sizes, so any increase in power
can be important in scientific applications.

Remark. A more appropriate way than using error bars to
assess significance is by the Wilcoxon rank sum test, omitted
for lack of space, though it yields more favorable results.

4.3 Real Data
We use two real datasets - the first is a good example where
shrinkage helps a lot, but in the second it does not help (we
show it on purpose). Like the synthetic datasets, for most
real datasets it either helps or does not hurt (being very rarely
worse; see remark in the discussion section).

The first is the Eckerle dataset [Eckerle, 1979] from the
NIST Statistical Reference Datasets (NIST StRD) for Non-
linear Regression, data from a NIST study of circular inter-
ference transmittance (n=35, Y is transmittance, X is wave-
length). A plot of the data in Figure 2 reveals a nonlinear
relationship between X,Y (though the correlation is 0.035
with p-value 0.84). We subsample the data to see how often
we can detect a relationship at 10%, 20%, 30% of the original
data size, when the false positive level is always controlled at
0.05. The second is the Aircraft dataset [Bowman and Azza-
lini, 2014] (n=709, X is log(speed), Y is log(span)). Once
again, correlation is low, with a p-value of over 0.8, and we
subsample the data to 5%, 10%, 20% of the original data size.
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α = 0.01 α = 0.05 α = 0.10
HSIC HSICS HSICF HSIC HSICS HSICF HSIC HSICS HSICF
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±0.03
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3 0.52
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3
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±0.03

3 3 0.85
±0.03

0.90
±0.02

0.89
±0.02

3

0.63
±0.03

0.72
±0.03

0.73
±0.03

3 3 0.91
±0.02

0.92
±0.02

0.92
±0.02

0.95
±0.01

0.96
±0.01

0.96
±0.01

Table 1: The first column shows scatterplots of X vs Y (all having dependence between X,Y ). There are 3 sets of 5 columns
each - for α = 0.01, 0.05, 0.1 (controlled by running 2000 permutations). In eachs set, the first three columns show the
power of HSIC,HSICS ,HSICF (with standard deviation over 200 repetitions below). The fourth column shows when HSICS

is significantly better than HSIC, and the fifth column when HSICF has significantly higher power than HSIC. A blank
means the powers are not significantly better or worse. In the first dataset (A) (top 4) we show how the power varies with
increasing n (becomes easier). In the second dataset (B) (second 4) we show how the power varies with rotation (goes from
near-independence to clear dependence). In the third dataset (C) (third 4), we demonstrate a case where shrinkage does not
help much, which is a circle with a hole. In the last dataset (D) (last 4), we demonstrate a case where HSICS does as well as
HSICF . We tried many more datasets, these are a few representative samples.
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Figure 2: Top Row: The left figure shows a plot of wave-
length against transmittance. The right figure shows the
power of HSIC,HSICS ,HSICF when the data are subsam-
pled to 10%, 20%, 30% (error bars over 100 repetitions). Bot-
tom Row: The left figure shows a plot of log(wingspan)
vs log(airspeed). The right figure shows the power of
HSIC,HSICS ,HSICF when the data are subsampled to
5%, 10%, 20% (error bars over 100 repetitions).

5 Discussion
Why might shrinkage improve power? Let us examine the
net effect of using shrunk estimators on the value of HSIC,
i.e. let us compare HSICS and HSICF to HSIC by comput-
ing these over all the repetitions of the permutation testing
procedure described in the introduction. In Fig. 3, both es-
timators are visually similar in transforming the actual test
statistic. Perhaps the more interesting phenomenon is that
Fig. 3 is reminiscent of the graph of a soft-thresholding op-
erator STt(x) = max{0, x − t}. Intuitively, if the unshrunk
HSIC value is small, the shrinkage methods deem it to be
“noise” and it is shrunk to zero. Looking at the X-axis scal-
ing of the top and bottom row, the size of the region that gets
shrunk to zero decreases with n - as expected, shrinkage has
less effect when SXY has low variance). The shrinkage being
non-monotone (more so for n = 20 than n = 50 in Figure 3)
is key to achieving an improvement in power.

Using the intuition from the above figure, we can finally
piece together why shrinkage may yield benefits. A rejection
of H0 occurs when the test statistic stands out in the right
tail of its null distribution. Typically, when the alternative
is true (this is when rejecting the null improves power) the
unshrunk test statistics calculated from the permuted samples
is smaller than the unshrunk HSIC calculated on the original
sample. However, the effect of shrinking the small statistics
towards zero, and setting the smallest ones to zero, is that
the unpermuted test statistic under the alternative distribution
stands out more in the right tail of the null.
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Figure 3: The top row corresponds to n = 20, and the bot-
tom row has n = 50. The left plots compare HSICS to HSIC,
and the right plots compare HSICF to HSIC. Each cross mark
corresponds to the shrunk and unshrunk HSIC calculated dur-
ing a single permutation of a permutation test.

In other words, relative to the unshrunk null distribution
and the unshrunk test statistic, the tail of the null distribu-
tion is shrunk more towards zero than the unpermuted test
statistic, causing the latter to have a higher quantile in the
right tail of the former (relative to the quantile before shrink-
age). Let us verify this experimentally. In Fig.4 we plot for
each of the datasets in Table 1, the average ratio of unper-
muted statistic T to the 95th percentile of the permuted statis-
tics, for T ∈ {HSIC,HSICS ,HSICF }. Recall that for dataset
(C), we didn’t see much of an improvement in power, but for
(A),(B),(D) it is clear from Fig. 4 that the unpermuted statis-
tic is shrunk less than its null distribution’s 95th quantile.
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Figure 4: All panels show the ratio of the unpermuted HSIC
to the 95th percentile of the null distribution based on HSICs
calculated from the permuted data. (see Table 1) The top row
has datasets (C) with radius 2.2, (B) with angle 3 × π/32,
and the bottom row has (D) with N = 25, (A) with N = 40.
These observations were qualitatively the same in all other
synthetic data parameter settings, and also for other per-
centiles than 95th, and since the figures look identical in
spirit, they were omitted due to lack of space.
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Remark. In our experiments, real and synthetic, shrinkage
usually improves (and almost never worsens) power in false-
positive regimes that we usually care about. Will shrinkage
always improve power? Possibly not. Even though shrunk
the shrunk SXY dominates SXY for estimation error, it may
not be the case that shrunk HSIC always dominates unshrunk
HSIC for test power (i.e. the latter may not be inadmissi-
ble). However, just as no single classifier always outperforms
another, it is still beneficial to add techniques like shrinkage,
that seem to consistently yield benefits in practice, to the prac-
titioner’s array of tools.

6 Conclusion
We presented evidence for an important phenomenon - us-
ing biased but lower variance shrunk estimators of cross-
covariance operators can often significantly improve test
power of HSIC at small sample sizes. This observation (that
shrinkage can improve power) has rarely been made in the
statistics and machine learning testing literature. We think
the reason is that most test statistics for independence testing
cannot be immediately expressed as the norm of an empirical
operator, making it less obvious how to apply shrinkage to
improve their power at low sample sizes.

We also showed the optimality (among linear shrinkage es-
timators) of SCOSE, but observe that the nonlinear shrink-
age of FCOSE usually yields higher power. To the best of
our knowledge, there seems to be no current literature show-
ing that the choice made by leave-one-out cross-validation
(SCOSE) explicitly leads to an estimator that is ”optimal” in
some sense (among linear shrinkage estimators). This may
be because it is often not possible to explicitly calculate the
form of the LOOCV estimator, nor the explicit form of the
best linear shrinkage estimator, as can both be done in this
simple setting.

Since even the best possible linear shrinkage estimator (as
represented by SCOSE) is usually worse than FCOSE, this
result indicates that in order to improve upon FCOSE, it will
be necessary to further study the class of non-linear shrinkage
estimators for our infinite dimensional operators, as done for
finite dimensional covariance matrices in [Ledoit and Wolf,
2011] and other papers by the same authors.

We ended with a brief investigation into the effect of
shrinkage on HSIC and why shrinkage may intuitively im-
prove power. We think that our work will be important for
more powerful nonparametric detection of subtle nonlinear
dependencies at low sample sizes, a common problem in sci-
entific applications.
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