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Abstract

Feature selection measures are often explained by
the analogy to a rule to measure the “distance” of
sets of features to the “closest” ideal sets of fea-
tures. An ideal feature set is such that it can de-
termine classes uniquely and correctly. This way
of explanation was just an analogy before this pa-
per. In this paper, we show a way to map arbi-
trary feature sets of datasets into a common metric
space, which is indexed by a real number p with
1 ≤ p ≤ ∞. Since this determines the distance be-
tween an arbitrary pair of feature sets, even if they
belong to different datasets, the distance of a fea-
ture set to the closest ideal feature set can be used
as a feature selection measure. Surprisingly, when
p = 1, the measure is identical to the Bayesian risk,
which is probably the feature selection measure
that is used the most widely in the literature. For
1 < p ≤ ∞, the measure is novel and has signif-
icantly different properties from the Bayesian risk.
We also investigate the correlation between mea-
surements by these measures and classification ac-
curacy through experiments. As a result, we show
that our novel measures with p > 1 exhibit stronger
correlation than the Bayesian risk.

1 Introduction
Feature selection is indeed one of the central focuses of ma-
chine learning research. In this paper, we understand the fea-
ture selection problem as follows:

Given a dataset, select an appropriately small num-
ber of features that faithfully determine the classes
of the examples of the dataset.

If we could find a feature subset such that the features cor-
rectly determine the classes of the examples, it could be an
answer we wanted [Almuallim and Dietterich, 1994]. Such
feature subsets are referred to as reducts in the rough set the-
ory [Pawlak, 1991] and as consistent feature sets in this paper
[Liu et al., 1998].

A dataset, however, does not necessarily include a consis-
tent feature subset, and in such cases, we have to be satisfied

with selecting feature subsets that are sufficiently close to be-
ing consistent. In other words, we need a measure that can
measure the “distance” of a feature subset to the “closest”
consistent feature set. However, we only know two neces-
sary conditions for such a measure, namely, determinacy and
monotonicity: Determinacy corresponds to the identity of in-
discernibles of the axioms of metrics and requires that the
measurement is zero, if, and only if, the feature set is consis-
tent; Monotonicity, on the other hand, requires that the mea-
surement of an arbitrary feature set is no greater than the mea-
surement of its subset. When a measure has the determinacy
and monotonicity properties, we also say that it is determi-
nant and monotonous. With a determinant and monotonous
measure, a feature selection algorithm attempts to find feature
sets whose measurements are close to zero.

Generally, the feature selection measures proposed in the
literature are categorized into two groups. One consists of
measures that simply evaluate dependence between two fea-
tures [Mengle and Goharian, 2009; Bolón-Canedo et al.,
2011; Foithong et al., 2012; Suzuki and Sugiyama, 2013;
Wang, 2015]. The framework of mRMR [Peng et al., 2005]
takes advantage of measures of this group and aims to se-
lect a feature set that maximizes the difference of the rele-
vance from the redundancy of the feature set: The relevance
is the collective dependence of the feature set to class labels,
while the redundancy is the the internal mutual dependence
of the features of the feature set. On the other hand, the other
consists of determinant and monotonous measures [Liu et al.,
1998; Shin and Xu, 2009; Arauzo-Azofra et al., 2008], and
14 of the 17 feature selection measures studied in [Molina
et al., 2002] are known to belong to this group [Shin et al.,
2011]. In this paper, we are interested in the latter group.

Example 1 Bayesian risk, also known as inconsistency rate
[Liu et al., 1998], is defined as follows.

µbr
D(S) =

∑

x∈ΩS

(
p(S = x)− max

c∈ΩC

p(S = x,C = c)
)
.

S is a feature subset of a datasetD, and C is the random vari-
able to represent classes. ΩS and ΩC are the sample spaces
of S and C, and p is the empirical probability distribution of
D. This measure is, indeed, determinant and monotonous.

Example 2 Zhao et al. [Zhao and Liu, 2007] proposed In-
teract, a feature selection algorithm that leverages the Bayes
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risk µbr to evaluate the closeness of feature sets to the state of
being consistent. Therefore, Interact selects feature sets with
small µbr measurements.

Example 3 Shin et al. [Shin and Xu, 2009] also proposed
the conditional entropy defined by

µce
D(S) =
∑

x∈ΩS

∑

c∈ΩC

−p(S = x,C = c) log
p(S = x,C = c)

p(S = x)

as a determinant and monotonous measure. On the other
hand, the well-known feature selection algorithm that selects
the top n features X with respect to the mutual information
I(X; C) actually selects those feature sets that minimize

µD({X1, . . . , Xn}) =
n∑

i=1

µce
D({Xi}).

By using µD instead of µce
D, this algorithm is fast but is not

very accurate, since µD is not determinant.

When a measure represents the distance of a feature set
to the closest consistent feature set in some metric space,
we call it distance-based. About distance-based measures,
we only knew two necessary conditions, that is, determinacy
and monotonicity, and hence, the distance-based measure was
only an analogy to explain the desirable natures of feature se-
lection measures. This paper changes this.

In this paper, we present a way to identify a feature sub-
set of a dataset uniquely with a point in a common metric
space. The metric space is parameterized by a real number
p ∈ [1,∞], and hence, we have infinitely many such met-
ric spaces. In the metric space, consistent feature sets form
a closed subspace, and hence, we can determine the distance
of an arbitrary feature set to the closest consistent feature set.
This is nothing other than a distance-based measure. A dif-
ferent values of p determines a different metric function. For
p = 1, we show that the measure is identical to the well-
known Bayesian risk. On the other hand, for p > 1, the mea-
sure is novel and unknown in the literature. Also, through ex-
periments, we show that measurements by our novel distance-
based measures correlate with classification accuracy.

2 Formulating feature selection measures
In this paper, we do not discriminate between features and
random variables. Furthermore, for a dataset D, we use the
following notations.

• FD is the entire set of features of D. FD is finite and
includes the feature CD that represents classes. Also, we
denote FD \ {CD} by FD.

• ΩFD =
∏
X∈FD ΩX is the entire sample space, where

ΩX is the sample space of an individual feature X .
For a feature set S, ΩS means the Cartesian product∏
X∈S ΩX , which is the sample space of S.

• pD : ΩFD → Q is the empirical probability distribution.

• We also denote D by the triplet (FD,ΩFD ,pD).

• For S j FD, D|S is the dataset derived from D by
eliminating the features in FD \ S.
• For S j FD, D∧S is the dataset derived from D by

replacing the features of S with a single feature ∧S such
that Ω∧S = ΩS . The values for S of an example in D
are replaced with the vector consisting of the values.

Example 4 For the dataset D determined by (a) below, we
have FD = {B,R,G,CD} and ΩFD = {A,B,O,AB} ×
{M,N,C,A} × {M,F} × {p, n}. When S = {R,G}, (b)
and (c) determine D |S and D∧S .

(a) D

B R G CD

A M M p
A M M n
B N M p
O C F n

AB A M n

(b) D|S
R G CD

M M p
M M n
N M p
C F n
A M n

(c) D∧S

B ∧S CD

A (M, M) p
A (M, M) n
B (N, M) p
O (C, F) n

AB (A, M) n

On the other hand, a feature selection measure µ is formu-
lated as a family of µD indexed by datasets D, and each µD
is a real-valued function defined over the power set P(FD) of
FD. In this paper, we assume that a feature selection measure
supports the following three requirements, which all of the 19
measures surveyed in [Shin et al., 2011] support as well.

Requirement 1 (Naming invariance)
Measurements by the measure are invariant to renaming of
features and feature values. This also implies that the mea-
sure assumes that every feature is categorical.

Requirement 2 (Localization invariance)
If T j S, µD(T ) = µD|S (T ) holds.

Requirement 3 (Feature aggregation invariance)
If T k S, µD(T ) = µD

∧S
((T \ S) ∪ {∧S}) holds.

Example 5 Bayesian risk µbr has all of
these invariance properties: µbr

D(FD) =
µbr

E(FE) = 1
5 indicates the naming in-

variance; For S = {R,G}, µbr
D({G})

and µbr
D|S ({G}) are identical to 2

5 , and
µbr

D∧S ({B,∧S}) = 1
5 holds These indi-

cate the localization and feature aggrega-
tion invariance properties.

E

F1 F2 F3 CD

1 1 1 +1
1 1 1 -1
2 2 1 +1
3 3 2 -1
4 4 1 -1

In this paper, we will identify (D,S) and (E, T ), pairs of
a dataset and a feature subset, if µD(S) = µE(T ) holds for
any measure µ that supports Requirements 1, 2 and 3. For
this, we introduce the notion of coherent mappings and then
prove Proposition 1.

Definition 1 A mapping ϕ : FD → FE is coherent be-
tween D and E, if, and only if, there exist injections vY :
Ωϕ−1(Y ) → ΩY for Y ∈ Im(ϕ) and an injection vCE :
ΩCD → ΩCE such that

pD(x) =
∑

y:y|Im(ϕ)∪{CE}=vπ(x)

pE(y),

where vπ =
∏

Y ∈Im(ϕ)∪{CE}

vY : ΩFD → ΩIm(ϕ)∪{CE}.
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Example 6 We consider the datasets D of Example 4 and
E below. When we define ϕ by ϕ(B) = F1 and ϕ(R) =
ϕ(G) = F2, ϕ is coherent. To show this, we determine vF1

and vF2
as below and vCE by vCE (p) = 1 and vCE (n) =

2. For example, pD(A,M,M, p) = 1
5 and pE(1, 1, 1, 1) +

pE(1, 1, 3, 1) = 1
10 + 1

10 = 1
5 hold.

E

F1 F2 F3 CE F1 F2 F3 CE

1 1 1 1 2 3 4 1
1 1 2 2 3 6 2 2
1 1 3 1 3 6 3 2
1 1 3 2 4 7 4 2
2 3 1 1 4 7 4 2

vF1 vF2

A → 1 (M, M) → 1 (C, M) → 5
B → 2 (M, F) → 2 (C, F) → 6
O → 3 (N, M) → 3 (A, M) → 7

AB → 4 (N, F) → 4 (A, F) → 8

Proposition 1 If a feature selection measure µ supports Re-
quirement 1 to 3, µE(S) = µD(ϕ−1(S)) holds for an arbi-
trary coherent mapping ϕ : FD → FE between D and E
and an arbitrary S j Im(ϕ).

Proof. We let ϕ = ϕ ◦ ϕ such that ϕ : FD → Im(ϕ) and ϕ :
Im(ϕ)→ FE . Since ϕ yields a sequence of feature aggrega-
tions that convert D into E|Im(ϕ) up to renaming of features
and feature values, µE(S) = µE|Im(ϕ)(S) = µD(ϕ−1(S))

follows from Requirement 1 to 3.

Example 7 For the same D, E and ϕ as Example 6,
µbr

E({F1, F2}) = µbr
D({B,R,G}) = µbr

E({F1}) =
µbr

D({B}) = µbr
E({F2}) = µbr

D({R,G}) = 1
5 holds.

3 Projecting a feature set of a dataset into a
subspace P+

R
〈∞〉 of the `p space (p ∈ [1,∞])

We let n ∈ N ∪ {∞}. We introduce the space P0
〈n〉 into

which feature sets of datasets are projected. We start with
preparation. Let K be either the rational number field Q or
the real number field R. We define PK

〈∞〉 and P+
K
〈∞〉

as
follows, which are sets of functions p such that p : N2 → K.

Definition 2 We define PK
〈∞〉 and P+

K
〈∞〉

by:

PK
〈∞〉 =

{
p
∣∣∣p(i, j) ≥ 0,

∞∑

i=1

∞∑

j=1

p(i, j) = 1
}

;

P+
K
〈∞〉

=
{
p
∣∣∣p(i, j) ≥ 0,

∞∑

i=1

∞∑

j=1

p(i, j) ≤ 1
}
.

We can identify N2 with N (for example, f : (i, j) 7→
(i+j−1)(i+j−2)

2 + i is bijective), and therefore, PR
〈∞〉 and

P+
R
〈∞〉

can be viewed as subspaces of `p for 1 ≤ p ≤ ∞. If
we focus on datasets that include at most n classes, we can
use PK

〈n〉 and P+
K
〈n〉

instead.

Definition 3 We define PK
〈n〉 and P+

K
〈n〉

by:

PK
〈n〉 =

{
p ∈ PK

〈∞〉∣∣j > n⇒ p(i, j) = 0
}

;

P+
K
〈n〉

=
{
p ∈ P+

K
〈∞〉∣∣j > n⇒ p(i, j) = 0

}
;

PR
〈n〉 and P+

R
〈n〉

are metric spaces with the metric derived
from the norm ‖ · ‖p of `p. PR

〈n〉 is closed in `p only when

p = 1, while P+
R
〈n〉

is the closure of PR
〈n〉 in `p for 1 < p ≤

∞. Therefore, PR
〈n〉 in `1 and P+

R
〈n〉

in `p for 1 < p ≤ ∞
are complete, since `p is a Banach space. Although PR

〈n〉

and P+
R
〈n〉

are bounded, none of them is compact.
We define P0

〈n〉, a subspace of PR
〈n〉, as follows.

Definition 4 We let supp(p) be the smallest ΩU × ΩC such
that ΩU j N, ΩC j N and ΩU ×ΩC k Supp(p) = {(i, j) |
p(i, j) > 0}. We define P0

〈∞〉 and P0
〈n〉 for n ∈ N by:

P0
〈∞〉 = {p ∈ PQ

〈∞〉 | |supp(p)| <∞};
P0
〈n〉 = {p ∈ P0

〈∞〉 | j > n⇒ p(i, j) = 0}.
Example 8 When we define p by p(i, i) = (1 − r)ri−1 for
r ∈ (0, 1), p ∈ PR

〈∞〉 holds, because
∑∞
i=1(1 − r)ri−1 =

(1 − r) limn→∞
1−rn
1−r = 1. Furthermore, if r ∈ Q, p ∈

PQ
〈∞〉 holds. For this p, we have ΩU = N, ΩC = N and

supp(p) = {(i, i) | i ∈ N}. Hence, p /∈ P0
〈∞〉.

For n ∈ N ∪ {∞}, P0
〈n〉 turns out to be dense in PR

〈n〉.
For p ∈ P0

〈n〉, Dp = ({U,C},N × N,p) is not a dataset,
because N × N is infinite. Nevertheless, we can think of a
coherent mapping ϕ : FD → {U} between a dataset D and
Dp. Theorem 1 shows how to project a feature set S of a
dataset D into P0

〈n〉.

Theorem 1 We let D be a dataset with n classes and S j
FD. There exists p ∈ P0

〈n〉 such that ϕ : S → {U} is
coherent betweenD|S andDp. Conversely, for arbitrary p ∈
P0
〈n〉, there exists a dataset D with n classes such that ϕ :

FD → {U} is coherent between D and Dp.

Proof. Let v1 : ΩS → N and v2 : ΩCD → {1, . . . , n}
be injective. It suffices to define p ∈ P0

〈n〉 by p(i, j) =
pD|S

(
v−1

1 (i), v−1
2 (j)

)
if (i, j) ∈ Im(v1×v2) and p(i, j) = 0

otherwise. To show the converse, we have only to let D =

({U,C}, supp(p),p).

Example 9 To project D|S of Example 4 into P0
〈2〉, we de-

termine p ∈ P0
〈2〉 by p(1, 1) = p(1, 2) = p(3, 1) =

p(6, 2) = p(7, 4) = 1
5 and p(i, j) = 0 otherwise. When

we determine vU and vC identical to vF2
and vCE of Exam-

ple 6, ϕ : S → {U} is coherent between D|D and Dp, and
hence, D|D is projected to p.

Example 10 A singleD|S can be projected to infinitely many
points in P0

〈n〉. For example, we let D|S , p and vU be the
same as Example 9. For an arbitrary bijection π : N→ N, we
define pπ by pπ(π(i), j) = p(i, j). Apparently, D|S projects
to pπ with π ◦ vU .
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Example 11 More than one datasets are projected to a single
point in P0

〈n〉. For example,D|S of Example 4 andE|{F2} of
Example 6 are both projected to any of pπ of Example 10. To
be precise, a single point inP0

〈n〉 has infinitely many datasets
that project to the point.

Based on Proposition 1 and Theorem 1, Theorem 2 asserts
that a feature selection measure can be uniquely viewed as a
real-valued function defined over P0

〈n〉.

Theorem 2 For a feature selection measure µ, µ̂ : P0
〈∞〉 →

R uniquely exists and µ̂(p) = µD(S) holds for arbitrary D,
S and p such that ϕ : S → {U} is coherent between D|S
and Dp.

Proof. We let D∗p be ({U,C}, supp(p),p) for p ∈ P0
〈∞〉.

We determine µ̂(p) by µD
∗
p({U}). For a dataset D such

that ϕ : S → {U} is coherent between D|S and Dp with
vU : ΩS → N and vC : ΩCD → N, we let D#

p =
({U,C}, Im(vU )× Im(vC),p). ϕ : S → {U} is coher-
ent between D|S and D#

p , and the inclusion supp(p) j
Im(vU ) × Im(vC) yields coherence between D∗p and D#

p .

Therefore, µD(S) = µD
#
p ({U}) = µD

∗
p({U}) = µ̂(p).

Example 12 Datasets that are projected to the same point
in P0

〈n〉 have the same measurement for an arbitrary fea-
ture selection measure µ. For example, as seen in Exam-
ple 11, D|S of Example 4 and E|{F2} of Example 6 are
both projected to the same point P0

〈2〉. On the other hand,
µbr

D(S) = µbr
E({F2}) = 1

5 holds as seen in Example 7.
Therefore, by letting µ̂(p) = µD(S) for D|S that projects to
p, µ̂ is well defined.

The problem of the projection determined by Theorem 1
consists in the fact that a single pair (D,S) is mapped to an
infinite number of different points in P0

〈n〉 (Example 10). In
the next section, we will solve this problem.

4 Defining a quotient space Q+
R
〈∞〉 of P+

R
〈∞〉

Our idea to solve the problem is to introduce an equivalence
relation that unifies points of P0

〈n〉 that are the images of the
same single pair (D,S) and then use the resulting quotient
space. The relation ∼ defined below is an equivalence rela-
tion. We assume n ∈ N ∪ {∞}.

Definition 5 Let p and q be in P+
R
〈∞〉

. We define p ∼ q, if,
and only if, there exist bijections vU : N→ N and vC : N→
N such that p(i, j) = q(vU (i), vC(j)).

Example 13 pπ ∼ p holds for pπ and π of Example 10.

Definition 6 We let Q+
R
〈∞〉

= P+
R
〈∞〉
/∼. Moreover, for the

canonical projection π : P+
R
〈∞〉 → Q+

R
〈∞〉

, we let Q+
R
〈n〉

=

π(P+
R
〈n〉

), QR
〈n〉 = π(PR

〈n〉) and Q0
〈n〉 = π(P0

〈n〉).

Proposition 2 is easy to see but plays a crucial rule to prove
Theorem 3 and 4.

Proposition 2 For p and q in P0
〈∞〉, the following are

equivalent.

1. p ∼ q.

2. There exists (D,S) such that ϕ : S → {U} is coherent
between D|S and Dp and between D|S and Dq .

3. ϕ : S → {U} is coherent between D|S and Dp, if, and
only if, it is coherent between D|S and Dq .

P〈n〉
0

[D,S]

`p

Q〈n〉
0

(D,S)

π

ϕ : S → {U} is coherent

between D|S and Dp

Theorem 3 and 4 follow
from Theorem 1, Theorem 2
and Proposition 2. In the
following, [p] denotes π(p),
and [D,S] denotes the im-
age of (D,S) in Q0

〈∞〉.

Theorem 3 We let D be a
dataset with n classes and
S j FD. There uniquely
exists [p] ∈ Q0

〈n〉 such that
ϕ : S → {U} is coherent
between D|S and Dp. Con-
versely, for arbitrary [p] ∈
Q0
〈n〉, there exists a dataset

D with n classes such that
ϕ : FD → {U} is coherent between D and Dp.

Theorem 4 For a feature selection measure µ, there uniquely
exists [µ̂] : Q0

〈∞〉 → R such that [µ̂]([D,S]) = µD(S) holds
for any dataset D and S j FD.

5 Introducing a metric dp into Q+
R
〈∞〉

Although a quotient of a metric space is not always a metric
space, we can derive a metric intoQ+

R
〈∞〉

from `p as follows.

Definition 7 For [p] and [q] in Q+
R
〈∞〉

, we define
dp([p], [q]) = inf{‖p′ − q′‖p | p ∼ p′, q ∼ q′}.

Theorem 5 For 1 ≤ p ≤ ∞, dp is a metric over Q+
R
〈∞〉

.

Proof. We only prove the triangle inequality dp([p], [r]) ≤
dp([p], [q]) + dp([q], [r]) taking advantage of Lemma 1.

Lemma 1 For p ∼ p′ and q in P+
R
〈∞〉

, there exists q′ ∼ q
such that ‖p− q‖p = ‖p′ − q′‖p.

For ε > 0, we assume ‖p − q‖p − dp([p], [q]) < ε
2 and

‖q′ − r‖p − dp([q], [r]) < ε
2 for q ∼ q′. By Lemma 1, we

have ‖q− r′‖p = ‖q′ − r‖p and dp([p], [r]) ≤ ‖p− r′‖p ≤
‖p− q‖p + ‖q − r′‖p < dp([p], [q]) + dp([q], [r]) + ε.

6 Deriving a measure µ̂`p from dp

[D,S]

Q〈n〉
0

π(C〈∞〉
0 )

µ̂`p([D,S])

We see that the minimum of
dp distance from [D,S] to
a consistent feature set de-
termines a feature selection
measure. We first define
consistent points of P+

R
〈∞〉

.

Definition 8 p ∈ P+
R
〈∞〉

is
consistent, if, and only if,
there exists j : N → N such that p(i, j) = 0 if j 6= j(i).
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C+
R
〈∞〉

denotes the entire set of consistent p, and we let

C+
R
〈n〉

= C+
R
〈∞〉 ∩ P+

R
〈n〉

, CR〈n〉 = C+
R
〈∞〉 ∩ PR

〈n〉 and

C0〈n〉 = C+
R
〈∞〉 ∩ P0

〈n〉 for n ∈ N ∪ {∞}.

Definition 9 For j : N → N such that j(i) ∈
argmax{p(i, j) | j ∈ N} and p ∈ P0

〈∞〉, we define:

For 1 ≤ p <∞,

µ̂`p(p) = p

√√√√√
∑

i∈N


∑

j∈N
p(i, j)p − p(i, j(i))p


;

For p =∞,

µ̂`∞(p) = max
{
p(i, j) |(i, j)∈N2, (i, j) 6=(i, j(i))

}
.

Surprisingly, µ̂`1 is identical to the Bayesian risk.

Proposition 3 If ϕ : S → U is coherent between D|S and
Dp, µbr

D(S) = µ̂`1(p) holds.

Proof. We assume that vU : ΩS → N and vC : ΩC → N
yield the coherence between D|S and Dp.

µbr
D(S)

=
∑

x∈ΩS

(
pD|S (S = x)− max

c∈ΩC

pD|S (S = x,C = c)

)

=
∑

x∈ΩS

(∑

c∈ΩC

p(vU (x), vC(c))− max
c∈ΩC

p(vU (x), vC(c))

)

= µ̂`1(p).

Theorem 6 For p ∈ P0
〈∞〉, the following holds.

1. µ̂`1(p) = 1
2 min{d1([p], [q]) | q ∈ C0〈∞〉}.

2. For 1 < p ≤ ∞, µ̂`p(p) = inf{dp([p], [q]) | q ∈
C0〈∞〉} = min{dp([p], [q]) | q ∈ C+

R
〈∞〉 ∧ |supp(q)| <

∞}.

Proof. Here, we prove only 1. For q ∈ C0〈∞〉, we assume
j : N → N such that q(i, j) = 0 if j 6= j(i). Also, we let
j : N → N satisfy j(i) ∈ argmax{p(i, j) | j ∈ N}. We first
fix i ∈ N.
∑

j∈N
|p(i, j)− q(i, j)|

= |p(i, j(i))− q(i, j(i))|+
∑

j∈N\{j(i)}

p(i, j)

≥ |p(i, j(i))− q(i, j(i))|+
∑

j∈N
p(i, j)−max

j∈N
p(i, j).

Then, we sum up the both sides across all i ∈ N.

‖p− q‖1 ≥
∑

i∈N
|p(i, j(i))− q(i, j(i))|

+
∑

i∈N


∑

j∈N
p(i, j)−max{p(i, j) | j ∈ N}




≥
∑

i∈N
q(i, j(i))−

∑

i∈N
p(i, j(i)) + µ̂`1(p) ≥ 2µ̂`1(p).

On the other hand, for q ∈ C0〈∞〉 such that q(i, j) =∑
j∈N p(i, j) if j = j(i) and 0 otherwise, we have

‖p− q‖1 = 2

(
1−

∑

i∈N
max{p(i, j) | j ∈ N}

)
.

As q′ ∈ CR〈∞〉 if q′ ∼ q, Lemma 1 implies the assertion.
Determinacy of µ̂`p immediately follows from Theorem 6.

Also, it is easy to show monotonicity of µ̂`p . Furthermore,
µ̂`p turns out continuous under dq for arbitrary 1 ≤ p, q ≤ ∞.

7 Contrasting d1 and dp with p > 1

Proposition 3 asserts that µ̂`1 is identical to the Bayesian risk,
which is well known in the literature. On the other hand, µ̂`p
with p ∈ (1,∞] is a novel measure unknown in the literature.
Also, as a metric function, d1 and dp with p ∈ (1,∞] are
significantly different as stated below without proof.

• QR
〈∞〉 is complete under d1, while Q+

R
〈∞〉

is complete
under dp for p ∈ (1,∞].

• QR
〈n〉 is not compact under d1, while Q+

R
〈n〉

is compact
under dp for p ∈ (1,∞].

• Q0
〈n〉 is dense in QR

〈n〉 under d1, while it is dense in
Q+

R
〈n〉

under dp for p ∈ (1,∞].

Moreover, in Section 8, we will see that µ̂`1 and µ̂`p for
p ∈ (1,∞] have different properties in terms of correlation
between their measurements and classification accuracy. Al-
though we cannot explain the reason for this difference, we
imagine that it is related with the aforementioned difference
between d1 and dp with p ∈ (1,∞] as a metric function.

8 Correlation between measurements by µ̂`p

and classification accuracy
We evidently expect that there exists strong correlation be-
tween measurements by a good measure and classification ac-
curacy. From this point of view, we ran experiments with µ̂`p
for p = 1, 2, . . . , 5. In particular, we focus on comparison
between p = 1 and p > 1: µ̂`1 is identical to the Bayesian
risk and is the feature selection measure that is used the most
widely in the literature; On the other hand, the other measures
are novel and introduced in this paper for the first time.
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Table 1: Datasets
NAME #FEAT. #EXAM. #CLASSES

ARRHYTHMIA 279 452 13
AUDIOLOGY 69 226 24
MFEAT-FACTOR 216 2000 10
MFEAT-FOURIER 76 2000 10
MFEAT-KARHUNEN 64 2000 10
MFEAT-PIXEL 240 2000 10
MFEAT-ZERNIKE 47 2000 10
MUSK 166 476 2
OPTIDIGITS 64 5620 10
SONAR 60 208 2
SPAMBASE 57 4601 2
SPECTROMETER 100 531 48

8.1 Datasets
Table 1 shows the datasets that we use in our experiments
as well as their important attributes, namely, the numbers of
features, examples and classes. All of the datasets are ob-
tained from the UCI repository of machine learning databases
[Blake and Merz, 1998].

8.2 Methods
The following are the steps of our experiments.

Sampling feature sets
For each dataset of Table 1, 60 feature sets are selected at
random. The sizes of the selected feature sets also vary at
random. In total, we obtain 60× 12 = 720 pairs of a feature
set and a dataset.

Localizing datasets
For each pair of a feature set and a dataset, we localize the
dataset by eliminating all of the features that do not belong to
the relevant feature set. Consequently, we obtain 720 local-
ized datasets.

Measuring accuracy of classification
We apply three classifiers, namely, Naı̈ve Bayes, C4.5 and
SVM, to each of the localized datasets in the manner of
10-fold cross validation and record the averaged AUC-ROC
scores, which we use as classification accuracy scores.

8.3 Results
Figure 1, 2 and 3 display scatter plots of the results of our
experiments with Naı̈ve Bayes, C4.5 and SVM, respectively.
The x-axis of each chart represents measurements by a mea-
sure out of (a) µ̂`1 , (b) µ̂`2 , (c) µ̂`3 , (d) µ̂`4 and (e) µ̂`5 , while
the y-axis does the averaged AUC-ROC scores. From the
charts, we have the impression that µ̂`p with p > 1 shows
stronger negative correlation with classification accuracy than
µ̂`1 . We look into this more closely in the next subsection.

8.4 Analysis on correlation
To compare µ̂`1 and µ̂`p with p > 1 in terms of correlation
with classification accuracy, we introduce a function Pt(x)
as an index. We let Nx be the number of plots whose µ̂`p
distances fall within [x, x+ 0.01) and Nt,x be the number of
plots whose AUC-ROC scores exceed t and µ̂`p distances fall

within [x, x+0.01). Then, we define Pt(x) by Pt(x) =
Nt,x
Nx

.
Intuitively, Pt(x) approximates the probability of the case
that the classification accuracy exceeds t when the measure-
ment by the relevant measure is x.

Figure 4, 5 and 6 show the curves of Pt(x) for
Naı̈ve Bayes, C4.5 and SVM. The value of t varies in
{0.95, 0.90, 0.85, 0.80}. Since Pt(x) ≥ Pt′(x) holds for
t < t′, the curve for t is located above the curve for t′. We
observe two properties from the charts.

• The curves for µ̂`p for p > 1 are akin to one another in
shape, while the curves for µ̂`1 appear significantly dif-
ferent from the other measures.

• The curves for µ̂`p with p > 1 exhibits clearer negative
correlation between measurements by the measure and
classification accuracy than the curves for µ̂`1 .

In fact, the table below presents the correlation coefficients
between the measurements x and the values of Pt(x). The
presented values also support the observation stated above.

t = 0.95 0.90 0.85 0.80

NAÏVE BAYES

µ̂`1 −0.42 −0.51 −0.60 −0.52
µ̂`2 −0.58 −0.79 −0.97 −0.85
µ̂`3 −0.56 −0.69 −0.76 −0.79
µ̂`4 −0.54 −0.71 −0.89 −0.89
µ̂`5 −0.54 −0.73 −0.91 −0.89

C4.5

µ̂`1 −0.17 −0.41 −0.34 −0.38
µ̂`2 −0.41 −0.47 −0.79 −0.83
µ̂`3 −0.52 −0.29 −0.72 −0.69
µ̂`4 −0.52 −0.38 −0.77 −0.81
µ̂`5 −0.52 −0.44 −0.82 −0.84

SVM

µ̂`1 −0.52 −0.62 −0.55 −0.23
µ̂`2 −0.52 −0.54 −0.65 −0.80
µ̂`4 −0.55 −0.52 −0.63 −0.75
µ̂`4 −0.52 −0.52 −0.59 −0.72
µ̂`5 −0.52 −0.52 −0.56 −0.71

9 Conclusion
We have introduced a family of feature selection measures
{µ̂`p | p ∈ [1,∞]} that are derived from the distance func-
tions of some metric spaces. Although µ̂`1 turns out to be
identical to the Bayesian risk, µ̂`p for p ∈ (1,∞] are novel.
Through experiments, we have shown that µ̂`p with p > 1 ex-
hibits clearer negative correlation between its measurements
and classification accuracy than µ̂`1 does.
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(a) µ̂`1 (b) µ̂`2 (c) µ̂`3 (d) µ̂`4 (e) µ̂`5
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Figure 1: Scatter plots of the experimental results (Naı̈ve Bayes)
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Figure 2: Scatter plots of the experimental results (C4.5)
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Figure 3: Scatter plots of the experimental results (SVM)
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Figure 4: The curves of Pt(x) for t ∈ {0.95, 0.90, 0.85, 0.80} (Naı̈ve Bayes)
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Figure 5: The curves of Pt(x) for t ∈ {0.95, 0.90, 0.85, 0.80} (C4.5)
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Figure 6: The curves of Pt(x) for t ∈ {0.95, 0.90, 0.85, 0.80} (SVM)
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