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Abstract
We compare the convergence behavior of ADMM
(alternating direction method of multipliers),
[F]ISTA ([fast] iterative shrinkage and thresholding
algorithm) and CD (coordinate descent) methods
on the model `1-regularized least squares problem
(aka LASSO). We use an eigenanalysis of the oper-
ators to compare their local convergence rates when
close to the solution. We find that, when applica-
ble, CD is often much faster than the other itera-
tions, when close enough to the solution. When far
from the solution, the spectral analysis implies that
one can often get a sequence of iterates that appears
to stagnate, but is actually taking small constant
steps toward the solution. We also illustrate how
the unaccelerated ISTA algorithm can sometimes
be faster compared to FISTA when close enough to
the solution.

1 Introduction
Many problems in machine learning and data fitting can be
cast as a least squares problem with a regularization term
to limit overfitting. Using an `1-norm regularization has
been found to be particularly effective in many applications
like feature selection [Tibshirani, 1996], compressed sensing
[Chen et al., 1998], sparse coding [Gregor and LeCun, 2010],
and discovery of graph connectivity [Hsieh et al., 2011]. In
this paper, we use a model problem consisting of a linear
least squares problem with `1-regularization, also known as
a LASSO problem:

min
x∈Rn

1/2‖Ax− b‖22 + λ‖x‖1 (1)

where A ∈ Rm×n is a short-flat matrix (i.e. n > m) with full
row rank, b is a given vector, and λ is a positive scalar. The
`1 regularizer tends to produce a sparse solution, avoiding
overfitting while reducing the computational cost [Tibshirani,
1996].

Most general convex solvers such as interior point methods
[Ben-Tal and Nemirovski, 2001] do not scale to the large-
scale data problems encountered in practice, but many algo-
rithms have been proposed recently to take advantage of the
special structure in (1). In this paper we compare four of

the most popular of these methods: the Alternating Direction
Method of Multipliers (ADMM) [Boyd et al., 2011], Itera-
tive Shrinkage Thresholding Algorithm (ISTA) [Parikh and
Boyd, 2014] and its accelerated version Fast ISTA (FISTA)
[Beck and Teboulle, 2009], and the cyclic Coordinate De-
scent method (CD) [Saha and Tewari, 2010].

There has been a recent flurry of activity on bounds for
the convergence rates of these methods. A global conver-
gence rate bound of O(1/k) has been shown for ADMM
[Eckstein and Bertsekas, 1990; Deng and Yin, 2012; He
and Yuan, 2012] and ISTA, while FISTA enjoys a bound
of O(1/k2) [He and Yuan, 2012]. Moreover, for ISTA,
there have been recent local convergence results under some
strict sparsity conditions, e.g. [Bredies and Lorenz, 2008;
Liang et al., 2014]. The convergence of CD in general was
shown in [Tseng and Yun, 2009], and anO(1/k) convergence
rate for the model LASSO problem was shown in [Saha and
Tewari, 2010]. In this paper, we focus on local convergence
behavior, by modelling each iteration as a matrix recurrence.
We find that each iteration passes through several phases or
regimes before reaching a final regime with linear conver-
gence, as first found in [Boley, 2013] for ADMM on general
LPs and QPs. The analysis shows that ISTA can sometimes
be faster than FISTA when close enough to the solution.

The paper is organized as follows. Section 2 gives some
basic preliminaries of the LASSO problem. Sections 3 & 4
give the linear convergence analysis of different iterations.
Numerical Examples are shown in Section 5 and conclusions
are drawn in Section 6.

2 Preliminaries
2.1 Optimality condition of the LASSO problem
The first order KKT optimality conditions for the LASSO
problem (1) are

AT(b−Ax) = λν (2)

where each component of ν satisfies{
νi = sign(xi) if xi 6= 0
−1 ≤ νi ≤ +1 if xi = 0

}
for i = 1, 2, · · · . (3)

Here the “sign” function is defined by sign(x) = 1, 0,−1
according to whether x > 0, x = 0, x < 0, respectively.
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2.2 Uniqueness
There are various sufficient and necessary conditions for the
uniqueness of the LASSO problem or its variants. For ex-
ample, [Osborne et al., 1999; Candès and Plan, 2009; Fuchs,
2005] showed different sufficient conditions and [Tibshirani,
2013] studied the necessary conditions for the LASSO prob-
lem. In fact, the problem (1) needs to have a unique solu-
tion in many situations. For example, in compressed sensing,
having non-uniqueness solutions will result in unreliable re-
covery given the data. We refer readers to [Tibshirani, 2013;
Zhang et al., 2012] and references therein for a discussion of
the uniqueness of the LASSO problem. In some cases, we
will assume uniqueness of the LASSO solution.

3 Convergence of ADMM, ISTA and FISTA
3.1 Auxiliary Variables with Local Monotonic

Behavior
In this section, we show that ADMM, ISTA and FISTA can
be all transformed into a matrix recurrence form in a similar
way. We distinguish the iterates of the different algorithms
using the notation x, x̂ and x̃ to denote the iterates of ADMM,
ISTA and FISTA respectively.

ADMM as a Matrix Recurrence
The ADMM is constructed by splitting the primal x variables
into two separate variables such that the minimum with re-
spect to each individual variable can be easily computed, and
then imposing an equality constraint between the two vari-
ables. A typical splitting for LASSO problem is to use vari-
able x for the least squares loss function and z for the l1-norm
regularizer. Then the modified LASSO problem becomes

min
x

1/2‖Ax− b‖22 + λ‖z‖1 s.t. x− z = 0 (4)

with augmented Lagrangian function for the resulting prob-
lem being

Lρ = 1/2‖Ax−b‖22 +λ‖z‖1 +µT(x−z)+ρ/2‖x−z‖22 (5)

where ρ is a penalty parameter, µ is the dual variable. Let
u = µ/ρ, then the formal ADMM iterates can be represented
as:

x[k+1] = (ATA+ ρI)−1[ATb + ρ(z[k] − u[k])]

z[k+1] = Shrλ/ρ
(x[k+1] + u[k])

u[k+1] = Thrλ/ρ
(x[k+1] + u[k])

(6)

where Shrσ(s) = (1− σ/|s|)+s and Thrσ(s) = s− Shrσ(s).
We replace the iterates z[k], u[k] with two equivalent “aux-

iliary” iterates carrying the same information. One variable,
namely w[k], exhibits smooth behavior, with linear conver-
gence locally around a fixed point, and the other variable
d[k] is a discrete ternary “flag” vector indicating which of the
three cases of the shrinkage operator applies to each com-
ponent. Specifically, for all k, we let the common iterate
be w[k] = z[k] + u[k] and d[k] be a vector defined ele-
mentwise as d[k]i = sign(Shrλ/ρ

(w
[k]
i )) and the flag matrix

D[k] = diag(d[k]). Then one can derive

w[k+1] = M [k]w[k] + h[k]

where

M [k] = (I − (D[k])2) + ρ(ATA+ ρI)−1(2(D[k])2 − I)
h[k] = λ/ρd

[k] + (ATA+ ρI)−1(ATb− 2λd[k]).
(7)

The ADMM update with x[k+1], z[k+1], u[k+1] now can be
modified in matrix form in terms of D[k+1] and w[k+1] as
below.
Algorithm 1: One pass of modified ADMM
Start with w[k], D[k].
1. w[k+1] = M [k]w[k] + h[k] (M [k],h[k] defined by (7)).
2. D[k+1] = DIAG(sign(Shrλ/ρ

(w[k+1]))).

Result is w[k+1], D[k+1] for next pass.
Note that step 1 of Alg. 1 is written as a homogeneous matrix
recurrence, which will be used to characterize its convergence
property.(

w[k+1]

1

)
= M[k]

aug

(
w[k]

1

)
=

(
M [k] h[k]

0 1

)(
w[k]

1

)
(8)

where we denote M
[k]
aug as

(
M [k] h[k]

0 1

)
, the augmented

matrix of M [k], in this paper.

FISTA and ISTA as a Matrix Recurrence
The ISTA and FISTA iteration [Daubechies et al., 2004; Beck
and Teboulle, 2009] are given as follows, where t[0] = t[1] =
1 and L is the Lipschitz constant equal to ‖ATA‖2.

t[k+1] =
1+
√

1+4(t[k])2

2

τ [k] = 0 for ISTA, or t
[k]−1
t[k+1] for FISTA;

v[k+1] = x̃[k] + τ [k](x̃[k] − x̃[k−1])

x̃[k+1] = Shrλ/L
((I − 1/LA

TA)v[k+1] + 1/LA
Tb).

(9)

If τ [k] = 0 (or equivalently t[k] = 1) for all k, leading to
v[k+1] = x̃[k], then this reduces to the ISTA updates, specifi-
cally,

x̂[k+1] = Shrλ/L
((I − 1/LA

TA)x̂[k] + 1/LA
Tb). (10)

Similar to ADMM, we use auxiliary variables w̃[k], D̃[k] to
replace variable x̃[k] to carry the FISTA iterations. Set w̃[k] =

(I − 1/LA
TA)v[k] + 1/LA

Tb and the vector d̃[k] is defined
elementwise as d̃[k]i = sign(Shrλ/L

(w̃
[k]
i )) and the flag matrix

D̃[k] = diag(d̃[k]). The iteration can be described as

w̃[k+1] = P [k]w̃[k] +Q[k−1]w̃[k−1] + h̄[k]

where we denote

τ [k] = t[k]−1
t[k+1] (for FISTA, or 0 for ISTA)

R̃[k] = (I − 1/LA
TA)(D̃[k])2

P [k] = (1 + τ [k])R̃[k]

Q[k−1] = −τ [k]R̃[k−1]

h̄[k] = 1/LA
Tb + (I − 1/LA

TA)×[
−(1 + τ [k])λ/Ld̃

[k] + τ [k]λ/Ld̃
[k−1]

]
.

(11)
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Therefore, the FISTA update (9) can be written using the new
auxiliary variables w̃ and D̃ as follows.
Algorithm 2: One pass of modified FISTA
Start with w̃[k−1], w̃[k], t[k], D̃[k−1] and D̃[k].

1. Set t[k+1] =
1+
√

1+4(t[k])2

2 so that τ [k] = t[k]−1
t[k+1] .

2. Set w̃[k+1] = P [k]w̃[k] +Q[k−1]w̃[k−1] + h̄[k]

(with P [k], Q[k−1], h̄[k] defined by (11)).
3. Set D̃[k+1] = DIAG(sign(Shrλ/L

(w̃[k+1]))).

Result is w̃[k], w̃[k+1], t[k+1], D̃[k] and D̃[k+1] for next pass.

Step 2 of above procedure can also be formulated as a homo-
geneous matrix recurrence analogous to (8) for ADMM with
a larger (approximately double) dimension:w̃[k+1]

w̃[k]

1

 =

(
N [k] h̃[k]

0 1

) w̃[k]

w̃[k−1]

1

 (12)

where we denote N [k] =

(
P [k] Q[k−1]

I 0

)
and h̃[k] =(

h̄[k]

0

)
and N

[k]
aug =

(
N [k] h̃[k]

0 1

)
in the remainder of this

paper. For ISTA, Alg. 2 reduces to
1.

(
ŵ[k+1]

1

)
=

(
R[k] ĥ[k]

0 1

)(
ŵ[k]

1

)
2. D̂[k+1] = DIAG(sign(Shrλ/L

(ŵ[k+1])))

(13)

where R[k] = (I − 1/LA
TA)(D̂[k])2 and ĥ[k] =

−(I − 1/LA
TA)λ/Ld̂

[k] + 1/LA
Tb. We denote R

[k]
aug as(

R[k] ĥ[k]

0 1

)
, the augmented matrix of R[k], in this paper.

3.2 Spectral Properties and Four Regimes
It is seen that M[k]

aug, R[k]
aug and N

[k]
aug play key roles in the

convergence. We summarize their respective properties.

Lemma 3.1 Suppose D[k−1] = D[k] = D[k+1], (and same
for D̂[k] and D̃[k]). Then the iteration matricesM [k] (7), R[k]

(13), and N [k] (11) & (12) (for ADMM, ISTA and FISTA,
respectively) have the following properties:
(a). ‖M [k]‖2 ≤ 1, ‖R[k]‖2 ≤ 1, ‖N [k]‖2 ≤ 1.
(b). All eigenvalues or M [k], R[k], N [k] lie in the closed disk
in the complex plane with center 1/2 and radius 1/2, denoted
as D(1/2,

1/2), and the eigenvalues of R[k] are real.
(c). The eigenvalue 1, if it exists, must have a complete set of
eigenvectors (no Jordan blocks larger than 1× 1).

Proof. We temporarily omit the pass number [k]. For M
(ADMM) we have:
(a). Observe 2D2 − I is an orthogonal matrix by (2D2 −
I)(2D2 − I) = I . Hence, ‖M‖2 = ‖M(2D2 − I)‖2 =
‖D2 − I + (1/ρA

TA+ I)−1‖2 ≤ 1.

(b). ‖M−1/2I‖2 = ‖(1/ρATA+I)−1−1/2I‖2 ≤ 1/2. Thus the
eigenvalues of M − 1/2I lie in the closed disk D(0, 1/2). The

eigenvalues of M lie in the disk D(1/2,
1/2), which is entirely

in the open right half plane plus the origin.
The proof of (c) and all the cases for ISTA and FISTA fol-

low the same lines as in [Boley, 2013; Tao et al., 2015] and
hence are omitted. �

Lemma 3.1 gives rise to the four possible “regimes” as-
sociated with the ADMM, ISTA and FISTA iterations, de-
pending on the flag matrix and the eigenvalues of operators
Maug, Raug, Naug. We treat separately the case where the
flag matrix remains the same at each iteration, in which there
are three possible regimes, and treat all the transitional cases
together in their own fourth regime.

When flag matrix remains unchanged from iteration k to
k + 1, (D[k] = D[k+1] (or D̂[k] = D̂[k+1], D̃[k] = D̃[k+1])):

Regime [A]. The spectral radius of M [k] (or R[k], N [k]) is
strictly less than 1. If close enough to the optimal solution (if
it exists), the result is linear convergence to that solution. The
convergence rate depends on the second largest eigenvalue
of Maug (or Raug, Naug, resp.) according to the theory of
power method for the matrix eigenvalue problem [Golub and
Loan, 2013].

Regime [B]. Also known as “constant step regime”, M [k]

(or R[k], N [k]) has an eigenvalue equal to 1 but which yields

a 2 × 2 Jordan block
(

1 1
0 1

)
for eigenvalue 1 for the aug-

mented matrix. Then the iteration process tends to a constant
step (eigenvector of M [k] (or R[k], N [k]) for eigenvalue 1).
The iteration will continue in this way until the discrete flag
matrix D changes. Such a change is guaranteed to occur due
to the global convergence of the algorithms.

Regime [C]. M [k] (or R[k], N [k]) has an eigenvalue equal
to 1, but the augmented matrix still has a complete set of
eigenvectors for eigenvalue 1 (this eigenvalue has no 2 × 2
Jordan block). The iterates will converge to an eigenvector
for eigenvalue 1 with a linear rate as in Regime [A]. This
cannot occur in the final regime if the original optimization
problem has a unique solution.

When flag matrix changes at next iteration, i.e. D[k] 6=
D[k+1], then we have:

Regime [D]. The operatorM [k+1] (orR[k+1],N [k+1]) will
be different from M [k] (or R[k], N [k]) due to different flag
matrix.

3.3 Local Linear Convergence
Now we present part of our main results below. Essentially,
when close enough to the optimal solution, we can give a
guarantee that eventually the flag matrix will not change.
Then the iterations of ADMM, ISTA and FISTA eventually
behave like the power method for eigenvalues such that they
converge linearly to the optimal solution. The proof of the
following theorem follows [Boley, 2013] (for ADMM) and
[Tao et al., 2015] (for F/ISTA).
Theorem 3.2 Suppose the LASSO problem (1) has a unique
solution and this solution has strict complementarity: that is
for every index i, w∗i 6= ±λ/ρ for ADMM, ŵ∗i 6= ±λ/L for
ISTA, w̃∗i 6= ±λ/L for FISTA. Then eventually the ADMM it-
eration used specifically for the LASSO problem (6), the ISTA
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iteration (10), and the FISTA iteration (9) all reach a stage
where the iteration converges linearly to that unique solution.

The eigenanalysis in terms of regimes established in [Tao
et al., 2015] allows one not only to study the local conver-
gence behavior but also to explain the whole iteration behav-
ior. The following two propositions show that how FISTA can
be viewed as an accelerated ISTA process and FISTA may
slow down compared to ISTA when close enough to the opti-
mal solution.

Proposition 3.3 In regime [B], the constant step vector for
ISTA is v, where v = Rv is a scaled eigenvector of R for
eigenvalue 1, while the constant step vector for FISTA is

1
1−τ [k]v. Since τ [k] → 1, the constant stepsize of FISTA is
much larger, which yields a speedup.

Proposition 3.4 In regime [A] or [C], let βmax, γmax be the
largest eigenvalue of R and N respectively, then FISTA is
faster than ISTA if 1 > βmax > τ [k] > 0 but slower if
1 > τ [k] > βmax > 0. Since βmax is a fixed value for one
specific regime, with the τ growing to 1, ISTA will be faster
than FISTA toward the end. Besides, when τ > βmax, γmax

must be one of a complex conjugate pair.

The proof follows the same lines as [Tao et al., 2015].
In practice, if βmax is well separated from 1, then it is ad-
vantageous to make FISTA iterations switch to ISTA once it
reaches the final regime. This idea is implemented in Section
5 called Hybrid F/ISTA.

4 Convergence of CD
4.1 Local linear convergence
The cyclic CD is widely used due to its easy update rule. Es-
sentially it goes through and updates all of the components
in a cyclic fashion instead of updating them simultaneously
as the gradient descent method. In this section, we establish
a natural relationship between the iterations of the cyclic CD
and of the Gauss-Seidel method when close enough to the
optimal solution of problem (1) so that linear convergence is
guaranteed eventually under some mild conditions.

We denote y as the iterates of CD, y[k]
i as the i-th coordi-

nate of y[k] and Ai as the i-th column of A. All coordinates
other than i are denoted as −i. The CD updates for problem
(1) is as follows.

Algorithm 3: One pass of CD
Start with y[k].
for coordinate i = 1, 2, · · · , n,

Set y[k+1]
i = Shrλ

(
Aib−

∑i−1
j=1(ATA)ijy

[k+1]
j

−
∑|n|
j=i+1(ATA)ijy

[k]
j

)
/‖ATi Ai‖.

end for
Result is y[k+1] to the next pass.

Our result is motivated by the following key observation.

Lemma 4.1 Suppose the solution to problem (1) has strict
complementarity as in Theorem 3.2, then there exists a K
such that for all k > K, the CD iterate y[k] is close enough
to the optimal solution y∗ that sign(y[k]) is fixed.

Proof. We first define the following index set based on y∗

E = {i ∈ {1, · · · , n} : y∗i 6= 0} (14)

and E as the complement set of E . Consequently,

y∗ =

[
y∗E
0

]
(with y∗E all non-zero).

Based on the notation, it also can be seen thatAE is composed
of the columns corresponding to the nonzero element of y∗E .
For the simplicity of our analysis and without loss of general-
ity, we split matrix A based on E and permute the columns so
thatA = [AE , AE ]. Then the optimality condition of problem
(1) then can be rewritten as

(a) ATE b−ATEAEy∗E −ATEAEy∗E = λdE
(b) ATE b−A

T
EAEy

∗
E −ATEAEy

∗
E = λdE ,

where dE is composed of elements {±1} based on sign(y∗E),
and dE is composed of elements strictly between −1 and +1
by the assumption of strict complementarity. Let δ be the
largest entry in absolute value found in dE so that

Shrλ
(
ATE b−A

T
EAEy

∗
E −ATEAEy

∗
E

)
= 0.

Now consider the case of E . Let y[k] be a vector very close
to y∗ such that ‖y[k] − y∗‖∞ < ε1. Then |yl − y∗l | < ε1
∀l ∈ E and |yj | < ε1 ∀j ∈ E . If ε1 is sufficiently small, then
(b) above induces

‖ATEAEy
[k]
E −A

T
EAEy

[k]

E −A
T
E b‖∞ < λ(δ + c1ε1) < λ,

so that Shrλ(y
[k]

E ) = 0. Here c1 is some constant magnifi-
cation factor depending only on A. Since y[k] converges to
y∗, it would imply that the future iterates, starting from y[k],
would have zeros in the E part.

Next consider the case of E . Let ε2 = minE{|y∗E |} − c2
for a positive constant c2 sufficiently small to make ε2 > 0.
And for each l ∈ E , we define a ball around each y∗l that
B(y∗l ) = {yl : ‖yl − y∗l ‖∞ ≤ ε2}.

According to Theorem 16 in [Saha and Tewari, 2010],
cyclic CD converges to LASSO problem at the rate of
O(1/k). Hence there must exist an iteration number K that
for all k > K,

‖y[k] − y∗‖∞ ≤ ε = min{ε1, ε2}

which implies y[k]

E = 0 and y
[k]
l ∈ B(y∗l ), ∀l ∈ E . In other

words, for each component i, y[k]
i must fall in one of three

cases: yi < 0, yi = 0 and yi > 0 and never jump out to
another case. �

Theorem 4.2 Suppose the optimal solution y∗ of problem (1)
is sparse such thatAT

EAE is positive definite, with E defined in
(14). Then eventually the cyclic coordinate descent iteration
reaches a stage where it converges linearly to the solution.

Proof. From Lemma 4.1, when close enough to the optimal
solution, sign(y[k]) is fixed. So y

[k]

E remained zero for fu-

ture iterations. As for y[k]
E , we can simplify the resulting CD
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updates in Alg. 3 by eliminating y
[k]
j (∀j ∈ E) so that ∀l ∈ E ,

y
[k+1]
l =

(
Alb− λd̂[k]

l −
∑l−1
j=1(ATA)ljy

[k+1]
j

−
∑|E|
j=l+1(ATA)ljy

[k]
j

)
/‖ATl Al‖.

(15)

Assuming λ is large enough such that optimal solution y∗ is
sparse and AT

EAE is positive definite, then (15) is equivalent
to the Gauss-Seidel method applied to

AT
EAEyE = (ATb)E − λdE (16)

where elements of dE is fixed and equal to either 1 or −1.
The iteration must converge linearly by the theory of Gauss-
Seidel method [Golub and Loan, 2013]. �

Remark: we note here that AT
EAE being positive definite is

a mild assumption in practice. Since the optimal solution is
sparse, |E| < m can be satisfied easily for λ not too small,
and in many applications this is sufficient to guarantee that
all columns of AE are linearly independent. If not, one can
increase λ to increase the sparsity.

4.2 Comparison with ISTA
In this part, we show that CD should converge faster than
ISTA when both CD and ISTA iterations are in their final
regimes from the viewpoint of preconditioning. The next
lemma shows the equivalence of the ISTA iteration and the
classical Richardson iteration [Kelley, 1995].

Lemma 4.3 When ISTA iteration reaches the final regime,
the regime of linear convergence, then the ISTA iteration is
equivalent to the Richardson iteration for solving the linear
system (16).

Proof. When ISTA reaches the final regime, according to
Theorem 3.2 ŵ = (I − 1/LA

TA)x̂ + 1/LA
Tb would fall in

into three cases: ŵ < −L, −L < ŵ < L , ŵ > L , and
never jump out to another case. Hence the shrinkage operator
in updating step (10) is fixed so that ISTA reduces to

x̂
[k+1]
E = (I − 1/LA

T
EAE)x̂

[k]
E + 1/L((ATb)E − λd̂E) (17)

where d̂E = sign(x∗E). And x̂
[k+1]

E = 0. The resulting ISTA
updates (17) is exactly Richardson iteration [Kelley, 1995] for
solving (16). �

Combining the result of Theorem 4.2 and Lemma 4.3, if
both CD and ISTA reach their final regimes, then CD is
equivalent to Gauss-Seidel iteration and ISTA is equivalent to
Richardson iteration for solving the same linear system (16).
Let T and U be the diagonal and strict upper triangular part of
AT
EAE and L is the lipschitz constant. Gauss-Seidel iteration

can be written as the preconditioned Richardson iteration as
below (and hence generally faster):

y[k+1] = (I − (T + UT)−1AT
EAE)y

[k]

+(T + UT)−1((ATb)E − λdE)
(18)

with preconditioner L(T + UT)−1 [Kelley, 1995].

Figure 1: (Left): Convergence behavior in terms of error of
iterates of ADMM, ISTA, FISTA, Hybrid F/ISTA and CD for
the instance marked ∗∗ in Table 1. (Right): Spectrum of
operators of all iterations on the left during the final regime.
The unit circle andD(1/2,

1/2) on the complex plane are shown
for reference.

5 Numerical Examples
We consider examples of compressed sensing to show dif-
ferent convergence behaviors to support our analysis. Sup-
pose there exists a true sparse signal represented by a n-
dimensional vector xs with s non-zero elements. We observe
the image of xs under the linear transformation Axs, where
A is the so-called measurement matrix. Our observation thus
should be

b = Axs + ε (19)

where ε is the observation noise. The goal is to recover the
sparse vector xs from the measurement matrix A and obser-
vation b. This is a form of feature selection, where we dis-
cover the most relevant features. We let A ∈ Rm×n be Gaus-
sian matrix whose elements are i.i.d distributed as N (0, 1), ε
be a vector whose elements are i.i.d distributed as N (0, σ2)
with σ = 10−3.

The numerical results are summarized in Table 1. We com-
pare the convergence behavior of ADMM, ISTA, FISTA and
CD in terms of the total number of iterations (Total #), num-
ber of iterations to reach final linear regime (Final #) and the
linear rate in the final regime (Rate), with different λ and spar-
sity s. Based on Propositions 3.3 & 3.4, we also report the be-
havior of a hybrid F/ISTA that follows FISTA during initial
iterations to reach the final regime and then switch to ISTA
until convergence. In general, after comparison with the lin-
ear rates, we see that, CD is often much faster than the other
iterations during the final linear regime.

Fig. 1 illustrates the methods’ behavior for the instance
marked ∗∗ in Table 1, to show how the theorems established
before explains the behaviors in practice. Fig. 1(Left) shows
the convergence behavior of all algorithms. Observe that all
of them pass through a few transitions in the early part of the
iterations and then settle on their final linear regimes. Fig.
1(Right) shows the eigenvalues during the final regimes for
all algorithms. One can see that the eigenvalues of operators
Maug,Raug,Naug lie strictly inside the circle D(1/2,

1/2)
(except for 0 & 1), consistent with Lemma 3.1. Based on
this instance, we also observe the following:

(a). It costs FISTA many fewer steps (245 iterations) than
ISTA (2823 iterations) to get to the final regime. The main
reason is that FISTA has much larger constant steps in regime
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Problem Setting Total# Final# Rate Total# Final# Rate Total# Final# Rate
m = 64, n = 512 s = 7, λ = 0.3 s = 7, λ = 1 s = 7, λ = 5

ADMM 758 711 0.897 271 216 0.897 116 44 0.899
ISTA 6824 6749 0.958 2143 2062 0.958 583 438 0.954

FISTA 541 402 0.975 393 226 0.973 289 84 0.960
Hybrid F/ISTA 512 402 0.958 313 226 0.958 216 84 0.954

CD 399 394 0.141 124 119 0.141 28 25 0.076
m = 64, n = 512 s = 14, λ = 0.3 s = 14, λ = 1 s = 14, λ = 5

ADMM 943 804 0.9632 447 268 0.963 286 87 0.962
ISTA 10000 - - 9321 7713 0.996 2927 1561 0.994

FISTA 1226 961 0.996 1367 546 0.995 1054 758 0.995
Hybrid F/ISTA 2193 961 0.996 2211 546 0.996 1532 758 0.994

CD 1011 952 0.878 350 294 0.878 102 63 0.822
m = 128, n = 1024 s = 10, λ = 0.3 ∗∗ s = 10, λ = 1 ∗∗ s = 10, λ = 5

ADMM 611 498 0.946 286 151 0.946 193 33 0.946
ISTA 9390 9273 0.959 2966 2823 0.959 776 596 0.959

FISTA 693 507 0.976 502 245 0.973 298 99 0.965
Hybrid F/ISTA 622 507 0.959 411 245 0.959 266 99 0.959

CD 383 377 0.184 119 114 0.184 32 24 0.184
m = 128, n = 1024 s = 25, λ = 0.3 s = 25, λ = 1 s = 25, λ = 5

ADMM 1760 1541 0.980 807 566 0.980 544 225 0.980
ISTA 10000 - - 10000 - - 7315 5857 0.996

FISTA 2024 2021 0.997 1777 1724 0.997 1528 863 0.996
Hybrid F/ISTA 2306 2021 0.996 2245 1724 0.996 2017 863 0.996

CD 2821 2754 0.881 893 820 0.883 237 159 0.892

Table 1: Examples of compressed sensing with different problem settings. λ is the parameter in problem (1) and s is the number
of non-zero elements of optimal solution. (Total #): the total number of iterations with maximum 104. (Final #): number of
iterations before reaching final linear regime. (Rate): The linear rate (eigenvalue) in the final regime. ∗∗ : The instance
illustrated in Fig. 1.

[B] so that it can more quickly reach the end of the stag-
nating regime [B], as suggested by Proposition 3.3. In fact,
one can show that the difference between consecutive iterates
of ISTA remains a constant for many iterations while FISTA
does not. Moreover, since the rate of ISTA is 0.959, well sep-
arated from 1, Proposition 3.4 predicts switching to ISTA in
the final regime should converge faster than standard FISTA.
Indeed, hybrid F/ISTA converges in 411 iterations compared
to 502 iterations for FISTA.

(b). FISTA oscillates in the final regime. This is because
the second largest eigenvalue of FISTA operator Naug is a
pair of complex conjugates (cf. Lemma 3.1 & Proposition
3.4). Hence, according to the theory of the power method, the
convergence will oscillate between the two conjugate com-
plex numbers. Since all the eigenvalues of ISTA operator
Raug are real, ISTA iterates do not oscillate.

(c). Implied by the observation in Section 4.2, in the fi-
nal regime, CD is equivalent to a preconditioned ISTA-like
Richardson method for solving the same linear system. In
this instance, we can see the preconditioning plays a big role
and the eigenvalues of CD are much smaller than ISTA shown
in Fig. 1(Right).

(d). We remark that the cost per iteration is about the same
(O(n2)) for all the methods. ISTA, FISTA, and CD require
the equivalent of a matrix-vector product. ADMM requires an
LU-factorization of (ATA + ρI), but only once at the begin-
ning, and requires only a forward-back substitution in each
iteration. Hence iteration counts closely reflect total times.

6 Conclusion
In this paper, we show the locally linear convergence of
ADMM, ISTA, FISTA and CD applied to the LASSO prob-
lem. We model ADMM, ISTA and FISTA as the matrix re-
currence form and connect them with the power method. We
also establish a connection between CD method and Gauss-
Seidel method. By spectral analysis, we show that all of the
iterations normally pass through several regimes of different
types and eventually settle on a “linear regime” in which the
iterates converge linearly.

Such analysis provides a way to study the behavior through
the whole iteration process. We explain why ISTA often ap-
pears to stagnate during the initial iterations, and why FISTA
oscillates towards the end. Besides, we illustrate how the un-
accelerated ISTA can sometimes be faster when close enough
to the solution compared to FISTA and propose the idea of
switching to ISTA in certain circumstances.
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