












Table 1: Statistical results of 100 experiments (mean+std). PEN◦ and PEN• represent the results of condition 1 and condition 2
respectively. “—” represents the measurement is Not Applicable for the methods. The best and second best results are in bold.

Environment SOM GNG ASOINN TopoART LB-SOINN PEN◦ PEN•

Closed
ME 2.51±0.03 2.49±0.03 0.92±0.01 1.03±0.01 1.04±0.02 0.025±0.003 0.021±0.004
MQE 7.47±0.31 5.89±0.28 3.05±0.21 — 3.01±0.20 1.49±0.15 1.43±0.18
CR 73.5±0.80% 76.6±0.80% 88.2±0.71% 83.5±0.55% ↓ 90.1±0.67% 92.1±0.50% 94.2±0.58%

Open-ended
ME 2.53±0.06 2.51±0.06 1.13±0.04 0.90±0.01 1.02±0.03 0.024±0.003 0.021±0.003
MQE 8.50±0.40 6.17±0.38 3.28±0.27 — 2.98±0.18 1.45±0.15 1.41±0.15
CR 55.5±0.86% ↓ 57.9±0.79% ↓ 83.4±0.64% ↓ 89.2±0.57% 85.2±0.61% ↓ 92.3±0.53% 94.5±0.51%

fer the Stability-Plasticity Dilemma; The CR of PEN is very
stable in both environments.

4.3 Experiment Summary
In the experiments, we see that PEN is able to create new pro-
totypes for new categories of objects effectively; this implies
that PEN has a degree of freedom on the breadth of cogni-
tion. PEN also permits the emergence of new dimension of
perception; it means that PEN has a degree of freedom on the
depth of cognition. Meanwhile, the new dimension of percep-
tion will promote the breadth of cognition, i.e., PEN will find
some new categories of objects in the “new perceived world”.

5 Conclusion
The proposed Perception Evolution Network is a biologi-
cally inspired computing model which permits the emergence
of a new dimension of perception. Zhou and Chen [Zhou
and Chen, 2002], based on the supervised learning view,
gave three types of incremental learning including example-
incremental learning, class-incremental learning [Da et al.,
2014], and attribute-incremental learning. Based on the un-
supervised learning view, we think the incremental learning
should be classified into: (1) the extension of the connotation
of the existing knowledge system; and (2) the discovery and
fusion of new knowledge system. The two points are another
explanation of the breadth and depth of the cognition. They
are an intrinsic whole that complement each other.

From the experiment, we see that PEN can deal with many
potential practical problems. For example, if we install new
sensors to a robot to expand its sensing capability, with PEN,
we do not need to retrain the robot offline from scratch, the
information gathered from the new installed sensors is fused
with the existing knowledge online by PEN automatically.
This means PEN will have broad applications such as robot
system, information fusion, video game [Stanley et al., 2005].

The influence of the order of sensor addition will be dis-
cussed in the future. This is an extremely interesting topic
which aims to see the outcome of different evolution orders.
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