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1 Introduction
Formal argumentation has evolved into an important field in
Artificial Intelligence. Abstract argumentation frameworks
(AFs for short), as introduced by Dung [1995], are central in
formal argumentation, providing a simple yet powerful for-
malism to reason about conflicts between arguments. The
power of the formalism, however, comes at a price. In partic-
ular, many important reasoning problems for AFs are located
on the second level of the polynomial hierarchy, including
skeptical reasoning in the preferred semantics [Dunne and
Bench-Capon, 2002], and both skeptical and credulous rea-
soning in the semi-stable and the stage semantics [Dvořák and
Woltran, 2010]. This naturally raises the question about the
origin of this high complexity and, in particular, calls for re-
search on lower complexity fragments of the reasoning tasks.
The focus of this article is both on the identification of such
lower-complexity fragments of second-level reasoning prob-
lems arising from abstract argumentation, and on exploiting
this knowledge in developing efficient complexity-sensitive
decision procedures for the generic second-level problems.

Tractable (i.e., polynomial-time decidable) fragments have
been quite thoroughly studied in the literature (see [Coste-
Marquis et al., 2005; Dunne, 2007; Dvořák et al., 2010;
2012b; 2012a] for instance). However, there is only little
work on identifying fragments which are located on the first
level (NP/coNP layer), that is, in-between tractability and full
second-level complexity.

Identification of first-level fragments of second-level rea-
soning tasks is important due to several reasons. Firstly,
from a theoretical point of view, such fragments show par-
ticular (but not all) sources of complexity of the considered
problems. Secondly, NP fragments can be efficiently re-
duced to the problem of satisfiability in classical proposi-
tional logic (SAT). This allows for realizations of argumenta-
tion procedures by employing sophisticated SAT-solver tech-
nology [Marques-Silva and Sakallah, 1999; Eén and Sörens-
son, 2004] for reasoning over argumentation frameworks.

Going even further, in this work we aim at designing deci-
sion procedures for second-level argumentation problems by

∗This paper is an extended abstract of [Dvořák et al., 2014].

exploiting fragments extending such first-level fragments. To
this end, we use the NP decision procedures as NP oracles
in an iterative fashion. For problems complete for the sec-
ond level of the polynomial hierarchy, this leads to general
procedures which, in the worst case, require an exponential
number of calls to the NP oracle, which is indeed unavoid-
able under the assumption that the polynomial hierarchy does
not collapse. Nevertheless, we show that such procedures can
be designed to behave adequately on input instances that fall
into the considered NP fragment and on instances for which a
relatively low number of oracle calls is sufficient; as a generic
notion, we say that such a procedure is complexity-sensitive
w.r.t. the NP fragment at hand.

In this work we identify various lower-complexity frag-
ments of second-level reasoning problems arising from ab-
stract argumentation, and show how some of the fragments
can be exploited in complexity-sensitive decision procedures
for the generic second-level problems. The fragments identi-
fied and exploited are based on notions of “distance” to par-
ticular NP fragments. This leads to the intuition that, the
higher the distance, the more iterative calls to the NP ora-
cle are needed. We also employ the concept of distance to
generalize known classes of NP fragments.

In this extended abstract we focus on the preferred se-
mantics; further semantics are considered in the full ver-
sion [Dvořák et al., 2014]. Our complexity analysis is based
on five different classes of argumentation frameworks which
are known to yield milder complexity results for some seman-
tics of AFs. Firstly, we present complexity results for these
classes in cases where the exact complexity has not been es-
tablished yet. Moreover, we categorize the classes into syn-
tactical and semantical families. For the former family, we
consider the known concepts of acyclic and odd-cycle free
AFs, as well as a new class (so-called weakly cyclic AFs).
As semantical subclasses we consider the prominent class of
coherent AFs [Dunne and Bench-Capon, 2002] and the class
of AFs which possess a unique preferred extension.

Secondly, we consider alternative notions of distance in or-
der to capture AFs which are “close” to one of the aforemen-
tioned classes. We study in detail the following realizations of
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distance: graph-based distance measures, where the param-
eter is the number of arguments to be deleted from a given
AF in order to fall into a specified class; and extension-based
distance measures, which apply to the semantical subclasses.

We show that graph-based distance measures are in most
cases tight: already a small distance from the subclass at
hand leads to the full second-level complexity. For the se-
mantic distance measures, we show that certain problems can
be solved by a bounded number (in terms of the distance)
of NP-oracle calls. Exploiting extension-based distances, we
develop a generic framework of complexity-sensitive deci-
sion procedures for different second-level reasoning prob-
lems within abstract argumentation. We have implemented
this idea in a prototype system, called CEGARTIX, that
exploits current state-of-the-art conflict-driven clause learn-
ing (CDCL) SAT-solver technology as the underlying NP
oracle. Experiments show the high potential of the pro-
posed approach compared to other state-of-the-art implemen-
tations for abstract argumentation, in particular the logic-
programming approach based on monolithic encodings of
second-level problems [Egly et al., 2010].

In the long version of this extended abstract ([Dvořák et
al., 2014]) we further investigate in detail the semi-stable
and stage semantics for argumentation frameworks. Deci-
sion problems for these two semantics are, like for the pre-
ferred semantics, located at the second level of the polyno-
mial hierarchy, and we have extended our complexity anal-
ysis, complexity sensitive decision procedures, implementa-
tion, and empirical evaluation to these semantics as well.

2 Preliminaries
In this section we review argumentation frameworks [Dung,
1995], the semantics studied in this work (see also [Baroni et
al., 2011]), and known complexity results for decision prob-
lems under the different semantics.
Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A is a finite set of arguments and R ⊆
A×A is the attack relation. An argument a ∈ A is defended
by a set S ⊆ A if for each b ∈ A such that (b, a) ∈ R, there
is a c ∈ S s.t. (c, b) ∈ R.

Semantics for argumentation frameworks assign to each
AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider
here for σ the functions stb, adm , prf , com , which stand
for stable, admissible, preferred, and respectively, complete
semantics.
Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is
conflict-free (in F ), denoted S ∈ cf (F ), iff there are no
a, b ∈ S such that (a, b) ∈ R. For S ∈ cf (F ), it holds
that
• S ∈ stb(F ) if for each a ∈ A \ S, there exists a b ∈ S

s.t. (b, a) ∈ R;

• S ∈ adm(F ) if each a ∈ S is defended by S;

• S ∈ prf (F ) if S ∈ adm(F ) and there is no T ∈
adm(F ) with T ⊃ S; and

• S ∈ com(F ) if S ∈ adm(F ) and for each a ∈ A de-
fended by S, a ∈ S holds.

a b c d e

Figure 1: Example argumentation framework

We recall that for each AF F , stb(F ) ⊆ prf (F ) ⊆
com(F ) ⊆ adm(F ) holds, and that for each of the consid-
ered semantics σ (except stable) σ(F ) 6= ∅ holds.

Example 1. Consider the AF F = (A,R), with A =
{a, b, c, d, e} and R = {(a, b), (c, b), (c, d), (d, c), (d, e),
(e, e)}. The graph representation of F is shown in Figure 1.
Here stb(F ) ={{a, d}}. The admissible sets of F are ∅, {a},
{c}, {d}, {a, c} and {a, d}. The set of preferred extensions
is prf (F ) = {{a, c}, {a, d}}. The complete extensions are
{a}, {a, c} and {a, d}. 3

Given an AF F = (A,R), a semantics σ and an argu-
ment a ∈ A, the credulous reasoning problem (Credσ) asks
whether there exists an E ∈ σ(F ) with a ∈ E , while the
skeptical reasoning problem (Skeptσ) asks whether a ∈ E
for all E ∈ σ(F ) holds. We have Credadm = Credcom =
Credprf . These three problems and Credstb are NP-complete.
On the other hand, Skeptadm is trivial, Skeptcom is P-
complete, Skeptstb is coNP-complete, and Skeptprf is ΠP

2 -
complete [Coste-Marquis et al., 2005; Dimopoulos and Tor-
res, 1996; Dung, 1995; Dunne and Bench-Capon, 2002].

3 Complexity of Subclasses of AFs
In this section we review several classes of AFs where rea-
soning with preferred semantics becomes easier. Both earlier
and new results are discussed. First, we consider the classes
of acyclic and weakly cyclic AFs.

Definition 3. An AF F is acyclic if there is no directed cycle
of attacks in F ; F is weakly cyclic if F can be made acyclic
by deleting one argument (and its incident attacks) from each
strongly connected component 1 (SCC) of F . We denote these
classes of AFs by acyc and wcyc.

It is well known that Skeptprf becomes tractable when re-
stricted to acyclic AFs. For the class wcyc (these are the AFs
where the graph parameter cycle-rank is at most 1) we can
make use of a result in [Dvořák et al., 2012b] to show that
Skeptprf is coNP-complete. Moreover one can efficiently de-
cide whether a given AF falls into one of these two classes.

The next class relates preferred and stable extensions and
was already introduced in Dung’s seminal paper [1995].
Later it has been thoroughly discussed in [Dunne and Bench-
Capon, 2002].

Definition 4. An AF F is coherent if prf (F ) = stb(F ). We
denote the class of such AFs by coherent.

1A set of arguments is called strongly connected in an AF if there
is a path from each argument to every other argument in the set. A
strongly connected component of an AF is a ⊆-maximal strongly
connected set.
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G in G distance to G
acyc P-c FPT

wcyc coNP-c ΠP
2 -c

ocf coNP-c ΠP
2 -c

coherent coNP-c ΠP
2 -c

uniqpref in NP ΠP
2 -c

Table 1: Complexity of Skeptprf when the AF belongs to a
sub-class G, or when parameterized by distance to G.

Skeptical reasoning under preferred semantics is coNP-
complete when restricted to AFs from coherent. Unfortu-
nately, testing coherence is ΠP

2 -complete [Dunne and Bench-
Capon, 2002]. At first glance this restricts the practical value
of this fragment, but there is a class of easy detectable coher-
ent AFs, namely the AFs without odd-length cycles.

Definition 5. An AF F is odd-cycle free if there is no directed
cycle consisting of an odd number of attacks in F . We denote
the class of odd-cycle free AFs by ocf.

In fact, testing for odd-length cycles in digraphs can be done
in polynomial time (see e.g. [Bang-Jensen and Gutin, 2010]).
Dunne [2007] observed that for F ∈ ocf reasoning with pre-
ferred semantics is complete for the first level of the polyno-
mial hierarchy.

The final fragment we introduce is another semantical one.
It makes use of the complexity gap between credulous and
skeptical acceptance for preferred semantics.

Definition 6. We denote the class of AFs F satisfying
|prf (F )| = 1 by uniqpref.

The problem Skeptprf is in NP if we restrict to AFs F ∈
uniqpref. It is open whether these problems are also NP-
hard. However, we can show NP-hardness under so-called
randomized reductions [Valiant and Vazirani, 1986].

To summarize, we have introduced several kinds of AF-
subclasses. They can be grouped into syntactical (acyc, wcyc,
ocf), and semantical classes (coherent, uniqpref). The com-
plexity results are shown in Table 1. Next, we study possi-
bilities of extending the “good” complexity behavior of these
classes. To this end, we will introduce certain distance mea-
sures with the aim of maintaining lower complexity as long
as the distance to such a class is bound.

Graph-Based Distance Measures A natural way to gener-
alize a subclass is to consider the minimal number of argu-
ments one has to delete from an AF so that the modified AF
falls into the respective class (see also [Dvořák et al., 2012a]).
This gives rise to the following distance measure.

Definition 7. Let G be a graph class and F = (A,R) an AF.
We define distG(F ) as the minimal number k such that there
is a set S ⊆ A with |S| = k and (A\S,R∩(A\S×A\S)) ∈
G. If there is no such set S we define distG(F ) =∞.

Table 1 summarizes our results which are all negative in
the sense that full second-level complexity is reached when
fragments are parameterized in a “syntactic” way (hardness

holds even for distG(F ) = 1); only acyc yields some posi-
tive results (due to [Dvořák et al., 2012a]). Here FPT (fixed-
parameter tractability) means that for a fixed distance, a prob-
lem can be solved in polynomial time and the order of the
polynomial time bound does not depend on the distance.

Extension-Based Distance Measures Next, we consider
different distance measures which take the number of exten-
sions into account and thus naturally apply only to the seman-
tical subclasses of AFs, i.e. coherent and uniqpref.

Definition 8.
An AF F is k-coherent, for k ≥ 0, if |prf (F ) \ stb(F )| ≤ k.
We use coherentk to denote the respective class of AFs.

We denote by solkprf the class of all AFs F such that
|prf (F )| ≤ k.

While the following theorem gives a negative result for
coherentk it gives a positive result for solkprf which guides
us to complexity-sensitive procedures.

Theorem 1.
• Skeptprf for AFs in coherentk is ΠP

2 -hard under ran-
domized reductions; hardness holds even for k = 1.

• For AFs F ∈ solkprf , Skeptprf is in PNP.

4 Complexity-Sensitive Procedures
In this section we describe a complexity-sensitive decision
procedure for skeptical acceptance under preferred semantics.
Our procedure is based on the observations in Theorem 1.
As a result, the procedure is complexity-sensitive w.r.t. the
number of preferred extensions in the given framework.

The general framework implemented by our procedure
exploits NP-oracles, and uses oracle calls to decide NP-
decidable relaxations of the input instance by over- and/or
under-approximating the acceptance conditions of the prob-
lem at hand. The relaxation is iteratively strengthened based
on the answers provided by the oracle calls. More specifi-
cally, at the beginning of the procedure, the candidate exten-
sions are the NP-decidable admissible sets (or, alternatively,
complete extensions). We refer to the semantics that char-
acterizes the initial candidate extensions as the chosen base
semantics. Starting from the initial candidate extensions, the
remaining set of candidate extensions is then non-trivially re-
duced in an iterative fashion based on the results returned by
the previous oracle calls.

Our procedure incorporates an additional shortcut. It uti-
lizes the following observation: in coherent AFs an argument
a is skeptically accepted iff a is not attacked by a preferred ex-
tension. In general, one has to drop the “if” direction. How-
ever, it holds that an argument is skeptically accepted only if a
is not attacked by a preferred extension. The latter is equiva-
lent to a not being attacked by an admissible set or a complete
extension, which can be checked with one NP-oracle call.

Our complexity-sensitive procedure for deciding skeptical
acceptance of an argument w.r.t. preferred semantics is pre-
sented as Algorithm 1, Skeptprf (F, α). First, the procedure
applies the just explained shortcut. If this does not result in
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Algorithm 1 Skeptprf (F, α)

Require: AF F = (A,R), α ∈ A, σ ∈ {adm, com}
Ensure: accepts iff α is skeptically accepted in F w.r.t. prf

1: E ← ∅
2: if ORA (∃E ∈ σ(F ) : E attacking α) then
3: reject
4: end if
5: while E ← ORA(∃E∈σ(F ) :α 6∈E,@E′∈E :E⊆E′)

do
6: while E′ ← ORA (∃E′ ∈ σ(F ) : E ⊂ E′) do
7: E ← E′

8: end while
9: if α 6∈ E then

10: reject
11: else
12: E ← E ∪ {E}
13: end if
14: end while
15: accept

a decision for the input instance, the algorithm iteratively tra-
verses the search space of the base semantics σ.

The outer while loop in line 5 computes an admissible set
or complete extension E excluding α and ensuring that E
is not a subset of an already visited preferred extension that
is in E . If such an E is found it is iteratively extended in
the inner while loop until a subset maximal σ extension is
found, which is a preferred extension. If α 6∈ E we can reject
skeptical acceptance of α in F , and otherwise add E to E and
repeat the search process.

Notice that in the algorithm we use the oracle function
ORA not only to get yes/no answers for NP-queries, but also
to obtain certain extensions. This does not fully match with
the formal notion of an NP-oracle, which only returns yes
or no, but to a functional variant of it. However, ORA can
be easily implemented by a linear number of calls to a clas-
sical NP-oracle. In our implementation, shortly discussed
next, we employ SAT-solvers that directly provide satisfying
assignments corresponding to extensions.

Example 2. Let us illustrate the behavior of Algorithm 1 for
the AF from Example 1. The AF has two preferred extensions
{a, c} and {a, d} with a being the only skeptically accepted
argument. First, we test b for skeptical acceptance with Al-
gorithm 1 and base semantics adm . Then, already in line 2
of the algorithm we obtain an admissible set attacking b, e.g.
{a, c}, and thus reject skeptical acceptance of b. Now con-
sider the argument a and base semantics com . As a is not at-
tacked the shortcut in line 2 does not apply. Since there is no
E ∈ com(F ) s.t. a /∈ E we immediately exit the outer while
loop in line 5 and conclude skeptical acceptance of a. Con-
sidering argument c, we find out via the shortcut that there is
a complete extension attacking this argument, namely {a, d}
and thus reject skeptical acceptance of c.

Empirical Evaluation We implemented our complexity-
sensitive decision procedures in the system CEGARTIX2.
A preliminary analysis revealed a performance boost com-
pared to ASPARTIX [Egly et al., 2010], a state-of-the-art sys-
tem for abstract argumentation based on answer-set program-
ming. We further investigated the choice of the base seman-
tics. Complete semantics outperformed admissible semantics
on some instances, but overall yielded similar results. The
full analysis, including also a comparison of different under-
lying SAT-solvers, can be found in [Dvořák et al., 2014].

5 Discussion
In this work, we developed a novel method for solving hard
problems in the area of argumentation in a “complexity-
sensitive” way. Our prototype implementation CEGARTIX
employs SAT-solvers as underlying inference engines. Ex-
periments show that CEGARTIX significantly outperforms
existing systems developed for hard argumentation problems
(i.e. problems under the preferred, semi-stable, or stage se-
mantics). The fundamental aspects of our approach are
generic, allowing in principle to exploit as the underlying
NP-oracle systems developed for other reasoning problems
such as CSP or ASP, or even native argumentation systems
for “easier” semantics such as the stable or complete seman-
tics. In that way, our approach can be seen as a hybrid vari-
ant of many current systems for argumentation that are ei-
ther reduction-based (building a single call to an oracle), or
dedicated, i.e. constructing an algorithm from scratch (see
also [Charwat et al., 2015] for a survey on many approaches
to implement abstract argumentation semantics).

Our promising experimental results have been comple-
mented by Cerutti et al. [2014a] who utilized similar iter-
ative SAT techniques as CEGARTIX to enumerate all pre-
ferred extensions of an AF in their high-performance system
ArgSemSat. ArgSemSat was further augmented in subse-
quent work [Cerutti et al., 2014b] via a computation along
the strongly connected components of the given AF such that
only a partial framework has to be evaluated in a SAT call.
Furthermore, the iterative scheme was also utilized for ex-
tended argumentation frameworks (EAFs) [Modgil, 2009] in
an ASP approach by [Dvořák et al., 2015].

Building necessary ground for the complexity-sensitive ap-
proach, we also presented an extensive complexity theoretic
analysis, providing new results for fragments of argumenta-
tion frameworks, as well as distance-based complexity anal-
ysis, complementing results from [Dvořák et al., 2012a]. Re-
cently, de Haan and Szeider [2014] introduced novel parame-
terized complexity classes related to our complexity-sensitive
approaches. These classes either show the applicability of
certain NP oracle based algorithms for problems “beyond
NP”, or give evidence that such algorithms are not possible.

For future work, the experimental results suggest to apply
our approach to further formalisms extending the Dung-style
frameworks such as abstract dialectical frameworks (ADFs)
[Brewka et al., 2013]. ADFs are an appealing target for-
malism, since they generalize other proposals such as bipolar

2Available at www.dbai.tuwien.ac.at/research/project/
argumentation/cegartix/.

4176



frameworks [Amgoud et al., 2008] and EAFs. In the opposite
direction, one could consider further fragments of Dung-style
frameworks. For preferred semantics, an interesting class are
AFs having a bound number of odd cycles; the complexity of
evaluating such AFs is currently open. Finally, it would be in-
teresting to relate our complexity-sensitive approaches to the
new classes developed by de Haan and Szeider [2014].

Acknowledgments
This work has been funded by the Austrian Science Fund
(FWF) through projects I1102, Y698, and P25518-N23, and
by Academy of Finland through grants 251170, 276412, and
284591.

References
[Amgoud et al., 2008] Leila Amgoud, Claudette Cayrol,

Marie-Christine Lagasquie, and Pierre Livet. On bipolarity
in argumentation frameworks. Int. J. Intell. Syst., 23:1–32,
2008.

[Bang-Jensen and Gutin, 2010] Jørgen Bang-Jensen and Gre-
gory Gutin. Digraphs: Theory, Algorithms and Appli-
cations. Springer Monographs in Mathematics. Springer,
2010.

[Baroni et al., 2011] Pietro Baroni, Martin Caminada, and
Massimiliano Giacomin. An introduction to argumentation
semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[Brewka et al., 2013] Gerhard Brewka, Stefan Ellmauthaler,
Hannes Strass, Johannes P. Wallner, and Stefan Woltran.
Abstract Dialectical Frameworks Revisited. In Proc. IJCAI
2013, pages 803–809. AAAI Press / IJCAI, 2013.

[Cerutti et al., 2014a] Federico Cerutti, Paul E. Dunne, Mas-
similiano Giacomin, and Mauro Vallati. Computing pre-
ferred extensions in abstract argumentation: A SAT-based
approach. In Proc. TAFA 2013, volume 8306 of LNCS, pages
176–193. Springer, 2014.

[Cerutti et al., 2014b] Federico Cerutti, Massimiliano Gia-
comin, Mauro Vallati, and Marina Zanella. An SCC re-
cursive meta-algorithm for computing preferred labellings
in abstract argumentation. In Proc. KR 2014, pages 42–51.
AAAI Press, 2014.

[Charwat et al., 2015] Günther Charwat, Wolfgang Dvořák,
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