
Description Logic Based Dynamic Systems:
Modeling, Verification, and Synthesis∗†

Diego Calvanese,
Marco Montali, Fabio Patrizi

KRDB Research Centre
Free Univ. of Bozen-Bolzano

Bozen-Bolzano, Italy
lastname@inf.unibz.it

Giuseppe De Giacomo,

DIAG
Sapienza Univ. of Rome

Rome, Italy
degiacomo@dis.uniroma1.it

Abstract
In this paper, we overview the recently introduced
general framework of Description Logic Based Dy-
namic Systems, which leverages Levesque’s func-
tional approach to model systems that evolve the
extensional part of a description logic knowledge
base by means of actions. This framework is para-
metric w.r.t. the adopted description logic and the
progression mechanism. In this setting, we discuss
verification and adversarial synthesis for specifica-
tions expressed in a variant of first-order µ-calculus,
with a controlled form of quantification across suc-
cessive states and present key decidability results
under the natural assumption of state-boundedness.

1 Introduction
To attack the inherent complexity of organizations, static (data-
related) and dynamic (process-related) aspects are traditionally
modeled and managed independently from each other. This di-
vide et impera approach has led to the development of success-
ful theories and technologies, such as databases, ontologies
and information integration to account for static aspects, and
business process management, service-oriented computing,
formal verification and model checking for dynamic ones.

On the other hand, in the last decade it has been exten-
sively argued that this separation hampers the possibility
of understanding the organization as a whole, and of tak-
ing corresponding strategic decisions [Karel et al., 2009;
Reichert, 2012]. E.g., to define resource assignment policies,
a company might require that if an employee A has reviewed
the job of B, then A cannot work in the same department as B.
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In this scenario, any simplification wrt to the static or dynamic
component (the assignments of employees to departments and
their evolution over time) leads to an incomplete model and
prevents the possibility of fulfilling the policy requirements.

The combination of these two aspects has led to flourishing
lines of research on formal foundations [Bhattacharya et al.,
2007; Calvanese et al., 2013a], modeling paradigms [Martin
et al., 2007; Hull, 2008], and integrated software platforms
[Künzle et al., 2011] for data-aware (business) processes.

In this light, there has been an increasing interest in inte-
grating semantic mechanisms like description logics (DLs),
to describe static knowledge, with mechanisms, like transi-
tion systems (TS), to describe dynamics. Combining such
aspects into a single logical formalism is notoriously difficult,
as it yields a semantics based on two-dimensional structures
(DL domain + dynamics/time) which leads to undecidability
[Wolter and Zakharyaschev, 1999; Gabbay et al., 2003].

Recently, to overcome such difficulties, a looser coupling
of the static and dynamic representation mechanisms has been
proposed, giving rise to a rich body of research [Baader et
al., 2012; De Giacomo et al., 2012; Calvanese et al., 2012;
Bagheri Hariri et al., 2013b]. Virtually all such work is im-
plicitly or explicitly based on Levesque’s functional approach
[Levesque, 1984], where a KB is seen as a system that provides
the ability of querying its knowledge in terms of logical im-
plication/certain answers (“ask” operation), and the ability of
progressing it through forms of updates (“tell” operation). As
a consequence, the knowledge description formalism becomes
decoupled from the formalism that describes the progression:
we can define the dynamics through a TS, whose states are DL
KBs, and transitions are labeled by the action that causes the
transition. The key issue in this context is that such TSs are
infinite in general, and hence some form of faithful abstraction
is needed. Note that, if the number of states in this TS is finite,
then verifying dynamic properties over such systems amounts
to a form a finite-state model checking [Emerson, 1996].

In this paper, we follow this approach and devise a gen-
eral framework for DL Based Dynamic Systems, which is
parametric w.r.t. the DL used for the knowledge base and the
mechanism used for progressing the state of the system. Using
this framework, we study verification and (adversarial) syn-
thesis for specifications expressed in a variant of first-order
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µ-calculus, with a controlled form of quantification across
successive states. We recall that µ-calculus subsumes virtually
all logics used in verification, including LTL, CTL, and CTL∗.
Adversarial synthesis for µ-calculus captures a wide variety
of synthesis problems, including conditional planning with
full-observability [Ghallab et al., 2004], behaviour composi-
tion [De Giacomo et al., 2013], and several other sophisticated
forms of synthesis and planning [De Giacomo et al., 2010].

We provide key decidability results for verification under
a “bounded-state” assumption. Such assumption states that
while progressing, the system can change arbitrarily the stored
objects but their total number at each time point cannot exceed
a certain bound. Notice that along an infinite run (and hence in
the overall TS), the total numer of objects can still be infinite.
We then turn to adversarial synthesis, where we consider the
system engaged in a sort of game with an adversarial environ-
ment. The two agents (the system and the environment) move
in alternation, and the problem is to synthesize a strategy for
the system to force the evolution of the game so as to satisfy a
given synthesis specification. Such a specification is expressed
in the above first-order µ-calculus, using the temporal oper-
ators to express that the system is able to force a formula Φ
in the next state regardless of the environment moves, as in
the strategy logic ATL [Alur et al., 2002]. We show again
decidability under the “bounded-state” assumption (this time
for the game structure).

This paper recasts the results presented in [Calvanese et al.,
2013b] for a more general AI audience. We refer to that article
for additional details.

2 Description Logic based Dynamic Systems
Description Logic based Dynamic Systems (DLDSs) [Cal-
vanese et al., 2013b] support a representation of the domain
of interest in terms of a full-fledged DL KB, and describe how
the extensional component of the KB evolves as actions are ex-
ecuted. The coupling of static and dynamic aspects is inspired
by Levesque’s functional approach [Levesque, 1984], which
sees a KB as a device supporting two key operations: (i) ASK,
which retrieves tuples of objects as answers to query over the
KB; (ii) TELL, which produces a new KB resulting from an
action application on the current KB. Notably, DLDSs intro-
duce no requirement on the underlying DL, nor on the action
specification formalism; thus, they can be concretized under
different modeling choices, without affecting the obtained
technical results, see, Sections 4 and 5. We next overview the
components and the working assumptions for DLDSs.

Static Component
The static component of a DLDS consists of a DL KB, with
objects coming from a countably infinite universe ∆ acting as
standard names [Levesque and Lakemeyer, 2001]. A (DL) KB
is a pair (T,A), where T , the TBox, represents the intensional
knowledge about the domain of interest, in terms of concepts
(unary relations) and roles (binary relations), and A, the ABox,
represents the extensional knowledge about the objects. The
TBox is a finite set of universal assertions (not allowed to
mention nominals). The ABox is a finite set of (ground) facts
of the form N(d) or P (d, d′), with N and P a concept and a
role name, respectively, and d, d′ coming from ∆. ADOM(A)
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Figure 1: Action execution in a DLDS

denotes the set of objects explicitly mentioned in A and AT

denotes the set of all possible ABoxes over concepts and roles
from T , and objects from ∆. We adopt the standard FO seman-
tics for DLs, and assume that TBoxes are always satisfiable,
i.e., admit at least one model. For the specification of the
static component, we do not commit to any particular DL but
assume, as typical in DL, that the standard reasoning services,
i.e., checking KB satisfiability and logical implication, are
decidable.

Dynamic Component
The dynamic component of a DLDS consists of a set of
parametric actions that manipulate the ABox (the intensional
knowledge is fixed). Actions are mathematically characterized
in terms of their input/output behavior. An action execution
consists of the following three steps, illustrated in Figure 1:

1. A query over the KB is issued to determine the formal
input parameters accepted by the action in the current
state (action parameters are not fixed but depend on the
current state, i.e., the ABox).

2. The obtained formal parameters are bound to objects
from ∆ by the external environment –this makes it possi-
ble to inject fresh data into the DLDS.

3. The action generates a new ABox, which depends on the
current ABox and the actual parameter values.

We stress that the parameter binding mechanism is more
general than that of procedures/functions of programming
languages, where the number of parameters is fixed by their
signature. This data-driven mechanism is inspired by web-
based systems, where input forms are dynamically constructed
and customized depending on data acquired previously.

Example 1 In a conference submission system, when the corre-
sponding author registers a paper, inserting the author names, the
system creates a form to enter affiliations and e-mail addresses. The
number of input fields of this form depends on the inserted data, i.e.,
the number of registered authors. The insertion of such data can be
modeled in a DLDS action as follows: (i) the action queries the
current KB, extracts the author names, and produces two input param-
eters, affiliation and e-mail, per author; (ii) the corresponding author
binds the parameters to actual values; (iii) the action is executed, by
adding to the current ABox, the affiliation data for each author.

Formal Definition
A DLDS is a tuple K = (T,A0,Γ), where (T,A0) is a KB
and Γ is a finite set of actions. Constants in ADOM(A0) are
distinguished, and are denoted by C, i.e., C = ADOM(A0).
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Figure 2: A BPMN fragment with control and generic data

Let P be a countably infinite set of parameter names. Each
action in Γ has the form (π, τ), where
• π : AT → 2P is a parameter selection function that,

given an ABox A, returns the finite set π(A) ⊆ P of
parameters of interest for τ w.r.t. A (see below);
• τ : AT × ∆P 7→ AT , is a (partial) effect function

that, given an ABox A and a parameter assignment m :
π(A)→ ∆, returns (if defined) the ABoxA′ = τ(A,m),
which (i) is consistent wrt T , and (ii) contains only con-
stants in ADOM(A)∪ IM(m) (IM(m) denotesm’s image).

Note that only finitely many new objects can be added to A′,
depending on A, being π(A) (and thus IM(m)) finite.

Generic DLDSs
Observe that the definition of actions is completely general,
as no assumptions are made on how they operate. In practice,
though, it is natural to assume that actions are specified us-
ing some data-centric query/update languages. Virtually all
such languages enjoy the property of genericity [Abiteboul et
al., 1995], i.e., they are invariant under renaming of objects.
Essentially, genericity yields that objects are distinguishable
based only on properties that can be inferred from the KB.
More specifically, in a generic DLDS we can conceptually
partition ∆ into two sets: (i) a finite subset containing special
control data, typically distinguished constants, used to drive
the dynamics of the DLDS, and which constitute the “control
state”; (ii) a countably infinite subset containing data that do
not play a role per se in the DLDS dynamics.
Example 2 Consider the fragment of Business Process Model and
Notation (BPMN) process shown in Figure 2, where a credit card
registration is followed by a payment, in turn followed by three
different branches, chosen depending on the payment outcome. For
this process, the credit card number is generic, in that its value does
not affect directly the process execution, specifically which branch is
taken after payment. On the other hand, the bank status is a control
data, in that its value determines the branch that is followed next.

To define genericity, we introduce a notion of logical equiv-
alence between ABoxes weaker than the standard one, that
does not depend on the actual values mentioned in the ABoxes.
Informally, two ABoxes A1, A2 are said to be logically equiv-
alent modulo renaming wrt a TBox T , if one can rename the
objects mentioned in A1 and A2, preserving the distinguished
constants, in a way such that the assertions of one ABox are
entailed by the other in conjunction with the TBox T . This
notion between ABoxes generalizes that of isomorphism be-
tween FO interpretations, in that object renaming allows one
to obtain the model defined by one ABox, from the other.

We define a generic DLDS K = (T,A0,Γ) as one such
that, given two ABoxes A1, A2 logically equivalent modulo
renaming, the execution of the same action on both ABoxes,

using the same parameters modulo the renaming between
A1 and A2, possibly extended to the new injected objects,
produces two ABoxes logically equivalent modulo renaming.

Example 3 Consider a DLDS modeling the BPMN diagram in
Figure 2, and focus on the formalization of the credit card registration
action. This action always generates a single parameter, used to inject
the credit card number into the system, and has the effect of inserting
a new fact in the KB, expressing that the customer who executed the
action is now associated with the inserted card number. Suppose now
that the DLDS is instantiated twice by different users, Alice (A) and
Bob (B), and that, before executing the registration action, the two
current KBs of each process instance are logically equivalent modulo
renaming of A as B (and viceversa). Then, genericity guarantees
that the KBs resulting from the execution of the registration action
in each process instance are equivalent modulo renaming of A as B,
and of A’s credit card number into B’s.

Execution Semantics
The execution semantics of a DLDS K is characterized by
a transition system (TS) ΥK that accounts for all possible
action executions, with all possible parameter instantiations.
To account for the evolution of the extensional part of a DL
KB, ΥK incorporates ∆ and the KB TBox T , and annotates
each state with the corresponding ABox. Transitions in ΥK
then correspond to the result of action executions on ABoxes.

The generated TS of a DLDS K = (T,A0,Γ), is defined
as ΥK = (∆, T,Σ, s0, abox ,⇒), where: (i) abox is the
identity function (states correspond to ABoxes); (ii) s0 = A0;
(iii) ⇒ ⊆ Σ × Σ is a transition relation; (iv) Σ and ⇒ are
defined by mutual induction as the smallest sets satisfying
the following property: if A ∈ Σ then for every (π, τ) ∈ Γ,
m : π(A) → ∆, and A′ ∈ AT , s.t. A′ = τ(A,m), we have
A′ ∈ Σ and A⇒A′. Figure 1 depicts the link between the
execution of instantiated actions of K and transitions of ΥK.

3 Specification Logic µDLp

This work concerns verification and synthesis of dynamic
properties (over DLDSs), which we specify using a FO variant
of the µ-calculus [Stirling, 2001; Park, 1976], called µDLp.
In µDLp, local properties are queries over DL KBs, expressed
in any language for which query entailment for DL KBs is
decidable [Calvanese et al., 2007; 2008].

Given a KB (T,A), a query Q, and an assignment v for the
free variables of Q, we say that Qv is entailed by (T,A), if
(T,A) |= Qv, i.e., (T,A) logically implies the formula Qv
obtained from Q by substituting its free variables as specified
by v. Notice that the set of v such that (T,A) |= Qv are the so-
called certain answers. A query of interest is LIVE(x), whose
answers correspond exactly to the objects of the active domain
of the ABox the query is applied to. LIVE(x) can be expressed
as a union of atomic queries expressing that x is member of
a concept of T , or participates in a binary relation of T . We
abbreviate

∧
i∈{1,...,n} LIVE(xi) as LIVE(x1, . . . , xn).

By leveraging on [Bagheri Hariri et al., 2013a], µDLp em-
ploys LIVE queries to control the effect of FO quantification
across states. In particular, µDLp forces quantification to track
only the evolution of objects that persist in the active domain,
while the evaluation of a formula with objects that disappear
from the active domain immediately leads to false or true.
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Formally, a µDLp formula Φ is built as follows:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.LIVE(x) ∧ Φ |
LIVE(~x) ∧ 〈−〉Φ | LIVE(~x) ∧ [−]Φ | Z | µZ.Φ,

where Q is a (possibly open) query as described above, in
which the only constants that may appear are those in C,
and Z is a second order predicate variable (of arity 0). We
use standard abbreviations to define ∨ and →, including:
LIVE(~x) → 〈−〉Φ = ¬(LIVE(~x) ∧ [−]¬Φ) and LIVE(~x) →
[−]Φ = ¬(LIVE(~x) ∧ 〈−〉¬Φ).

The semantics of µDLp formulae over a DLDSK is defined
over the (possibly infinite) TS generated by K, i.e., ΥK, and
defines the set of ΥK states that satisfy each formula. For the
detailed semantics, we refer the reader to [Calvanese et al.,
2013b]. Here, we discuss only some examples.

Example 4 Consider Example 3. Assume that the TBox contains:
(i) the concepts Customer , Open , Closed , respectively modeling
customers and pending and closed orders; and (ii) the roles Owns and
Paid , where Owns(c, o) (resp., Paid(c, o)) means that customer c
owns (resp., paid for) order o. The µDLp formula:

νZ.(∀c, o.Owns(c, o)→µY.
(Paid(c, o) ∨ (LIVE(c, o) ∧ 〈−〉Y ))) ∧ [−]Z

expresses that it must always be the case that, whenever customer c
owns o, there exists a run of the DLDS in which c and o persist in the
active domain, until o is paid by c. Formula

νZ.(∀o.Open(c, o)→µY.
(Closed(o) ∨ (LIVE(o)→〈−〉Y ))) ∧ [−]Z

instead expresses that it must always be the case that, for every open
order, either the order disappears from the active domain, or becomes
eventually closed. The two properties show the two different forms
of FO quantification over time supported by µDLp.

A fundamental property of µDLp is that, analogously to
standard µ-calculus, it enjoys invariance under bisimulation.
This is not the standard notion of bisimulation, but one taking
into account the added richness of the TSs used here –where
states are labeled by ABoxes rather than simple propositions–
and preserving the same co-inductive structure.

Intuitively, two states s1 and s2 of Υ1 and Υ2, respectively,
are persistence-preserving bisimilar under a renaming h, if:

1. s1 and s2 are logically equivalent modulo the object re-
naming h;

2. for each possible successor s′1 of s1, there exists a cor-
responding successor s′2 of s2 such that s′1 and s′2 are
persistence-preserving bisimilar under a renaming h′ that
preserves the renamings of h on ADOM(abox (s1));

3. for each possible successor s′2 of s2, there exists a cor-
responding successor s′1 of s1 such that s′1 and s′2 are
persistence-preserving bisimilar under a renaming h′ that
preserves the renamings of h on ADOM(abox (s1));

We say that Υ1 is persistence-preserving bisimilar to Υ2,
written Υ1 ∼ Υ2, if the respective initial states are so, under
some renaming h. We have the following result, analogous in
spirit to that in [Bagheri Hariri et al., 2013a]:

Theorem 3.1 Consider two TSs Υ1 and Υ2 s.t. Υ1 ∼ Υ2.
Then for every µDLp closed formula Φ, we have that Υ1 |=
Φ if and only if Υ2 |= Φ.

This result is particularly useful when holding between an
infinite and a finite TS. In this case, indeed, one can check
whether Φ holds by operating on the finite TS instead of the
infinite one. We exploit this fundamental implication in the
next sections.

4 Verification
Given a DLDSK and a closed µDLp formula Φ, we call model
checking (MC) the problem of verifying whether Φ holds in
the initial state of ΥK. This is the first problem we address.
Observe that MC is interesting only if ∆ is infinite; indeed,
for finite ∆, only finitely many ABoxes –i.e., possible states
in the generated TS– exist and, by quantifier elimination, one
can rewrite any µDLp formula into a propositional one, thus
reducing the problem to model checking of propositional µ-
calculus (against finite-state TS), which is decidable [Emerson,
1996]. On the other hand, for infinite ∆, it is easy to show,
by reduction from the halting problem, that the problem is in
general undecidable, even under the assumption of genericity
(see, e.g., [Bagheri Hariri et al., 2013b]). Thus, the question
arises whether decidable (and interesting) classes of problem
instances exist. Our work presents a positive answer for a par-
ticular class of generic DLDSs, which we call state-bounded.

A state-bounded DLDS K is one for which there exists a
finite bound b s.t., for each state s of ΥK, |ADOM(abox (s))| <
b. When this requirement holds, K is said to be b-bounded.
Intuitively, in a b-bounded DLDS, the labeling of any state of
ΥK mentions at most b distinct constants. Notice that state-
bounded DLDSs may contain infinitely many states, and that
a DLDS K can be state-unbounded even if, for every state s of
ΥK, |ADOM(abox (s))| is finite (but not bounded). W.l.o.g., for
state-bounded DLDS, we assume that the maximum number
n of parameters that actions may request is known.1

Decidability of model checking for µDLp formulas against
state-bounded, generic DLDSs can be proven by reduction
to model checking against DLDSs with finite ∆. In this
case, as discussed above, the verification task reduces to
model checking of propositional µ-calculus over finite-state
TSs. The crux of the proof is the construction of a finite-
state TS ΥD

K s.t. ΥD
K ∼ ΥK, where ΥK is the TS gen-

erated by K. This is done through an abstraction tech-
nique inspired by that of [Bagheri Hariri et al., 2013a;
Belardinelli et al., 2014]; here, however, we deal with DL
knowledge bases, instead of relational databases.

Essentially, ΥD
K is a finite fragment of ΥK, inductively

obtained by “executing” K over a finite set of objects D ⊂ ∆,
until no new ABoxes are generated. More precisely, the initial
state is expanded by executing all possible actions overD, thus
producing new states, over which the process can be iterated.
The finiteness of D guarantees that, at every step, only finitely
many actions are executed, and that eventually no new states
can be generated. As a consequence, the obtained TS is finite.

To guarantee that ΥD
K is bisimilar to ΥK, the size of D and

the objects it contains must be carefully chosen so that no

1n can be obtained in PSPACE by constructing all the ABoxes of
size≤ b, up to logical equivalence modulo renaming, and by applying
all actions to them, so as to obtain the corresponding parameters.
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µDLp formula is able to distinguish ΥD
K from ΥK. To this

end, D is required to contain:
• at least b objects other than those in C, to cover the

case when the facts entailed by an ABox (and the TBox)
mention up to b objects different from those in C;
• at least n additional objects, distinct from those above

and those in C, accounting for the new objects possibly
introduced by the last action executed –it can be proven
that, in a bounded DLDS, the new objects introduced by a
transition can only be objects bound to action parameters,
which are at most n;
• the objects in C, accounting for the distinguished con-

stants possibly occurring in µDLp formulas.
Under these assumptions, the outlined construction pro-

duces a faithful finite abstraction of ΥK, i.e., a finite TS indis-
tinguishable from ΥD

K , to µDLp formulas:

Lemma 4.1 If |D| ≥ b+n+|C|, then ΥD
K ∼ ΥK.

Notice that, as a consequence of genericity, the particular
choice of the objects in D –except, obviously, those coming
from C– does not play any role in guaranteeing the equiva-
lence of ΥD

K and ΥK, wrt verification of µDLp formulas.
We observe that the outlined construction uses b to build D,

before constructing ΥD
K . An alternative strategy that does not

need to know b in advance, consists in maximizing the reuse
of the previously introduced objects. In this approach new
objects are added as new states are generated, only if needed,
avoiding the generation of a new state whenever one logically
equivalent (modulo renaming) has already been generated. A
construction along this line, is proposed, in a different setting,
in [Bagheri Hariri et al., 2013a].

Lemma 4.1 implies the following decidability result:
Theorem 4.2 Model checking of µDLp over a state-bounded,
generic DLDS K is decidable, and can be reduced to model
checking of propositional µ-calculus over a finite-state TS
whose number of states is at most exponential in the size of K.
Proof (sketch). By Lemma 4.1, ΥD

K is bisimilar to ΥK. Fur-
ther, it can be shown that ΥD

K contains at most an exponential
number of states in the size of the specification K. Hence,
by Theorem 3.1, one can check any µDLp formula Φ against
the finite TS ΥD

K instead of ΥK. Since the number of ob-
jects occurring in ΥD

K is finite, Φ can be propositionalized and
checked through standard algorithms [Emerson, 1996].

5 Adversarial Synthesis
Another interesting problem addressed in our work is that of
adversarial synthesis. Consider a setting where two agents
act in turn as adversaries. One agent, called environment,
acts autonomously, while the other, called system, can be
controlled. When the agents interact by alternating their moves
(the environment moves first), their joint behavior defines a
so-called two-player game structure (2GS) [De Giacomo et al.,
2010; Bloem et al., 2012; Mazala, 2002], which is essentially
the arena of a game, i.e., the set of rules defining how players
can move. On top of the 2GS one can express, using some
variant of µ-calculus, the goal of the game, which captures
a desired property that the system should enforce, in spite
of how the environment behaves. Given a 2GS and a goal

specification, the adversarial synthesis problem requires to
synthesize a strategy for the system, i.e., a suitable refined
behavior, guaranteeing that, no matter how the environment
plays, the game evolution fulfills the goal.

Many problems can be phrased as adversarial synthesis.
These include conditional planning in nondeterministic fully
observable domains [Ghallab et al., 2004], behavior com-
position [De Giacomo et al., 2013], and advanced forms of
synthesis and planning, see, e.g., [De Giacomo et al., 2010].

To deal with adversarial synthesis, we build a 2GS that
encodes explicitly the alternation of player moves. This is
done using a fresh concept name Turn and two fresh distin-
guished constants te, ts, whose (mutually exclusive) presence
in Turn indicates which player the turn is next. We denote
with Ae

T (resp. As
T ) the set of ABoxes, i.e., states, where the

environment (system) is to move next.
A DL-based 2GS (DL2GS) is a DLDS K = (T,A0,Γ),

where A0 ∈ Ae
T , i.e., the environment moves first, and the

set of actions Γ is partitioned into a set Γe of environment
actions and a set Γs of system actions. The effect function
of each environment action is defined only for ABoxes in Γe

and brings about an ABox in Γs. Symmetrically, the effect
function of each system action is defined only for ABoxes in
Γs and brings about an ABox in Γe. In this way we achieve the
desired alternation of environment and system moves: starting
from the initial state, the environment moves and the system
responds, iterating on these steps, possibly forever.

Logics of interest for 2GSs are temporal logics in the style
of ATL [Alur et al., 2002], where “next Φ” expresses that
“the system can force Φ” to hold in the next state, by suitably
responding to any move available to the environment. We use
the following specialization of µDLp, called µADLp:

Φ ::= Q | ¬Q | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | Z | µZ.Φ | νZ.Φ |
∃x.LIVE(x) ∧ Φ | ∀x.LIVE(x)→ Φ |
LIVE(~x) ∧ [〈−〉]sΦ | LIVE(~x)→ [〈−〉]sΦ |
LIVE(~x) ∧ [〈−〉]wΦ | LIVE(~x)→ [〈−〉]wΦ

where [〈−〉]sΦ stands for [−](LIVE(~x) ∧ 〈−〉Φ), and [〈−〉]wΦ
stands for [−](LIVE(~x)→ 〈−〉Φ).

Technically, µADLp is a fragment of µDLp, where negation
normal form is enforced, i.e., negation is allowed to appear
only in front of atoms (in our case, queries Q). Intuitively,
both [〈−〉]sΦ and [〈−〉]wΦ express that the system can force Φ
to hold, but [〈−〉]s precludes the environment from dropping
objects existing before its move, while [〈−〉]w does not.

As an immediate consequence of Theorem 4.2, one can
check whether the system has a strategy that enforces a
µADLp goal over a DL2GS:
Theorem 5.1 Checking µADLp formulas over state-bounded,
generic DL2GS’s is decidable.
Notice that this result does not provide indications on whether
or how a strategy can be built. We next focus on this issue,
discussing how one can actually fulfill a µADLp goal, by
synthesizing and executing a strategy.

Intuitively, a strategy is a function f that, given a history
of a DL2GS, i.e., a sequence of ABoxes stemming from the
alternation of environment and system actions and terminat-
ing in an ABox As where the system is to move, returns an
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action for the system that is executable in As. A strategy f is
said to be winning (for the system) if by resolving the existen-
tial choice in evaluating the formulas of the form [〈−〉]sΦ and
[〈−〉]wΦ according to f , the goal formula is satisfied.

Model checking algorithms provide a witness of the checked
property [Emerson, 1996; Bloem et al., 2012], which, in our
case, consists of a labeling produced during the model check-
ing process of the abstract DL2GS constructed as outlined
in the previous section –which is, ultimately, a K. From the
labeling of each state one can obtain a set of possible replies
to the environment move, that allow one to fulfill the formulas
that label the state itself; from these replies, a strategy to fulfill
the goal formula can be constructed.

The approach discussed above is effective in producing a
strategy for the abstract DL2GS, while we are interested in
one that can be used in the original (concrete) structure. This
gap can be filled by lifting the abstract strategy to the original
DL2GS.

In fact, the abstract strategy f̄ models a family of concrete
strategies. Thus, in principle, in order to obtain a strategy exe-
cutable on the concrete system, one could simply concretize f̄
by appropriately replacing the abstract objects and parameter
assignments with concrete objects and assignments that satisfy,
step-by-step, the same mutual equalities, both at the abstract
and at the concrete level. While theoretically correct, though,
this procedure cannot be realized in practice, as the resulting
family of strategies is in general infinite. Nonetheless, one can
adopt a lazy approach where the concrete strategy is generated
from the abstract one, as the game progresses.

Theorem 5.2 There exists an algorithm that, given a state-
bounded, generic DL2G K and a µADLp formula Φ, realizes
a concrete strategy to force Φ.

The algorithm iterates over three steps: (i) matching of the
current concrete history λ with an abstract history λ̄ over
which f̄ is defined; (ii) extraction of the action and corre-
sponding abstract parameter assignment; (iii) concretization
of the obtained parameter assignment. The first step requires
building an abstract history λ̄ that is state-wise bisimilar to
the concrete one λ. This can be done as the histories and the
abstract DL2GS contain, by state-boundedness, only finitely
many distinct elements, thus there exist only finitely many
candidate abstract histories. The existence of λ̄ is guaranteed
by bisimilarity, in turn guaranteed by genericity. The second
step consists in extracting the action (τ, π) and the abstract pa-
rameter assignment m̄ by applying f̄ λ̄. The last step requires
to concretize m̄. To this end, it is sufficient to reconstruct
the mutual equalities on the parameter values enforced by m̄
and the bijection over the last pairs of states of λ and λ̄, and
then replacing the abstract values assigned by m with concrete
ones, arbitrarily chosen, so as to satisfy such equalities. By
genericity, for any such choice, we obtain an action executable
at the concrete level, after λ, and that is compatible with (at
least) one strategy of the family defined by f̄ .

In this way, at every step, one is presented a set of choices,
one per possible concretization of the abstract assignment, that
can thus be resolved lazily, at runtime.

6 Instantiating the Framework
To instantiate the framework of generic DLDSs, one needs to
fix: (i) the DL used to describe its static component, (ii) the
query language used to ASK information in the states of the
DLDS, and (iii) a concrete action specification formalism,
used to substantiate the TELL operation, guaranteeing at the
same time that the concrete framework so obtained enjoys
genericity. This is the case, for example, of Knowledge and
Action Bases (KABs) [Bagheri Hariri et al., 2013b], which
have been indeed embedded into generic DLDSs in [Calvanese
et al., 2013b]. Instantiating such components allows us to
actually implement DLDSs. It also allows us to study the com-
plexity of verification and synthesis when the system is state-
bounded. This is characterized by the cost of constructing the
abstract TS, which in turn depends on (i) the complexity of
query answering, (ii) the complexity of updating the ABox
when an action is applied, and (iii) the overall complexity of
verification and synthesis in terms of the TS size.

The complexity of query answering obviously depends on
the chosen DL and query language. For example, KABs
employ a lightweight DL of the DL-Lite family, and rely on
EQL-Lite(UCQ) queries, i.e., domain independent first-order
queries whose atoms compute certain answers of unions of
conjunctive queries [Calvanese et al., 2007]. In this setting,
query answering is PSPACE-complete in combined complexity
(and in AC0 in data complexity, i.e., the complexity measured
in the size of the ABox only). The complexity of update varies
widely based on the chosen update operators. In the case of
KABs, where updates are performed by querying the current
state and asserting and retracting a number of facts that is
polynomially related to the answers, the update is polynomial.
Consequently, the abstract transition system generated by the
DLDS can be constructed in EXPTIME, yielding an EXPTIME
upper bound for both verification and synthesis.

If we adopt the same KAB framework but the TBox is
expressed using a more expressive DL such as ALCQI, the
complexity that dominates the construction of the abstract
transition system is the 2EXPTIME cost of answering the
UCQs that are the atoms of the EQL queries employed by the
DLDS actions. Complexity drops back to EXPTIME if instead
of UCQs, only atomic concepts and roles are used.

7 Conclusion
This work complements and generalizes two previous pa-
pers on forms of verification on DL-based dynamics. One
is [Bagheri Hariri et al., 2013b] from which we took the for-
malism for the instantiations. In that work, Skolem terms are
used to denote new objects, which, as a consequence, remain
unknown during the construction of the transition system,
while here we substitute Skolem terms with actual objects.
The other one is [Calvanese et al., 2012], where a sort of
light-weight DL-based dynamic was proposed. There, a se-
mantic layer in DL-Lite is built on top of a data-aware process.
The DL-Lite ontology plus mapping is our knowledge compo-
nent, while the dynamic component (the actions) is induced
by the process working directly on the data-layer. Exploit-
ing DL-Lite first-order rewritability properties of conjunctive
queries, the verification can be done directly on the data-aware
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process. Decidability of checking properties in µ-calculus
without quantification across state is shown for state-bounded
data-aware process. In both, synthesis is not considered.
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