
Adapting to User Preference Changes in Interactive Recommendation ∗

Negar Hariri
DePaul University

Chicago, IL
nhariri@cs.depaul.edu

Bamshad Mobasher
DePaul University

Chicago, IL
mobasher@cs.depaul.edu

Robin Burke
DePaul University

Chicago, IL
rburke@cs.depaul.edu

1 Abstract
Recommender systems have become essential tools in many
application areas as they help alleviate information overload
by tailoring their recommendations to users’ personal prefer-
ences. Users’ interests in items, however, may change over
time depending on their current situation. Without consid-
ering the current circumstances of a user, recommendations
may match the general preferences of the user, but they may
have small utility for the user in his/her current situation. We
focus on designing systems that interact with the user over a
number of iterations and at each step receive feedback from
the user in the form of a reward or utility value for the rec-
ommended items. The goal of the system is to maximize the
sum of obtained utilities over each interaction session. We
use a multi-armed bandit strategy to model this online learn-
ing problem and we propose techniques for detecting changes
in user preferences. The recommendations are then generated
based on the most recent preferences of a user. Our evalua-
tion results indicate that our method can improve the existing
bandit algorithms by considering the sudden variations in the
user’s feedback behavior.

2 Introduction
Users’ interests in items may change depending on their cur-
rent situation. For example, users may have different pref-
erences for music depending on their current mood or ac-
tivity. Similarly, users’ preferences for travel packages can
depend on the current season or the weather conditions. In
these and many other similar applications, recommendations
are not useful for the user if they are generated based on previ-
ous selections and preferences of the user without considering
his/her current situation.

In this paper, we focus on a common setting where change
of interests of a user is not explicitly available and the system
should infer this information based on user feedback data. In
this case, the system tracks the user’s set of interactions over
time and detects any significant changes in the user’s behav-
ior. User interaction data can include various types of feed-
back given by the user to the recommended items such as
ratings or clicking on the recommendations. Detecting the

∗This paper was invited for submission to the Best Papers From
Sister Conferences Track, based on a paper that appeared in Eighth
ACM Conference on Recommender Systems, RecSys ’14.

preference changes enables the recommender to distinguish
between the new and old preferences of the user and to gen-
erate the recommendations that match the user’s current in-
terests.

We investigate this problem in the framework of an in-
teractive recommender system that can dynamically adapt to
changes in users’ interests. At each step of the interaction, the
system presents a list of recommendations and receives feed-
back indicating recommendation utilities. The main objective
of the proposed recommendation approach is to identify the
recommendation list at each step such that the average ob-
tained utility is maximized over the interaction session with
a user. Choosing the best recommendation list at each step
requires a strategy in which the best trade-off between ex-
ploitation and exploration is achieved. During an exploitation
phase, the recommender system generates the recommenda-
tion list that maximizes the immediate utility for the current
step. During exploration, the system may recommend items
that do not optimize the immediate utility, but reduce the un-
certainty in modeling a user’s preferences and eventually help
maximize the utility over the whole session. This problem
can be formulated as a multi-armed bandit problem (MAB)
which has been studied in various systems and applications
[Chapelle and Li, 2011][Li et al., 2010]. For the applica-
tion of personalized recommendation, most of the existing
bandit algorithms assume that a user’s interests in items are
static over time despite the fact that change of preferences
can greatly impact the utility or usefulness of the recommen-
dations for a user. We address this problem by proposing a
change detection algorithm that predicts sudden variations in
a user’s preferences based on his/her feedback on the recom-
mendations. These changes are then considered by our bandit
recommendation method when generating the recommenda-
tions for a user.

Our evaluation results show that by considering users’
change of interests in a bandit strategy, the recommender
can provide more interesting and useful recommendations to
users.

3 Related Work
Bandit algorithms have been widely used for the application
of producing personalized recommendations [Chapelle and
Li, 2011], [Li et al., 2010]. The news recommender intro-
duced in [Li et al., 2010] adapts to the temporal changes

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4268

of existing content. In the proposed system, both users and
items are represented as sets of features. Features of a user
can include demographic attributes as well as features ex-
tracted from the user’s historical activities such as clicking
or viewing items while item features may contain descrip-
tive information and categories. They formulate this prob-
lem as a bandit problem with linear payoff and introduced
an upper confidence bound bandit strategy which is shared
among all the users. Similarly, the system in [Chapelle and
Li, 2011] uses a bandit algorithm based on Thompson sam-
pling for the task of news recommendation and display ad-
vertisement. Similar to [Li et al., 2010], several features are
used to represent the user and the items and the recommender
learns a single bandit strategy for all users while representing
each user as a fixed set of features. Our approach is differ-
ent from [Li et al., 2010] and [Chapelle and Li, 2011] as we
are learning a bandit strategy for each user. While these two
methods focus on adapting to the changes in items populari-
ties, our system captures and adapts to the changes in users’
interests. Representing each user as a fixed set of features,
as in [Li et al., 2010] and [Chapelle and Li, 2011] would
prevent us from detecting changes in the users’ preferences
and capturing his/her current interests. Similarly, other ban-
dit strategies such as [Deshpande and Montanari, 2013] and
[Abbasi-Yadkori et al., 2011] disregard the variations in user
preferences and give all the interactions the same weight in
defining the bandit strategy. Unlike these methods, our ap-
proach enables us to monitor changes in the users’ behaviors
and to produce recommendations that match the current in-
terests of the user.

Tailoring the recommendations to match the current prefer-
ences of users follows the general idea of context-awareness
[Adomavicius et al., 2011] in recommender systems. Inte-
grating context in the recommendation model, when this in-
formation is explicitly given to the system, has been investi-
gated in various research work [Panniello et al., 2009], [Bal-
trunas et al., 2011], [Adomavicius et al., 2005]. However,
there has been less focus on interactional systems where con-
text should be inferred from users’ interactions. This is partly
due to the fact that it is more difficult to capture the contex-
tual information when it is not known to the system at design
time.

4 Interactive Recommendation
Interactive recommenders have been extensively used in a va-
riety of application domains. These systems usually rely on
an online learning algorithm that gradually learns users’ pref-
erences. At each step of the interaction, the system generates
a list of recommendations and observes the user’s feedback
on the recommended items indicating the utility of the rec-
ommendations. The goal of such a system is to maximize the
total utility obtained over the whole interaction session.

4.1 Multi-Arm Bandit Approach to Online
Recommendation

Choosing the best strategy to select the recommendation list
at each step can be formulated as a multi-armed bandit prob-
lem (MAB). Consider a gambler who can choose from a row

of slot machines known as one-armed bandits. The gambler
receives a reward from playing each of these arms. To max-
imize his or her benefit, the gambler should decide on which
slot machines to play, the order of playing them and the num-
ber of times that each slot machine is played. A similar type
of decision problem occurs in many real-world applications
including interactive recommender systems. For an interac-
tive recommender, the set of arms corresponds to a collection
of items that can be recommended at each step, and the re-
wards correspond to the user’s feedback, such as ratings or a
clickthrough on a recommended item.

An important consideration in a bandit algorithm is the
trade-off between exploration and exploitation. Exploitation
is referred to the phase where the available information gath-
ered during the previous steps is used to choose the most
profitable item. During exploration, the most profitable alter-
native may not necessarily be picked but the algorithm may
choose other items in order to acquire more information about
the preferences of the user which would help to gain more re-
wards in future interactions.

Several techniques have been proposed for solving the
multi-armed bandit problem. Optimal solutions for multi-
armed bandit problems are generally difficult to obtain com-
putationally. However, various heuristics and techniques have
been proposed to compute sub-optimal solutions effectively.
The ε-greedy approach is one of the most famous and widely
used techniques for solving the bandit problems. At each
round t, the algorithm selects the arm with the highest ex-
pected reward with probability 1 − ε, and selects a random
arm with probability ε. The Upper Confidence Bounds (UCB)
class of algorithms, on the other hand, attempt to guarantee an
upper bound on the total regret (difference of the total reward
from that of an optimal strategy).

Thompson Sampling is another heuristic that plays each
arm in proportion to its probability of being optimal. As we
are using this heuristic in our system, we briefly describe it
in more details. In the next section, we will discuss how this
heuristic is used in our system to generate the recommenda-
tion list at each interaction step.

The reward (or utility) distribution for each item can de-
pend on various factors including characteristics of the item,
general preferences of the user, and the current interests of the
user. Let p(r|a, θ) represent the utility distribution for item a,
and θ indicate the unknown parameter characterizing the dis-
tribution. Also, let Er(r|a, θ) represent the expected reward
for the item a for the given θ.

At the first step of an interaction, the set of observations,
denoted by D, is empty and p(θ|D) is initialized with a prior
distribution for θ. As more rewards are observed at each step,
Bayesian updating is performed to update the θ distribution
based on the observed rewards.

Algorithm 1 describes the Thompson sampling procedure
[Chapelle and Li, 2011], [Scott, 2010]. At each step, θ is
drawn as a sample from p(θ|D). The expected reward for
each of the items is then computed and the arm having maxi-
mum expected reward is played and the reward for that arm is
observed. The selected arm and the observed reward is then
added to the observations set.

4269

Algorithm 1 Thompson Sampling
D=∅
for t = 1 to T do

Draw θt ∼ P (θ|D)
Select at = argmaxEr(r|a, θt)
Observe reward rt
D = D ∪(at, rt)

end for

4.2 Generating the Recommendations
We adapt Thompson sampling heuristic as the bandit strategy
for generating a recommendation list at each step of interac-
tion with a user. In this setting, θ which characterizes the
utility distribution for each item, represents a user’s prefer-
ence model. It is a k-dimensional random vector drawn from
an unknown multivariate distribution. The user model is up-
dated after each interaction.

Linearly parameterized bandits[Rusmevichientong and
Tsitsiklis, 2010] are a special type of bandits where the ex-
pected reward of each item is a linear function of θ. It has
been shown that Thompson sampling with linear rewards can
achieve theoretical regret bounds that are close to the best
lower bounds [Agrawal and Goyal, 2013]. In our approach
we also assume that the rewards follow a linear Gaussian dis-
tribution.

Given d observations, let r ∈ Rd be the observed re-
wards for the recommended items and let F represent a
d × k constant matrix containing the features of the recom-
mended items. For example, given two observations (a1, r1)
and (a2, r2), r = [r1, r2] has two elements r1 and r2 and
F = [fa1 , fa2] where fai represents the k-dimensional fea-
ture vector for item ai. The item features can be obtained
in various ways. They can be extracted based on the avail-
able content data for the items or can be extracted from the
users’ feedback using different techniques such as matrix fac-
torization. Given a training data set represented as a matrix
of users’ preferences on items, we apply Principal Compo-
nent Analysis to represent each item in a k-dimensional space
(where k � the number of users in the training data).

Assuming a linear Gaussian distribution, we have the fol-
lowing prior and likelihood distributions:

p(θ) = N (θ;µθ,Σθ) (1)
p(r|θ) = N (r;Fθ,Σr) (2)

Also, we assume Σθ and Σr are diagonal matrices with
diagonal values of σθ, and σr respectively.

Given a linear Gaussian system, the posterior p(θ|r) can be
computed as follows (see [Murphy, 2012] for a proof):

p(θ|r) = N (µθ|r,Σθ|r) (3)

Σ−1θ|r = Σ−1θ + FTΣ−1r F (4)

µθ|r = Σθ|r[F
TΣ−1r (r) + Σ−1θ µθ] (5)

At each step t, θt is drawn as a sample from the posterior
distribution. The expected reward for each item x is then es-

timated as rx = fx · θ, where fx represents the extracted fea-
tures for the item x. The items are then ranked based on the
estimated expected reward values. The item with the highest
reward is recommended to the user.

4.3 Adaptation to Changes in Users’ interests
This section describes our approach for adapting the recom-
mendations to changes in users’ interests. Our method has
two main steps. The first step, is to detect preference changes
and the second step is to adapt the recommendations based on
the detected changes.

Our system includes a change detection module that tracks
users’ interactions and detects any sudden and significant
changes in the users’ behaviors. At each step t of interac-
tion with a given user u, the change detection module models
the user’s interactions in interval It = (t − N, t] as well as
the interactions in the interval I(t−N) = (t − 2N, t − N],
where N is a fixed pre-specified parameter representing the
length of the interval. These two windows are modeled by
computing the following posterior distributions:

WIt = p(θ|It) = N (µt,Σt) (6)
WI(t−N)

= p(θ|I(t−N)) = N (µt−N ,Σt−N) (7)

The above two distributions can each be computed accord-
ing to equation 3 where r, and F are substituted with the re-
wards and the item features of the recommendations in the
corresponding window.

The distance between WIt and WI(t−N)
is used as a mea-

sure of dissimilarity between these two windows. Various
measures such as KL-divergence can be used to compute the
distance between the two windows. In our experiments, we
used Mahalanobis distance which is computed as follows:

Σ =
Σt + Σt−N

2
(8)

distance = (µt − µt−N)TΣ−1(µt − µt−N)

If the user feedback behavior is significantly different be-
tween the two windows, then the models forWIt andWI(t−N)

would be different. Therefore, the change detection module
in our system is based on the heuristic that sudden changes in
the users’ feedback behavior would result in sudden changes
of the distance measure computed in 8. Based on this heuris-
tic, we compute the distance measure at each step t, and
exploit a change point analysis approach to detect sudden
changes in a user’s feedback behavior.

In our system, we utilize the technique described in
[Wayne, 2000] for change point analysis. This procedure in-
volves iteratively applying a combination of cumulative sum
charts (CUSUM) and bootstrapping to detect the changes.
For each of the detected changes, a confidence level is
provided which represents the confidence of the predicted
change point. Given a pre-specified threshold, only those
change points that have confidence level above that thresh-
old are accepted. Also, in our adaptation of this approach, we
have incorporated a look ahead (LA) parameter to improve
the accuracy. Our change detection module accepts a change

4270

point only if there are at least LA observations after the pre-
dicted change point.

In our system, we assume a user’s interactions after the
change point reflect his or her most recent preferences and
the interactions before the change point reflect the user’s pref-
erences in a different context. The strategy to aggregate the
old and new preferences depends on the specific application
in which the recommender is being used. In some applica-
tions, a user’s preferences in a different context may still con-
tain some useful information about the general preferences of
that user. In this case, a good strategy for the recommender
would be to consider all the user’s preferences while giving
more weight to the feedback after the change point. In other
applications, a user’s preferences in different contexts are al-
most independent. For example, the user may follow different
independent tasks at different contextual states. In this situ-
ation, a good strategy would be to provide recommendations
just based on the current preferences of the user, or in other
words, discarding the interactions before the change of in-
terests. The recommender presented in this paper, discards
users’ interactions before the last detected change point and
produces the recommendations only based on the interactions
in the current context.

Depending on the type of utility (binary, rating), the change
point detection may falsely detect change points at earlier in-
teractions where it starts to learn the users’ preferences. To
avoid this situation, we have incorporated another parameter
in our model to avoid splitting the user profile if there are
fewer interactions in the user’s profile than the pre-specified
splitting threshold.

In our future work, we plan to investigate adapting a bandit
strategy that considers all of user’s preferences. This would
include, defining a utility function that while giving more
weight to the current preferences of a user, also considers the
interactions before the change point.

5 Evaluations
Evaluation of change adaptation in recommenders can be a
challenging task. There are few publicly available datasets
that explicitly contain users’ change of preferences that could
be used as the ground truth for evaluation. In our evaluations,
we designed an experiment for simulating users’ change of
behaviors. Having a dataset containing users’ ratings for
items, to simulate sudden changes in a user’s rating behav-
ior, we built test hybrid profiles by merging two random user
profiles. Treating the two selected user profiles as the rating
behavior of a single hybrid user, we evaluated our method
in correctly predicting the change of preferences of the user
and producing recommendations matching the users’ current
interests.

We used the Yahoo! Music ratings of musical artists ver-
sion 1.0 dataset in our experiments. This dataset represents a
snapshot of the Yahoo! Music community’s preferences for
various musical artists. It contains over ten million ratings of
musical artists given by Yahoo! Music users over the course
of a one month period sometime prior to March 2004. It con-
tains ratings in the range of 0 to 100 given by 1948882 users
to 98213 artists.

The purpose of this experiment was two-fold: first, we
evaluated the accuracy of our change detection approach in
real-time detection of changes. Secondly, we examined the
performance of our recommender compared with conven-
tional recommendation methods that disregard user prefer-
ence changes. The evaluation was performed in the frame-
work of an interactive recommender that interacts with the
user in a number of consecutive rounds. In each round, the
recommender presents a recommendation and observes the
user’s feedback (utility) for the recommended item. The
recommenders were evaluated based on the average utility
gained over the session of interaction.

We followed a five-fold cross validation approach for eval-
uation. In each round, one of the folds was used for test-
ing, one was used for tuning the parameters and the remain-
ing folds were used for training the model. To simulate the
changes in a user’s rating behavior, we randomly selected two
users u1 and u2 from our test data and combined them to cre-
ate a hybrid user uh. We treated each of these two users as
the rating behavior of a single hybrid user in two different
situations.

To simulate an interactive recommendation process, at
each step of interaction, the recommender used the ratings in
the hybrid test user profile to recommend a new item that has
not been presented to the user before. We randomly chose
an item rating from the u1 profile and used it as the initial
profile of the hybrid user. For the first T = 30 rounds of in-
teraction, the observed utility for each recommended item x,
was assumed to be the rating assigned to x by the user u1.
We assumed that the interest change occurs after T steps of
interactions. Therefore, for the next T = 30 steps, the same
process was repeated with the difference that the observed
utility for a recommended item was set to the rating for that
item in the profile of u2. For this evaluation, we filtered the
test users so that each user had at least T ratings in the user’s
profile.

If the user has not rated a recommended item, one option
would to ignore the recommendation and discard it from the
evaluation results. However, this would create a bias in the
experiment. If the user rates none of the recommendations,
then the recommender should be negatively scored (in com-
parison to a recommender that recommends items that at least
are rated by the user). Setting the utility to zero for the non-
rated items would also be too strict, as the user may not nec-
essarily dislike the items that she hasn’t rated yet. Another
possibility would be to set the utility to average rating of all
the users for that item. This also creates a bias as item popu-
larities are not uniform. For example, if an algorithm suggests
very rare items with high average ratings, it will gain a high
utility score in the evaluation. A similar bias occurs if the
average rating of the user is used as the utility for non-rated
items. In our evaluation, if a recommended item had not been
rated in the user’s profile, the observed utility was set to the
average rating of all items in the dataset.

The set of parameters used in this experiment for each of
the algorithms are specified in table 1.

User-based kNN was used as one of our baselines for this
experiment. Cosine similarity metric was used to compute
the similarity of users. In each round of interaction, the kNN

4271

Table 1: Method parameters
Method Parameters
Bandit recommender Number of features = 5, µθ = 0, σθ = 0.5, σr = 0.5
Contextual Recommender
(proposed method)

Number of features = 5, µθ = 0, σθ = 0.5, σr = 0.5, Change detection window size = 5,
Change detection confidence = 0.95, Chage detection look ahead = 3, splitting threshold =
10

User-based kNN Number of neighbors = 10

algorithm computed the item scores and recommended a new
item that has the highest score.

The optimal recommender was chosen as another baseline
to compare our method with an ideal algorithm. This rec-
ommender has full knowledge of users’ preferences and the
preference changes of users. For the first T = 30 iterations, it
followed a greedy strategy and recommended new items that
had the highest rating in the u1 profile. After change of inter-
est at T = 30, in each round it recommended a new item that
had the highest rating in the u2 profile. The standard bandit
algorithm with Thompson sampling heuristic (as describe in
section 4.2) was used as another baseline in our experiment
and was trained with the parameters specified in table 1. In
the remaining of the paper, we refer to this baseline as the
standard bandit recommender.

Table 2 illustrates an example interaction session generated
based on the standard bandit recommender for this experi-
ment.

The recommendations that are not rated in the user’s pro-
file are marked as ’-’. For each recommended artist, a few
of most similar artists that have previously been presented to
the user are also shown. The artist similarities are determined
based on the Last.FM data. For any given artist, the Last.FM
API can be used to find the most similar artists as well as the
degree of similarity between the artists. In table 2, the similar-
ity levels are abbreviated as M(medium), H(high), VH(very
high), and SH(super high). As can be seen, most of the first

Figure 1: Experiment I-Average utility at each iteration

few (5) recommendations are not rated by u1. After iteration

6, the recommender starts generating better recommendations
as most of them have high ratings in the u1 profile. After the
simulated change of interests occurs at iteration 31, the user
(u2) has not rated most of the recommendations, showing the
dramatic degradation of the recommender performance. Note
that many of the recommendations are artists similar to those
rated highly by u1. For example, Foo fighters recommended
at iteration 31, is highly similar to Nirvana recommended at
iteration 21 or Hoobastank, recommended at iteration 32, has
super high similarity to 3 Doors Down, which has received
utility of 100 at iteration 27. This example shows that a tra-
ditional bandit approach cannot adapt to the changes in the
users’ preferences.

Figure 2: Expriment I-Average distance at each iteration

Figure 1 presents the average utility at each iteration com-
puted over the set of test users. The optimal recommender
achieves the highest utility of 96 at the first step and its utility
decreases as more iterations pass. This can be explained by
the fact that in the first T iterations items are recommended in
the decreasing order of their ratings in the u1 profile, there-
fore the average utility gradually decreases. After iteration
30, the optimal baseline recommends items based on their
ratings in the u2 profile and so a jump in utility can be ob-
served at iteration 31. Both the standard bandit recommender
and the contextual recommender (proposed method) need 5-6
iterations to learn users’ preferences and show a dramatic im-
provement in the utility. As indicated in table 1, the number
of factors is set to 5 for these two methods. We repeat this ex-
periment for different number of factors. The experiments re-
vealed that by lowering the number of factors, it takes less it-

4272

Table 2: An example interaction session generated using the standard bandit recommender
Step Artist Name Utility Similar artists Step Artist Name Utility Similar artists
1 Chingy - 31 Foo Fighters - Nirvana(SH), Red Hot Chili Peppers(SH)
2 Disturbed 90 32 Hoobastank - Trapt(SH), 3 Doors Down(SH)
3 Led Zeppelin - 33 System Of A Down - Korn(H), Disturbed(H)
4 Faith Hill - 34 No Doubt 70
5 Eminem - 35 U2 - Red Hot Chili Peppers(L)
6 Linkin Park 100 Disturbed(M), Eminem(M) 36 Alien Ant Farm - Incubus(SH),Puddle Of Mudd(SH)
7 Staind 100 Disturbed(H) 37 Creed - Staind(VH), 3 Doors Down(H)
8 Good Charlotte - 38 Smile Empty Soul - Trapt(SH), Staind(VH)
9 Metallica 90 Led Zeppelin(H), Disturbed(H) 39 Slipknot - Korn(VH), System of a Down(VH)
10 Green Day 90 Good Charlotte(M), Linkin Park(L) 40 Michelle Branch - -
11 Red Hot Chili Peppers 90 Metallica(M) 41 The Ataris - Jimmy Eat World(VH)
12 The Offspring - Metallica(VH), Green Day(VH) 42 The White Stripes - Nirvana(M)
13 Korn - Disturbed(H), Metallica(H) 43 Avril Lavigne -
14 Evanescence 100 Disturbed(H), Linkin Park(H) 44 Dashboard Confessional - Jimmy Eat World(SH)
15 Blink 182 90 Good Charlotte(H), Green Day(H) 45 Matchbox Twenty - -
16 Limp Bizkit 50 Korn(SH), Disturbed(H) 46 New Found Glory - blink-182(SH)
17 Nickelback 100 Linkin Park(VH), Staind(VH) 47 Chevelle - Staind(VH), Trapt(H)
18 Trapt 90 Staind(VH), Disturbed(M) 48 Brand New - Jimmy Eat World(H)
19 Simple Plan - Green Day(VH), Blink 182(H) 49 Nine Inch Nails - -
20 Papa Roach 90 Nickelback(VH), Linkin Park(VH) 50 Switchfoot -
21 Nirvana 90 Metallica(H) 51 Goo Goo Dolls - 3 Doors Down(H), Trapt(H)
22 Godsmack 100 Disturbed(SH), Staind(H) 52 Rob Zombie - Korn(M)
23 P.O.D. 100 Papa Roach(VH), Staind(VH) 53 Audioslave - Foo Fighters(SH), Incubus(VH)
24 All-American Rejects 90 Good Charlotte(SH), Blink 182(VH) 54 Sugarcult - Good Charlotte(VH)
25 Puddle Of Mudd 100 Staind(SH), Trapt(VH) 55 Deftones - Korn(VH), Limp Bizkit(H)
26 Sum 41 - Blink 182(SH), Green Day(SH) 56 The Used - Blink-182(H), Papa Roach(H)
27 3 Doors Down 100 Nickelback(SH), Trapt(SH) 57 Lifehouse - 3 Doors Down(SH)
28 Incubus 100 Staind(H) 58 Static-X - Korn(VH), Disturbed(VH)
29 A.F.I. 90 Good Charlotte(L) 59 Fountains Of Wayne -
30 Jimmy Eat World 90 Blink 182(VH), A.F.I(H) 60 Taking Back Sunday - Jimmy Eat World(VH)

eration for the algorithm to reach its best performance. How-
ever, the highest achieved utility would be smaller as well.

Figure 3: Experiment I-Average frequency of change points
at each iteration

Figure 2 illustrates the average distance computed as in
equation 8 in each round of interaction. As can be seen in
the figure, at iterations 33 to 35, distance has the maximum
value. As the window size for change detection is set to 5,
it takes at least 3 rounds until WIt mostly contains the inter-
actions after the change of interests and WIt−N

only has the
interactions before the change of interests and therefore, the
distance metric become maximized.

Figure 3 presents the average number of change points de-
tected at each iteration. As evident in the figure, the average
frequency of change points reaches the maximum value of 0.5
at iteration 6 where WIt−N

has one interaction and WIt win-
dow contains 5 (window size) interactions. Setting the split-

ting threshold to 10 ensures that the user profile is not split for
the detected change points before round 10. Also, at iteration
38 there’s another local maximum point where average fre-
quency of change points reaches 0.4. This peak corresponds
to the change of preferences in the hybrid user profile.

6 Conclusions
In this paper we have presented a novel approach for adap-
tation to changes in users’ preferences in interactive recom-
mender systems. In an online recommendation scenario, at
each step the system provides the user with a list of recom-
mendations and receives feedback from the user on the rec-
ommended items. Various multi-armed bandit algorithms can
be used as recommendation strategies to maximize the aver-
age utility over each user’s session. Our approach extends the
existing bandit algorithms by considering the sudden varia-
tions in the user’s feedback behavior as a result of preference
changes. Our system contains a change detection component
that determines any significant changes in the users’ prefer-
ences. If a change is detected, the bandit algorithm based on
Thompson sampling, prioritizes the observed feedback after
the detected change point reflecting the current preferences of
the user. The proposed recommender, discards users’ interac-
tions before the last detected change point and produces the
recommendations just based on the interactions in the current
context. In our future work, we plan to investigate various ap-
proaches to take into account the impact of users’ interactions
before the change point on the current user behavior.

References
[Abbasi-Yadkori et al., 2011] Yasin Abbasi-Yadkori, Dávid

Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In NIPS, pages 2312–2320, 2011.

4273

[Adomavicius et al., 2005] Gediminas Adomavicius,
Ramesh Sankaranarayanan, Shahana Sen, and Alexander
Tuzhilin. Incorporating contextual information in recom-
mender systems using a multidimensional approach. ACM
Trans. Inf. Syst., 23(1):103–145, January 2005.

[Adomavicius et al., 2011] Gediminas Adomavicius,
Bamshad Mobasher, Francesco Ricci, and Alexander
Tuzhilin. Context-aware recommender systems. AI
Magazine, 32(3):67–80, 2011.

[Agrawal and Goyal, 2013] Shipra Agrawal and Navin
Goyal. Thompson sampling for contextual bandits with
linear payoffs. volume 28 of JMLR Proceedings, pages
127–135, 2013.

[Baltrunas et al., 2011] Linas Baltrunas, Bernd Ludwig, and
Francesco Ricci. Matrix factorization techniques for con-
text aware recommendation. In In ACM RecSys, pages
301–304, 2011.

[Chapelle and Li, 2011] Olivier Chapelle and Lihong Li. An
empirical evaluation of thompson sampling. In NIPS,
pages 2249–2257, 2011.

[Deshpande and Montanari, 2013] Yash Deshpande and An-
drea Montanari. Linear bandits in high dimension and rec-
ommendation systems. CoRR, abs/1301.1722, 2013.

[Li et al., 2010] Lihong Li, Wei Chu, John Langford, and
Robert E. Schapire. A contextual-bandit approach to per-
sonalized news article recommendation. In WWW, pages
661–670. ACM, 2010.

[Murphy, 2012] Kevin P. Murphy. Machine Learning: A
Probabilistic Perspective (Adaptive Computation and Ma-
chine Learning series). The MIT Press, 2012.

[Panniello et al., 2009] Umberto Panniello, Alexander
Tuzhilin, Michele Gorgoglione, Cosimo Palmisano, and
Anto Pedone. Experimental comparison of pre- vs.
post-filtering approaches in context-aware recommender
systems. In RecSys, pages 265–268. ACM, 2009.

[Rusmevichientong and Tsitsiklis, 2010] Paat Rus-
mevichientong and John N. Tsitsiklis. Linearly pa-
rameterized bandits. Math. Oper. Res., 35(2):395–411,
2010.

[Scott, 2010] Steven L. Scott. A modern bayesian look at
the multi-armed bandit. Appl. Stochastic Models Bus. Ind.,
26(6):639–658, November 2010.

[Wayne, 2000] Taylor Wayne. Change-point analysis: a
powerful new tool for detecting changes. 2000.

4274

