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Abstract
In this work, we deal with a relatively new statisti-
cal tool in machine learning: the estimation of the
ratio of two probability densities, or density ratio
estimation for short. As a side piece of research
that gained its own traction, we also tackle the task
of parameter selection in learning algorithms based
on kernel methods.

1 Density Ratio Estimation
The estimation of the ratio of two probability densities
r(x) = p1(x)

p2(x)
is a statistical inference problem that finds use-

ful applications in machine learning. Several approaches have
been proposed and studied for the direct solution of the den-
sity ratio estimation problem, that is, to estimate the density
ratio without going through density estimation [Sugiyama et
al., 2011, and references therein]. By avoiding taking the ra-
tio of two estimated densities, we avoid a dangerous source
of error propagation.

Next, we introduce situations where density ratio estima-
tion naturally arises.

Covariate-shift adaptation. Under the hood, most supervised
learning algorithms apply the so-called Empirical Risk Min-
imization — ERM — principle, which selects a function f∗n
from a given set of functions F that minimizes the average of
a loss function L : R × R 7→ R over a given set of training
points {(x1, y1), . . . , (xn, yn)}. Formally:

f∗n = argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi).

Assuming that each (xi, yi) is independently and iden-
tically distributed (i.i.d.) according to a distribution Px,y

and the set of functions F has limited capacity (e.g. VC-
dimension), with increasing n, the average loss of f∗n con-
verges with probability 1 to the smallest possible expected
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loss that can be achieved by a function f ∈ F [Vapnik, 1998].
This key result of Statistical Learning Theory justifies the use
of the ERM principle when test and training points are sam-
pled from the same distribution Px.

Now, suppose that test and training features (the so-called
covariates) follow different distributions P 1

x and P 2
x, and that

such distributions admit densities p1 and p2 (resp.) such that
p1(x) > 0 implies p2(x) > 0. Then, the following modified
ERM principle

f∗n = argmin
f∈F

1

n

n∑
i=1

p1(xi)

p2(xi)
L(f(xi), yi) (1)

guarantees the convergence to the smallest expected loss on
the test set [Sugiyama et al., 2011]. However, before applying
it, the density ratios p1(xi)

p2(xi)
need to be estimated from data.

Mutual information estimation and feature selection. Irrele-
vant features may degrade the performance of a learning al-
gorithm. The problem of feature selection asks for criteria to
tell relevant and irrelevant features apart. One such criteria is
the information theoretic concept of mutual information.

In one of its forms, mutual information is calculated as

I(X, Y ) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dx dy.

Intuitively, mutual information is a way of comparing the
densities p(x, y) and p(x)p(y), the former associated to the
actual distribution of the data and the later associated to the
distribution that assumes independence between the feature
vector x and the target variable y. The estimation of the
value I(X, Y ) depends on the estimation of the density ratio
r(x, y) = p(x,y)

p(x)p(y) . The closer r(x, y) is to the unity value
for pairs (x, y) distributed according to Px,y , the more the
feature vector and the target variable are independent of each
other, in which case I(X, Y ) = 0.

2 Parameter Selection in Kernel Methods
In supervised learning, there is an essential trade-off between
training set error and the capacity of the given set of func-
tions F : one can always be minimized at the expense of the
other. Learning algorithms usually make it possible to ex-
plore this dilemma through a set of parameters. To obtain the
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best performance in practice, one needs to investigate candi-
date solutions in this parameter space.

This research topic stemmed from the main research topic
on density ratio estimation and feature selection. Eventually,
we realized the initial results fitted a broader purpose, which
led us to further investigate the topic. This way, we inves-
tigate in this work the parameter selection stage of Support
Vector Machines — SVM — in classification and the Regu-
larized Least Squares — RLS — method in regression. Both
learning algorithms belong to the category of kernel methods.

In general, SVM have two parameters to be selected: the
generalization parameter C and the kernel function k. The
current practice in choosing these parameters leaves few al-
ternatives. One either

• spends a lot of computational time using a comprehen-
sive set of candidates that includes the best ones; or

• resorts to default parameters of the implementation of
choice and risks achieving poor classification results.

Both alternatives are obviously unattractive. In order to avoid
having to choose between these two alternatives in the feature
selection experiments carried out in this work, it was impor-
tant to investigate new alternatives that explore the gap be-
tween these two standard choices.

The RLS method has also two parameters: the regulariz-
ing constant γ and the kernel function k. In the case of RLS,
we are interested in the performance of parameter selection
when training sets are small. The combination of the squared
loss function and the regression task is a complicating factor
for parameter selection using small training sets. Contrary
to SVM, the computational time spent by parameter selec-
tion procedures is not an issue. What is relevant is the risk
of overfitting due to the cross-validation parameter selection
procedure. Therefore, it is important to investigate alterna-
tive candidate evaluation procedures. Another important trait
of the parameter selection problem in RLS is that we face a
similar problem for selecting parameters of the density ratio
estimation methods proposed in this work.

3 Contributions
The contributions in this work can be grouped into three cat-
egories:

1. Density ratio estimation;

2. Mutual information estimation and feature selection;

3. Parameter selection for SVM and RLS.

Regarding the first category, the approach to density ratio
estimation taken in this work is based on unexplored ideas of
searching the solution of a stochastic integral equation defin-
ing the ratio function. In this integral equation, we find the
so-called empirical cumulative distribution functions. To the
best of our knowledge, there is no attempt to use these func-
tions in the literature of density ratio estimation. The pro-
posed methods based on this approach outperform previous
methods, with the advantage that their computational cost is
no greater than previous methods [Vapnik et al., 2014].

Using one of the proposed methods of density ratio estima-
tion, we have developed a new mutual information estimation

method, which, in turn, is employed in feature selection in
classification tasks. Regarding mutual information estima-
tion alone, the new estimator outperforms previous state-of-
the-art methods [Braga, 2013]. In feature selection, the re-
sulting algorithm provides results that are comparable to the
best ones, while outperforming the popular Relief-F feature
selection algorithm [Braga, 2014].

Regarding parameter selection for SVM, we have proposed
and evaluated easy-to-use and economic procedures that pro-
vide reasonable results [Braga et al., 2013]. In addition, we
proposed a new kernel, namely the min kernel, which mixes
the advantages of linear and non-linear kernels, resulting in
fast, easily applicable, and universal SVM classification.

In RLS, we have investigated several parameter selection
methods that were shown to perform well for other regression
methods. Unfortunately, no method is able to consistently
outperform cross-validation, though we find situations where
some alternative methods perform comparably well. Regard-
ing the kernel function, we proposed the use of the additive
INK-splines kernel instead of RBF or the multiplicative INK-
splines kernel. The proposed kernel function clearly outper-
forms the other ones in the small sample size regime [Braga
and Monard, 2013; 2015].
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