
Improvements of Symmetry Breaking During Search

Zichen Zhu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong
zzhu@cse.cuhk.edu.hk

Abstract
Symmetries are common in many constraint prob-
lems. They can be broken statically or dynamically.
The focus of this paper is the symmetry break-
ing during search (SBDS) method that adds con-
ditional symmetry breaking constraints upon each
backtracking during search. To trade completeness
for efficiency, partial SBDS (ParSBDS) is proposed
by posting only a subset of symmetries. We propose
an adaptation method recursive SBDS (ReSBDS)
of ParSBDS which extends ParSBDS to break more
symmetry compositions. We observe that the sym-
metry breaking constraints added for each symme-
try at a search node are nogoods and increasing.
A global constraint (incNGs), which is logically
equivalent to a set of increasing nogoods, is de-
rived. To further trade pruning power for efficiency,
we propose weak-nogood consistency (WNC) for
nogoods and a lazy propagator for SBDS (and its
variants) using watched literal technology. We fur-
ther define generalized weak-incNGs consistency
(GWIC) for a conjunction of increasing nogoods,
and give a lazy propagator for incNGs.

Recursive SBDS
SBDS[Gent and Smith, 2000] leaves no symmetric solutions
since all symmetries are given. For problems with exponen-
tial number of symmetries, direct use of SBDS is impracti-
cal [Gent and Smith, 2000]. To trade completeness for effi-
ciency, partial SBDS (ParSBDS) is proposed by posting only
a subset of symmetries [Petrie and Smith, 2003].

We prove that ParSBDS has the pitfall to leave more sym-
metric subtrees and solutions than the widely used static
method LexLeader [Crawford et al., 1996] given the same
subset of symmetries and the input-order variable and min-
imum (maximum) value heuristics. We propose Recursive
SBDS (ReSBDS) [Lee and Zhu, 2014a] to circumvent the
pitfall of ParSBDS. The main idea of ReSBDS is to add
extra symmetry breaking constraints during search recur-
sively to prune also symmetric nodes of some pruned sub-
trees. Thus, ReSBDS can break extra symmetry composi-
tions. When given generators of interchangeable variables
(values) according to a static search heuristic, ReSBDS is

complete in eliminating the entire symmetry group. We pro-
pose further a light version of ReSBDS method (LReSBDS)
[Lee and Zhu, 2014b], which has similar pruning power of
ReSBDS but with a reduced overhead.

An Increasing-Nogoods Global Constraint
An overhead for SBDS and its variants is the addition of a
large number of nogoods with weak pruning power. We ob-
serve that the symmetry breaking constraints added for each
symmetry at a search node are nogoods that are semantically
related. We propose the notion of increasing nogoods [Lee
and Zhu, 2014b]. A global constraint (incNGs) [Lee and Zhu,
2014b], which is logically equivalent to a set of increasing no-
goods, is derived. Thus we can maintain only one incNGs for
each given symmetry. A polynomial time filtering algorithm
for incNGs and also an incremental version are proposed.

Weak-Nogood Consistency
Nogoods are weak in pruning and maintaining GAC is
not cost effective even when the two watched literal tech-
nique [Moskewicz et al., 2001] is utilized. We propose weak-
nogood consistency (WNC) [Lee and Zhu, 2015], a weaker
consistency notion for nogoods to trade pruning power for
efficiency. We propose an efficient lazy propagator to en-
force WNC for SBDS (and its variants) using one watched
literal [Lee and Zhu, 2015]. First, our propagator generates
the watched literal (symmetric assignment) on demand. Sec-
ond, the propagator is triggered lazily when the watched lit-
eral becomes true, and effects prunings only when all but the
last assignment of the nogood is true.

A similar weaker consistency, generalized weak-incNGs
consistency (GWIC) [Lee and Zhu, 2015], together with a
lazy propagator is also proposed for the incNGs global con-
straint [Lee and Zhu, 2015]. GWIC on a conjunction is equiv-
alent to WNC on individual nogoods. By exploiting the in-
creasing property of the nogoods in incNGs, our lazy propa-
gator watches also one assignment for each global constraint,
and operates and benefits from a similar lazy principle.

Experimental Results
This section gives one experiment on Balanced Incomplete
Block Design (BIBD) to break matrix symmetries (variable
symmetries). A BIBD instance can be determined by its

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4413



Table 1: BIBD with Maximum Value Ordering (all solutions)
v, k, λ DoubleLex LexLeader

#s #f t #s #f t
7,3,5 33,304 191,223 2.12 5,979 41,978 65.64
7,3,6 250,878 1,814,425 21.06 33,824 292,634 172.44
7,3,7 1,460,332 13,149,270 154.79 203,296 2,069,840 611.51
7,3,8 6,941,124 76,463,115 886.95 - - -
8,4,6 2,058,523 14,156,697 157.75 596,399 3,873,360 118.12

ParSBDSGAC ParSBDSincNGs ParSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
12,936 83,578 34.95 12,936 83,578 7.25 7,916 54,608 2.39 4.84
93,713 717,959 377.91 93,713 717,959 44.37 41,388 353,232 18.07 20.50

476,752 4,486,587 3,349.82 476,752 4,486,587 270.15 226,176 2,292,110 137.22 114.92
305,312 3,583,192 3,600.00 - - - 1,134,253 13,599,864 - 694.02
932,022 6,450,151 2,366.52 932,022 6,450,183 281.22 925,504 6,483,468 351.32 177.09

LReSBDSGAC LReSBDSincNGs LReSBDSWNC/GWIC

#s #f t #s #f t #s #f tW tG
5,979 41,978 13.24 5,979 41,978 5.46 5,979 41,978 2.89 4.20

33,824 292,634 152.99 33,824 292,634 24.58 33,824 292,634 25.14 18.37
- - - 203,296 2,069,840 145.44 203,296 2,069,840 224.6 111.09
- - - 1,075,694 12,921,639 927.34 1,075,694 12,921,639 - 654.21

596,399 3,873,339 445.98 596,399 3,873,339 169.36 596,399 3,956,200 287.32 129.06

parameters (v, k, λ). We use the same model by Lee and
Zhu [2014b]. We first solve the benchmarks using the ef-
ficient and widely used static method Doublelex [Flener et
al., 2002], and also LexLeader to break a much larger sub-
set of symmetries. We then report the results of two dynamic
methods ParSBDS and LReSBDS. ReSBDS are discarded in
the comparison since LReSBDS is substantially more effi-
cient [Lee and Zhu, 2014b] than it. Each dynamic method
would be implemented with the four propagators: GAC on
each nogood (GAC), the filtering algorithm of incNGs given
by Lee and Zhu [2014b] (incNGs), WNC on each nogood
(WNC) and GWIC on each incNGs constraint (GWIC).
ParSBDS is given any two rows or columns being permutable
and the Cartesian products of these two subsets. LReSBDS
and LexLeader are both given adjacent rows or columns be-
ing permutable and the Cartesian products of any two rows or
columns being permutable.

All experiments are conducted using Gecode Solver 4.2.0
on Xeon E5620 2.4GHz processors with 7GB. In the table,
#s denotes the number of solutions, #f denotes the num-
ber of failures and t denotes the runtimes. Since WNC and
GWIC have the same pruning power, we show their solutions
and failures together and use tW and tG to denote the runtime
of WNC and GWIC respectively. The search time out limit is
1 hour. An entry with the symbol “−” indicates that memory
is exhausted. The best results are highlighted in bold. We use
input variable ordering and maximum value ordering. Dou-
bleLex orders rows and columns decreasingly.

Table 1 shows the results. The solution and search tree
size by using LReSBDSGAC are reduced to half com-
pared with that of ParSBDSGAC . The time is improved
3.47 times on average. After introducing incNGs constraint,
ParSBDS and LReSBDS are improved 8.54 and 3.76 times
on runtimes on average respectively. For our lazy propa-
gators, ParSBDSWNC and LReSBDSWNC run 16.67 and
4.07 times faster than ParSBDSGAC and LReSBDSGAC on
average respectively. ParSBDSGWIC and LReSBDSGWIC

run 1.90 and 1.34 times faster than ParSBDSincNGs and
LReSBDSincNGs on average respectively. LReSBDSGWIC

performs the best and runs 7.90 and 1.12 times faster than
LexLeader and DoubleLex on average respectively. Dynamic

method beats static method. The benefits of our proposed
three improvements are thus demonstrated.

Future Work
For partial symmetry breaking, McDonald and Smith (2006)
show there may be a point where the benefit in reducing
search from adding more symmetries is out-weighed by the
extra overhead. To find the optimum point which has the min-
imum total runtime, we do not only need to find the number
of symmetries to post but also which subset to choose. It is
worthwhile to find a good subset of symmetries to break for
static and dynamic partial symmetry breaking methods.

McDonald and Smith (2006) have shown how dynamic
methods are affected by variable and value heuristics in par-
tial symmetry breaking. The ReSBDS and LReSBDS method
are no exception. It is worthwhile to investigate the interac-
tion between these partial methods and search heuristics.

Nogood learning is a general technique for improving
backtracking search [Dechter, 1990]. We envision that the
increasing-nogoods constraint and the weak-nogood consis-
tency are applicable to other scenarios in CP and SAT, in ad-
dition to symmetry breaking.

References
[Crawford et al., 1996] Crawford, J.; Ginsberg, M.; Luks, E.;

and Roy, A. 1996. Symmetry breaking predicates for
search problems. In KR’96, 148–159.

[Dechter, 1990] Dechter, R. 1990. Enhancement schemes for
constraint processing: Backjumping, learning, and cutset
decomposition. Artificial Intelligence 273–312.

[Flener et al., 2002] Flener, P.; Frisch, A.; Hnich, B.; Kizil-
tan, Z.; Miguel, I.; Pearson, J.; and Walsh, T. 2002. Break-
ing row and column symmetries in matrix models. In
CP’02, 187–192.

[Gent and Smith, 2000] Gent, I., and Smith, B. 2000. Sym-
metry breaking in constraint programming. In ECAI’00,
599–603.

[Lee and Zhu, 2014a] Lee, J., and Zhu, Z. 2014a. Boost-
ing SBDS for partial symmetry breaking in constraint pro-
gramming. In AAAI’14, 2695–2702.

[Lee and Zhu, 2014b] Lee, J., and Zhu, Z. 2014b. An
increasing-nogoods global constraint for symmetry break-
ing during search. In CP’14, 465–480.

[Lee and Zhu, 2015] Lee, J., and Zhu, Z. 2015. Filtering no-
goods lazily in dynamic symmetry breaking during search.
In IJCAI’15.

[McDonald and Smith, 2006] McDonald, I., and Smith, B.
2006. Partial symmetry breaking. In CP’06, 207–213.

[Moskewicz et al., 2001] Moskewicz, M.; Madigan, C.;
Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff:
Engineering an efficient sat solver. In DAC’01, 530–535.

[Petrie and Smith, 2003] Petrie, K. E., and Smith, B. M.
2003. Symmetry breaking in graceful graphs. In CP’03,
930–934.

4414




