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Abstract
We study a fair division problem with indivisible
items, namely the computation of maximin share
allocations. Given a set of n players, the maximin
share of a single player is the best she can guarantee
to herself, if she would partition the items in any
way she prefers, into n bundles, and then receive
her least desirable bundle. The objective then is to
find an allocation, so that each player is guaranteed
her maximin share.
Previous works have studied this problem purely
algorithmically, providing constant factor approx-
imation algorithms. In this work, we embark on a
mechanism design approach and investigate the ex-
istence of truthful mechanisms. We propose three
models regarding the information that the mecha-
nism attempts to elicit from the players, based on
the cardinal and ordinal representation of prefer-
ences. We establish positive and negative (impossi-
bility) results for each model and highlight the lim-
itations imposed by truthfulness on the approxima-
bility of the problem. Finally, we pay particular
attention to the case of two players, which already
leads to challenging questions.

1 Introduction
We study the design of mechanisms for a fair division prob-
lem with indivisible items. The objective in fair division is
to allocate a set of resources to a set of players in a way
that leaves everyone satisfied, according to their own pref-
erences. Over the past decades, several fairness concepts
have been proposed and the area gradually gained popular-
ity in computer science as well, since most of the ques-
tions are inherently algorithmic. We refer the reader to
the upcoming survey [Procaccia, 2015] for more recent re-
sults and to the classic textbooks [Brams and Taylor, 1996;
Robertson and Webb, 1998] for an overview of the area.

Our focus here is on the concept of maximin share allo-
cations, which has already attracted a lot of attention, ever
since it was introduced by [Budish, 2011]. The rationale for
this notion is as follows: suppose that a player, say player
i, is asked to partition the items into n bundles and then the

rest of the players select a bundle before i. In the worst case,
player i will be left with her least valuable subset. Hence,
a risk-averse player would choose a partition that maximizes
the minimum value of a bundle. This value is called the max-
imin share of agent i and the goal then is to find an allocation
where every person receives at least her maximin share.

The existence of maximin share allocations is not always
guaranteed under indivisible items. This has led to a series of
works that have either established approximation algorithms
(i.e., every player receives an approximation of her own max-
imin share) or have resolved special cases of the problem; see
our Related Work section. Currently, the best algorithms we
are aware of, achieve an approximation ratio of 2/3 [Procac-
cia and Wang, 2014; Amanatidis et al., 2015], and it is still a
challenging open problem if one can do better.

These previous works have studied the problem purely
from an algorithmic point of view, and one aspect that has not
been addressed so far is incentive compatibility. Players may
have incentives to misreport their valuation functions and in
fact, the proposed approximation algorithms are not truthful.
Is it possible then to have truthful algorithms with the same
approximation guarantee? Truthfulness is a demanding con-
straint especially in settings without monetary transfers, as is
the case here, and our goal is to explore the effects on the ap-
proximability of the problem if we impose such a constraint.
Contribution. We investigate the existence of truthful mech-
anisms for constructing approximate or exact maximin share
allocations. In doing so, we consider three models regarding
the information that the mechanism attempts to elicit from
the players. The first one is the more straightforward ap-
proach where players have to submit their entire additive val-
uation function to the mechanism. We then move to mech-
anisms where the manipulating power of the players is re-
stricted by the type of information that they are allowed to
submit. Namely in our second model, players only submit
their ranking over the items, motivated by the fact that many
mechanisms in the fair division literature fall within this class.
Finally, in our third model, we assume the mechanism de-
signer knows the ranking of each player over the items and
asks for a valuation function consistent with the ranking. This
can be appropriate for settings where the items are distinct
enough to be able to extract a ranking, or when the players
are known to belong to specific behavioral types. For each
of these models, we establish positive and negative (impos-
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sibility) results and highlight the differences and similarities
between them. Our results provide a clear separation between
the guarantees achievable by truthful and non-truthful mech-
anisms. As an example, it is known that for two players there
is a non-truthful PTAS, whereas we establish that this is not
the case for truthful algorithms in any of our models. We also
note that all our positive results yield polynomial time algo-
rithms, whereas the impossibility results are independent of
the running time of an algorithm. Finally, we pay particular
attention to the case of two players, which already gives rise
to non-trivial questions, even with a small number of items.
Related Work. The notion of maximin share allocations
was introduced by [Budish, 2011] (building on concepts
of [Moulin, 1990]), and later on defined by [Bouveret and
Lemaı̂tre, 2014] in the setting that we study here. Both exper-
imental and theoretical evidence, see [Bouveret and Lemaı̂tre,
2014; Kurokawa et al., 2016; Amanatidis et al., 2015], in-
dicate that such allocations do exist almost always. As for
computation, a 2/3 approximation algorithm has been estab-
lished in [Procaccia and Wang, 2014] and later on, a polyno-
mial time algorithm with the same guarantee was provided in
[Amanatidis et al., 2015].

Regarding incentive compatibility, we are not aware of
any prior work that addresses the design of truthful mecha-
nisms for maximin share allocations. There have been quite
a few works on mechanisms for other fairness notions, see
among others [Caragiannis et al., 2009; Chen et al., 2013;
Lipton et al., 2004]. Parts of our work are motivated by
the question of what is the power of cardinal information
vs ordinal information. We note that exploring what can be
done using only ordinal information has been recently studied
for other optimization problems too, (see [Anshelevich and
Sekar, 2016]). A popular class of mechanisms based only
on ordinal preferences is the class induced by “picking se-
quences”, introduced by [Kohler and Chandrasekaran, 1971].
We make use of such algorithms to establish some of our pos-
itive results.

2 Preliminaries
For any k 2 N, we denote by [k] the set {1, ..., k}. Let
N = [n] be a set of n players and M = [m] be a set of indivis-
ible items. We assume each player has an additive valuation
function vi(·) over the items, and we will write vij instead of
vi({j}). For S ✓ M , we let vi(S) =

P
j2S vij . An allo-

cation of M to the n players is a partition, T = (T
1

, ..., Tn),
where Ti \ Tj = ; and

S
i Ti = M . Let ⇧n(M) be the set of

all partitions of a set M into n bundles.
Definition 2.1. Given n players, and a set M of items, the
n-maximin share of a player i with respect to M is:

µi(n,M) = max

T2⇧n(M)

min

Tj2T
vi(Tj) .

When it is clear from context what n,M are, we will sim-
ply write µi instead of µi(n,M). The solution concept de-
fined in [Budish, 2011] asks for a partition that gives each
player her maximin share.
Definition 2.2. Given n players and a set of items M , a par-
tition T = (T

1

, ..., Tn) 2 ⇧n(M) is called a maximin share

allocation if vi(Ti) � µi , for every i 2 [n]. If vi(Ti) � ⇢·µi ,
8i 2 [n], with ⇢  1, then T is called a ⇢-approximate max-
imin share allocation.

It can be easily seen that this is a relaxation of the classic
notion of proportionality.
Example 1. Consider an instance with 3 players and 5 items:

a b c d e

Player 1 1/2 1/2 1/3 1/3 1/3
Player 2 1/2 1/4 1/4 1/4 0

Player 3 1/2 1/2 1 1/2 1/2

If M = {a, b, c, d, e} is the set of items, one can see that
µ

1

(3,M) = 1/2, µ
2

(3,M) = 1/4, µ
3

(3,M) = 1. For
player 1, no matter how she partitions the items into three
bundles, the worst bundle will be worth at most 1/2 for
her. Similarly, player 3 can guarantee a value of 1 (which
is best possible as it is equal to v

3

(M)/n) by the partition
({a, b}, {c}, {d, e}). Note that this instance admits a max-
imin share allocation, e.g., ({a}, {b, c}, {d, e}), and in fact
this is not unique.

Note also that if we remove some player, say player 2,
the maximin values for the other two players increase. E.g.,
µ

1

(2,M) = 1, achieved by the partition ({a, b}, {c, d, e}).
Similarly, µ

3

(2,M) = 3/2.

2.1 Mechanism Design Aspects
Following most of the fair division literature, our focus is on
mechanism design without money, i.e., we do not allow side
payments to the players. The standard way to define truth-
fulness then, is as follows: an instance of the problem can
be described as an n ⇥ m valuation matrix V = [vij ], as
in Example 1 above. For any mechanism A, we denote by
A(V ) = (A

1

(V ), . . . , An(V )) the allocation output by A on
input V . Also, let Vi denote the ith row of V , and V�i denote
the remaining matrix. Finally, let (V 0

i , V�i) be the matrix we
get by changing the ith row of V from Vi to V 0

i .
Definition 2.3. A mechanism A is truthful if for any in-
stance V , any player i, and any possible declaration V 0

i of
i: vi(Ai(V )) � vi(Ai(V

0
i , V�i)).

Obtaining a good understanding of truthful mechanisms
and their performance for other fairness notions has been
a difficult problem; see among others [Lipton et al., 2004;
Caragiannis et al., 2009] for approximating minimum envy
with truthful mechanisms. The difficulty is that an algorithm
that uses an m-dimensional vector of values for each player,
can create many subtle ways for players to benefit by misre-
porting. One can try to alleviate this by restricting the type
of information that is requested from the players. As a first
instantiation of this, we note that many mechanisms in the lit-
erature end up utilizing only the ranking of each player for the
items, and not the entire valuation function, (see our discus-
sion in Section 4 and references therein). This yields simpler,
intuitive mechanisms, at the expense of possibly sacrificing
performance, since the mechanism uses less information. As
a second instantiation, one can exploit information that could
be available to the mechanism so as to restrict the allowed
valuations. For example, in some scenarios, it is realistic to
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assume that the ranking of each player over the items is pub-
lic knowledge. If the items are distinct enough, it is possible
that one could extract such information (a special case is that
of full correlation, considered in [Brams and Fishburn, 2002;
Bouveret and Lang, 2011], where all players have the same
ranking). Therefore, the players in such cases can only sub-
mit values that agree with their (known) ranking.

Motivated by the above considerations, we study the fol-
lowing three models:

• The Cardinal or Standard Model. Every player submits
a valuation function, without any restrictions. To repre-
sent the input of player i, we fix an ordering of the items
and write the corresponding vector of values as vi = [vi1,
vi2, . . . , vim].

• The Ordinal Model. Here, an instance is again determined
by a matrix V , however a mechanism only asks players to
submit a ranking on the items. Note that Definition 2.3 of
truthfulness needs to be modified accordingly. That is, let
⌫i be any total order consistent with vi (there may be many
in case of ties). A mechanism is truthful if for any tuple of
rankings ⌫�i, for the other players, and any ranking ⌫0

i :
vi(Ai(⌫1

, ...,⌫n)) � vi(Ai(⌫0
i,⌫�i)).

• The Public Rankings Model. Now, the ranking of each
player is known to the mechanism, say it is ⌫i. Hence,
each player is asked to submit a valuation function consis-
tent with ⌫i.

It is not hard to see how the different scenarios we investi-
gate are related to each other; this is summarized in the fol-
lowing lemma. The proof is omitted due to space constraints.
Lemma 2.4. (i) Assume there exists a truthful ⇢-approxi-
mation mechanism A in the cardinal model. Then, A can be
efficiently turned into a truthful ⇢-approximation mechanism
for the public rankings model.
(ii) Assume there exists a truthful ⇢-approximation mecha-
nism A for the ordinal model. Then, A can be efficiently
turned into a truthful ⇢-approximation mechanism for the
cardinal model.

3 The Cardinal Model
As already alluded to, designing mechanisms that utilize the
values submitted by each player, so as to achieve a good ap-
proximation and at the same time induce truthful behavior, is
a very challenging problem. This is true even in the case of
n = 2 players. Therefore, we start first with a rather weak re-
sult for general n and m, and then move on to discuss the case
of two players. The main message from this section (Theorem
3.3) is that there is a clear separation, regarding the approxi-
mation guarantees of truthful and non-truthful algorithms.
Theorem 3.1. For any n � 2,m � 1, there is a truthful
1/

j
max{2,m�n+2}

2

k
-approximation mechanism for the car-

dinal model.
The proof follows from results in the next section (see the

discussion before and after Theorem 4.1). For the case of
two players, the mechanism of Theorem 3.1 has the follow-
ing form:

Mechanism M : Given the reported valuations of the players,
allocate to player 1 her best item, and to player 2 the remain-
ing items.

Although the approximation ratio achieved by Theorem 3.1
is quite small, it is still an open question whether there exist
better mechanisms for general n,m. We note also that the
mechanism of Theorem 3.1 only utilizes the preference rank-
ings of the players. Hence it is not even clear if there exist
truthful mechanisms that can exploit more information from
the valuation functions to achieve a better approximation.

For the remainder of this section, we discuss the case of
n = 2. We recall that for two players, the discretized cut and
choose procedure is a non-truthful algorithm that produces
an exact maximin share allocation; one player partitions the
goods into two bundles that are as equal as possible, and the
other player chooses her best bundle. To implement this in
polynomial time, we can produce an approximate partition-
ing using the result of [Woeginger, 1997] and then we can
guarantee at least (1 � ")µi to each player, 8" > 0. This is
not a truthful algorithm however, since player 1 can manip-
ulate the partitioning; in fact, she can compute her optimal
strategy if she knows the valuations of player 2 by solving a
Knapsack instance. Thus, the question we would like to re-
solve is to find the best truthful approximation that we can
guarantee for two players.

Notice that for n = 2,m < 4, the mechanism M does
output an exact maximin share allocation. Further, when
m 2 {4, 5}, M outputs a 1/2-approximation, according to
Theorem 3.1.

On the other hand, we can deduce an impossibility result,
using Theorem 5 of [Markakis and Psomas, 2011], which
yields1:
Corollary 3.2 (implied by [Markakis and Psomas, 2011]).
For n = 2,m � 4, and any " 2 (0, 1/3], there is no truthful
(2/3 + ")-approximation mechanism for the cardinal model.

The above corollary leaves open whether there exist bet-
ter mechanisms than M with approximation guarantees in
(1/2, 2/3]. Our main result in this section is that we close
this gap, by providing a stronger negative result, which shows
that the mechanism M above is optimal for n = 2,m = 4.
Theorem 3.3. For n = 2,m � 4, and for any " 2 (0, 1/2],
there is no truthful (1/2 + ")-approximation mechanism for
the cardinal model.

We prove the theorem for m = 4, since by adding dummy
items of no value, we can trivially extend it to any number of
items. The proof follows from Lemmas 3.4 and 3.5 below.
Notice that the theorem is valid even if we drastically restrict
the possible values of the items.
Lemma 3.4. For n = 2,m = 4, and for any " 2 (0, 1/2],
there is no truthful (1/2 + ")-approximation mechanism for
the cardinal model that allocates two items to each player at
every instance where the profiles are permutations of {2 +

", 1 + ", 1� ", "/2} or {2� ", 1 + ", 1� ", "/2}.
1The work of [Markakis and Psomas, 2011] concerns a different

problem however the arguments for their impossibility result can be
employed here as well.
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The proof of Lemma 3.4 is omitted due to lack of space. It
is based on constructing a series of preference profiles and
then reaching a contradiction by exploiting the constraints
imposed by truthfulness. Using Lemma 3.4, we deduce that
there must exist some instance where the mechanism must al-
locate one item to one player and three items to the other. We
prove below that this is not possible either.

Lemma 3.5. For n = 2,m = 4, and for any " 2 (0, 1/2],
there is no truthful (1/2 + ")-approximation mechanism for
the cardinal model, which at some instance where the profiles
are permutations of {2 + ", 1 + ", 1� ", "/2} or {2� ", 1 +
", 1�", "/2}, allocates exactly one item to one of the players.

Proof. Let us first fix an ordering of the four items, say
a, b, c, d. For the sake of readability we write 2+, 2�, 1+, 1�,
0

+ instead of 2 + ", 2� ", 1 + ", 1� " and "/2.
Suppose that there is such a truthful mechanism, and an in-

stance {[v
1a, v1b, v1c, v1d], [v2a, v2b, v2c, v2d]} (that we refer

to as the initial profile), where the mechanism gives one item
to p

1

and three items to p
2

(the symmetric case can be han-
dled accordingly). Since we want allocations that give to each
player items of value at least 1/2 + " of their maximin share,
it is trivial to check that allocating {1+, 0+} or {1�, 0+} to a
player is not feasible (we use this repeatedly below).

Recall that the values of each player are a permutation of
either {2+, 1+, 1�, 0+} or {2�, 1+, 1�, 0+}. Since p

1

gets
only one item, its value must be 2

+ or 2

�. W.l.o.g. we
may assume that this item is a, so the produced allocation
is ({a}, {b, c, d}). We will now construct a chain of profiles
(Profiles 1– 4) which will help us establish a contradiction.
Profile 1: {[v

1a, v1b, v1c, v1d], [2
�, v

1b, v1c, v1d]}. It is easy
to see that p

2

can not get just item a, or item a and the item
that has value 0

+, or any proper subset of {b, c, d}, since
she could then play [v

2a, v2b, v2c, v2d] as in the initial profile,
and end up strictly better. Moreover, p

2

cannot get a bun-
dle that contains a and (at least) one item with value 1

� or
1

+, because then there is not enough value left for p
1

. Thus,
the only feasible allocation here is ({a}, {b, c, d}). W.l.o.g.,
by possibly renaming items b, c, d, we take Profile 1 to be
{[v

1a, 1
+, 1�, 0+], [2�, 1+, 1�, 0+]}.

Profile 2: {[v
1a, 1

+, 1�, 0+], [0+, 2�, 1+, 1�]}. It is easy
to notice that in any feasible allocation other than ({a},
{b, c, d}), p

2

could play v0
2

= [2

�, 1+, 1�, 0+] as in Profile
1, and end up with a better value. Thus, the mechanism has
to output ({a}, {b, c, d}) at Profile 2.
Profile 3: {[1�, v

1a, 0
+, 1�], [0+, 2�, 1+, 1�]}. Here, p

1

cannot get a proper superset of {a}, since then at Profile 1,
she could have played v0

1

= [1

�, v
1a, 0

+, 1�] like here, and
end up with strictly more items. The only other feasible allo-
cation here is ({b}, {a, c, d}).
Profile 4: {[1�, v

1a, 0
+, 1�], [2�, 1+, 1�, 0+]}. Here, p

2

cannot get {b, c} or any proper subset of {a, c, d}, since she
could then play v0

2

= [0

+, 2�, 1+, 1�] like in Profile 3, and
end up with a total value of 3� 3"/2, which is strictly better.
The only other feasible allocation here is ({b}, {a, c, d}).

By starting now at Profile 2 and repeating the arguments
for Profiles 1, 2, and 3 –shifted one position to the right– we
have that for Profile 5: {[1�, v

1a, 0
+, 1+], [1�, 0+, 2�, 1+]}

the only possible allocation is ({b}, {a, c, d}), and for Pro-
file 6: {[1+, 1�, v

1a, 0
+

], [1�, 0+, 2�, 1+]} the only possible
allocation is ({c}, {a, b, d}).
Profile 7: {[1+, 1�, v

1a, 0
+

], [2�, 1+, 1�, 0+]}. Here, p
2

cannot receive {b, c} or any proper subset of {a, c, d}, since
she could then play v0

2

= [1

�, 0+, 2�, 1+] as in Profile 6,
and be better off. The only other feasible allocation is ({c},
{a, b, d}).
Final profile: {[1, 1, 1, 1], [2�, 1+, 1�, 0+]}. Here, any feasi-
ble allocation has to give p

1

at least two items, otherwise it
is not a (1/2 + ")-approximation. However, one can check
that for any such allocation, there is a profile among Profiles
1, 4 and 7, where p

1

could play v0
1

= [1, 1, 1, 1] and end up
strictly better. Thus, we conclude that there are no possible
allocations here, arriving at a contradiction.

This concludes the proof of Theorem 3.3.

4 The Ordinal Model
Several works in the fair division literature have proposed
mechanisms that only ask for the ordinal preferences of the
players. There are various reasons for such assumptions;
apart from their simplicity in implementing them, the players
themselves may feel more at ease as they may be reluctant
to fully reveal their valuation. Here, one extra motive is to
restrict the players’ ability to manipulate the outcome.

A class of such simple and intuitive mechanisms is the
class of picking sequence mechanisms, see, e.g., [Kohler and
Chandrasekaran, 1971; Brams and King, 2005; Brams and
Taylor, 2000; Bouveret and Lang, 2011; 2014; Kalinowski
et al., 2013a; 2013b] and references therein. A picking se-
quence ⇡ = pi1pi2 . . . pik is simply a sequence of players
(possibly with repetitions). Each picking sequence, naturally
induces a deterministic allocation mechanism for the ordinal
model as follows: first give to player pi1 her favorite item,
then give to pi2 her favorite among the remaining items, and
so on, and keep cycling through ⇡ until all the items are allo-
cated. Sometimes, periodicity is absent, and then the length
of the given sequence is at least m. Notice that these mech-
anisms can be implemented by asking each player for her
ranking over the items. And note also that these mechanisms
are not generally truthful, unless they are sequential dicta-
torships, i.e., they are induced by picking sequences of the
form pm1

i1
pm2
i2

. . . pmk
ik

, where pi1 , pi2 , . . . , pik are all different
players and

P
i mi = m (see [Bouveret and Lang, 2014]).

Given a set of n players p
1

, . . . , pn, we now define the
mechanism M(n,m) induced by the picking sequence ⇡ =

p
1

p
2

p
3

. . . pn�2

pn�1

pnpn . . . pn. Thus, the first n � 1 play-
ers receive exactly one item, and the last player receives the
rest m�n+1 items. This is a truthful mechanism, given the
observation above. It is easy to see that if m  n + 1 then
M(n,m) constructs an exact maximin share allocation. For
large values of m, however, the approximation deteriorates
fast and we also have a strong impossibility result.

Theorem 4.1. The mechanism M(n,m) defined above, is a
truthful 1/

⌅
m�n+2

2

⇧
-approximation for the ordinal model,

for any n � 2,m � n + 2. Moreover, there is no truthful
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mechanism for the ordinal model, induced by some picking
sequence, that achieves a better approximation factor.

The proof is omitted due to lack of space. Notice that The-
orem 4.1 combined with Lemma 2.4(ii) imply Theorem 3.1.

For n = 2, the mechanism M(2,m) is identical to mech-
anism M defined in Section 3. Hence, as already pointed
out there, this mechanism achieves a 1/2-approximation for
m 2 {4, 5}. We can now combine the impossibility result of
Theorem 3.3 and Lemma 2.4(ii) to conclude that M(2,m) is
optimal for the ordinal model for m 2 {4, 5}.
Corollary 4.2. For n = 2,m � 4, and for any " 2 (0, 1/2],
there is no truthful (1/2 + ")-approximation mechanism for
the ordinal model.

The impossibility results of Theorem 3.3 and Corollary 4.2
have a surprising consequence. The mechanism M(2,m)

achieves the best possible approximation both for the cardinal
and the ordinal model, for m 2 {4, 5}. Thus, providing ac-
cess to more information for the mechanism does not improve
the approximation factor at all, when truthfulness is required!

We conclude this section with a general result on the lim-
itations of the ordinal model. Apart from the truthfulness re-
quirement, an additional issue here is the lack of information
itself. Below, we prove an inapproximability result for any
mechanism in the ordinal model, independent of whether it is
truthful or not.
Theorem 4.3. For n � 2, and for any " > 0, there is no
(1/Hn+")-approximation algorithm, be it truthful or not, for
the ordinal model, where Hn is the nth harmonic number, with
Hn = ⇥(lnn). Moreover, for n = 3, there is no (1/2 + ")-
approximation algorithm for the ordinal model.

Proof. Let A be an ↵-approximation algorithm for the ordi-
nal model, where ↵ > 0. Consider an instance with large
enough m, where all the players agree on the ranking 1 ⌫
2 ⌫ . . . ⌫ m. Let gi be the best item that player i re-
ceives by A. We renumber the players, if needed, so that
if i < j then gi < gj . We claim that gi = i. To see that,
consider player n. Clearly, by the definition of gn and the
renumbering of the players, we have gn � n. If gn > n,
let vn1 = . . . = vnn = 1 and vn,n+1

= . . . = vnm = 0.
Then, in such an instance, algorithm A will fail to give an ↵-
approximation of µn to player n. It follows that gn = n, and
therefore 1 = g

1

< g
2

< . . . < gn�1

< n, which implies
gi = i for every i 2 [n].

Now, for i � 1, suppose that vi1 = . . . = vi,i�1

= 1

and vii = . . . = vim =

1

m�i+1

. Observe that µi =⌅
m�i+1

n�i+1

⇧
1

m�i+1

, and A must give at least
⌃
↵
⌅
m�i+1

n�i+1

⇧⌥

items to player i. Since there are m items in total, we must
have

Pn
i=1

⌃
↵
⌅
m�i+1

n�i+1

⇧⌥
 m. It follows that for any " > 0

and large enough m

↵  mPn
i=1

⌅
m�i+1

n�i+1

⇧  mPn
i=1

�
m�i+1

n�i+1

� 1

�

=

1�
1� n

m

�Pn
i=1

1

n�i+1

<
1

Hn
+ " .

Especially for n = 3, assume that ↵ > 1/2 and consider the
same analysis as above with m = 6. We get the contradiction

6 �
P

3

i=1

⌃
↵
⌅
7�i
4�i

⇧⌥
=

⌃
↵
⌅
6

3

⇧⌥
+

⌃
↵
⌅
5

2

⇧⌥
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5 The Public Rankings Model
When the players’ rankings are publicly known, one would
expect to achieve better approximation ratios, while still
maintaining truthfulness. Indeed, the mechanism now has
more information, while the options for manipulation are
greatly reduced. In particular, note that any picking sequence
induces a truthful mechanism for the public rankings model.

We show that indeed this is the case; the impossibility re-
sults we obtain are less severe and we have improvements for
the case of more than two players as well.

We focus first on two players. For m < 4, the mechanism
M(2,m) from Section 4 gives an exact solution, like before.
However, unlike what happens in the other two scenarios, for
m = 4 we now have a truthful exact mechanism. Before we
describe the mechanism, we introduce some useful notation.
For a player i, we will denote by Bi(k1, k2, . . . k`) the set
of items that are in the positions k

1

, k
2

, . . . k`, of her ranking.
E.g., B

2

(2, 4) denotes the bundle that contains the second and
the fourth items in the ranking of player 2.

Mechanism M
1

: Given the reported valuations of the two
players p

1

, p
2

, and their actual rankings, consider two cases:
–If their most valuable items are different, allocate the items
according to the picking sequence p

1

p
2

p
2

p
1

.
–Otherwise, give to player 1 her most valuable bundle among
B

1

(1) and B
1

(2, 3), and to player 2 the remaining items.

Theorem 5.1. Mechanism M
1

, is truthful and produces an
exact maximin share allocation for the public rankings model,
for n = 2,m = 4.

Proof. To see why M
1

is truthful, note that the players cannot
affect which of the two cases of M

1

will be employed, since
this is defined by the publicly known rankings. In addition,
only p

1

could strategize, in the case where she agrees with p
2

on the most valuable item. However, in that case M
1

gives her
the best bundle between two choices defined by her ranking,
thus there is no incentive to lie about her true values.

To prove now the guarantee for the maximin share, observe
that when the two players disagree on their most valuable
item, p

1

receives one of B
1

(1, 2), B
1

(1, 3), or B
1

(1, 4), and
p
2

receives either B
2

(1, 2), or B
2

(1, 3). Similarly, when they
agree on their most valuable item, p

1

receives her best bundle
among B

1

(1) and B
1

(2, 3), and p
2

receives either a bundle
of three items, or one of B

2

(1, 2), B
2

(1, 3), or B
2

(1, 4).
Consider the seven possible ways pi can split the four items

into non-empty bundles: (Bi(1, 2), Bi(3, 4)), (Bi(1, 3),
Bi(2, 4)), (Bi(1, 4), Bi(2, 3)), (Bi(1), Bi(2, 3, 4)), (Bi(2),
Bi(1, 3, 4)), (Bi(3), Bi(1, 2, 4)) and (Bi(4), Bi(1, 2, 3)).
From the definition of maximin share, in at least one of those,
both bundles have value at least µi.

It is easy to see that the total value of Bi(1, 3) (and thus
of Bi(1, 2)), is always at least µi, and the same holds for
any bundle that contains three items. Moreover, we claim
that both vi(Bi(1, 4)) and max{vi(Bi(1)), vi(Bi(2, 3))} are
at least µi, which suffice to prove the theorem. Indeed, if
vi(Bi(1, 4)) < µi or max{vi(Bi(1)), vi(Bi(2, 3))} < µi,
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this implies that each one of Bi(1), Bi(2), Bi(3), Bi(4),
Bi(2, 3), Bi(2, 4), and Bi(3, 4) also has value less than µi.
Thus, none of the possible partitions has both bundles worth
at least µi, contradicting the definition of maximin share.

An interesting question is whether the above can be ex-
tended for any number of items. We exhibit below that the
answer is no, hence non-truthful algorithms have a strictly
better performance under this model as well. However for
general m, we provide later on an improved approximation
in comparison to the other two settings.

Theorem 5.2. For n = 2, and m = 5, there is no truthful
(5/6 + ")-approximation mechanism for any " 2 (0, 1/6],
while for m � 6, there is no truthful (4/5+")-approximation
mechanism for any " 2 (0, 1/5].

Proof. We give the proof for m = 6, which can be extended
to m � 6, by adding dummy items of no value. The proof for
m = 5 is of similar flavor, albeit more complicated.

Suppose that there is a deterministic truthful mechanism
for the public rankings model, that achieves a (4/5 + ")-
approximation for some " > 0. We study five profiles where
the ranking of the six items is a ⌫i b ⌫i c ⌫i d ⌫i e ⌫i f
for i 2 {1, 2}, thus it is feasible for both players to move
between these profiles in order to increase the value they get.
Recall that in our current model, a player can strategize using
the values of the items, but without changing their publicly
known ranking.
Profile 1: {[1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]}. Here, µi = 3

for i 2 {1, 2}, so in order to achieve a better than a 0.8-
approximation, the mechanism must give to each player items
of value greater than 0.8 · µi = 2.4. Thus each player has to
receive three items. W.l.o.g. we may assume that p

1

gets item
a (the symmetric case is handled in an analogous manner).
Profile 2: {[1, 0.2, 0.2, 0.2, 0.2, 0.2], [1, 1, 1, 1, 1, 1]}. Here,
µ

1

= 1 and µ
2

= 3. The mechanism must give to p
1

a total
value greater than 0.8 · 1 = 0.8 and to p

2

a total value greater
than 0.8 ·3 = 2.4. Notice, now, that p

2

has to get at least three
items, and therefore p

1

has to get a superset of {a}. In fact,
p
1

gets a superset of {a} of size three, otherwise she could
play v0

1

= [1, 1, 1, 1, 1, 1] like in Profile 1, and end up strictly
better. So, we conclude that both players get three items each,
and p

1

gets item a.
Profile 3: {[1, 0.2, 0.2, 0.2, 0.2, 0.2], [1, 0.2, 0.2, 0.2, 0.2,
0.2]}. Here, µi = 1 for i 2 {1, 2}, so in order to achieve
something strictly greater than 0.8 · 1 = 0.8, there are
only two feasible allocations: i) ({b, c, d, e, f}, {a}), and
ii) ({a}, {b, c, d, e, f}). Now, notice that allocation ii) is
not possible, since then at Profile 2, p

2

could play v0
2

=

[1, 0.2, 0.2, 0.2, 0.2, 0.2] like here, and end up strictly better.
Thus, the mechanism outputs ({b, c, d, e, f}, {a}).
Profile 4: {[1, 1, 1, 1, 1, 1], [1, 0.2, 0.2, 0.2, 0.2, 0.2]}. Here,
µ

1

= 3 and µ
2

= 1. The mechanism must give to p
1

a total
value greater than 0.8 · 3 = 2.4 and to p

2

a total value greater
than 0.8 · 1 = 0.8. Notice now that p

1

has to get five items,
since otherwise she could play v0

1

= [1, 0.2, 0.2, 0.2, 0.2, 0.2]
like in Profile 2, and end up strictly better. Thus p

2

has to get
{a} to achieve the desired ratio.

Profile 5: {[1, 1, 1, 1, 1, 1], [0.7, 0.3, 0.25, 0.25, 0.25, 0.25]}.
Here, µ

1

= 3 and µ
2

= 1. The mechanism must give to
p
1

a total value greater than 0.8 · 3 = 2.4 and to p
2

a total
value greater than 0.8 · 1 = 0.8. First, notice that p

1

must
get at least three items. Moreover, if the mechanism does
not give item a to p

2

, then there is no way for p
2

to get to-
tal value strictly greater than 0.8 with at most three items.
Therefore, p

2

has to get a strict superset of {a}. However,
this is not feasible either, since at Profile 4, p

2

could play
v0
2

= [0.7, 0.3, 0.25, 0.25, 0.25, 0.25] like here, and end up
strictly better. Thus, we conclude that there are no possible
allocations here, arriving at a contradiction.

Exploiting the fact that picking sequences induce truthful
mechanisms for the public rankings model, we can get more
positive results for two players and any m. Let M

2

be the
mechanism for two players induced by the picking sequence
p
1

p
2

p
2

. We have the following result for M
2

.
Theorem 5.3. For n = 2 and any m � 1, M

2

is a truthful
2/3-approximation mechanism for the public rankings model.

Hence, for n = 2, we have a pretty clear picture on what
we can achieve for any m, leaving only a small gap, i.e.,
[2/3, 4/5], between the impossibility result and Theorem 5.3.

We can also obtain constant factor approximations for
more than two players, which has been elusive in the other
two models. E.g., for n = 3, we can achieve a 1/2-
approximation. In particular, for any n � 2, and m � 1,
let Mn be the mechanism induced by the picking sequence
p
1

p
2

p
3

. . . pn�1

pnpn.
Theorem 5.4. For any n � 2, and any m � 1, the mecha-
nism Mn is a truthful 2

n+1

-approximation mechanism for the
public rankings model. E.g., for n = 3, this yields a 1/2-
approximation.

Note that Theorem 5.3 is a corollary of Theorem 5.4. Also,
observe that 2

n+1

is better than the guarantee of Theorem 4.1,
however, it remains an open problem to design truthful mech-
anisms achieving better, or even no, dependence on n.

6 Conclusions
We embarked on the existence of truthful mechanisms for ap-
proximate maximin share allocations. In doing so, we con-
sidered three models regarding the information that a mech-
anism elicits from the players, and studied their power and
limitations. Quite surprisingly, we have exhibited cases with
two players, where the best possible truthful approximation
is achieved by using only ordinal information.

Our work leaves several interesting questions for future
research. A great open problem is whether there exist bet-
ter truthful mechanisms in the cardinal model, that explicitly
take into account the players’ valuation functions rather than
just ordinal information. Another more general question is to
tighten the upper and lower bounds obtained here; especially
for a large number of players, these bounds are quite loose.
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