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Abstract

How should one aggregate ordinal preferences ex-
pressed by voters into a measurably superior social
choice? A well-established approach — which we
refer to as implicit utilitarian voting — assumes
that voters have latent utility functions that induce
the reported rankings, and seeks voting rules that
approximately maximize utilitarian social welfare.
We extend this approach to the design of rules that
select a subset of alternatives. We derive analytical
bounds on the performance of optimal (determin-
istic as well as randomized) rules in terms of two
measures, distortion and regret. Empirical results
show that regret-based rules are more compelling
than distortion-based rules, leading us to focus on
developing a scalable implementation for the opti-
mal (deterministic) regret-based rule. Our methods
underlie the design and implementation of an up-
coming social choice website.

1 Introduction

We are interested in the classic social choice problem of ag-
gregating the preferences of a set of voters — represented as
rankings over a set of alternatives — into a collective deci-
sion. Traditional social choice theory typically takes a nor-
mative approach, by specifying desirable axioms that the ag-
gregation method (also known as a voting rule) should sat-
isfy [Arrow, 1951]. In contrast, researchers in computational
social choice [Brandt et al., 2016] often advocate quantita-
tive approaches to the same problem. The high-level idea is
to identify a compelling objective function, and design voting
rules that optimize this function.

Here we focus on a specific objective function: utilitar-
ian social welfare. Specifically, we assume that each voter
assigns a utility to each possible outcome, and the socially
optimal outcome maximizes the sum of utilities. This sounds
simple enough at first glance, but there is a major obstacle we
must overcome: voters’ preferences are expressed as ordinal
preferences (rankings), rather than cardinal preferences (util-
ities). While this reduces the cognitive load on voters, and

makes preference elicitation much easier, it does seem to be
at odds with the utilitarian viewpoint.

Procaccia and Rosenschein [2006] reconcile these differ-
ences via an approach that we refer to as implicit utilitarian
voting.1 They propose that voters have latent utility func-
tions, and report rankings that are consistent with these util-
ities, that is, the voters rank the alternatives by their utility.
The performance of a voting rule — which can only access
the submitted rankings, not the implicit utility functions —
can then be quantified via a measure called distortion: the
worst-case (over utility functions consistent with the reported
profile of rankings) ratio between the social welfare of the op-
timal (welfare-maximizing) alternative, and the social welfare
of the alternative selected by the voting rule. While Procaccia
and Rosenschein focus on analyzing the distortion of existing
voting rules, Boutilier et al. [2015] design voting rules that
minimize distortion. In particular, they bound the worst-case
distortion, and show that the distortion-minimizing (random-
ized) voting rule can be implemented in polynomial time.

The work of Boutilier et al. [2015] provides a good un-
derstanding of optimized aggregation of rankings from the
utilitarian viewpoint — but only when a single alternative is
selected by the voting rule. Indeed, this understanding does
not extend to common applications that require selection of
a subset of alternatives, such as choosing a committee, or se-
lecting restaurants for the next four group lunches. Our goal
is therefore to

. . . build on the utilitarian approach to design opti-
mal voting rules for selecting a subset of alterna-
tives, and understand the guarantees they provide,
as well as their performance in practice.

We make four main contributions. First, on a conceptual
level, we introduce the additive notion of regret into the im-
plicit utilitarian voting setting, as an alternative to the multi-
plicative notion of distortion. Second, in Section 3, we de-
rive worst-case bounds on the distortion and regret of op-
timal deterministic and randomized voting rules. Third, in
Section 4, we compare the worst-case-optimal deterministic
voting rules with respect to distortion and regret — denoted

1Cf. utilitarian voting, which has sporadically been used to refer
to both approval voting and range voting.
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f⇤
dist

and f⇤
reg

, respectively — with a slew of well-known vot-
ing rules, in terms of average-case distortion and regret, us-
ing experiments on synthetic and real data. We find that f⇤

reg

outperforms all other rules on average, even when measuring
distortion! Fourth, in Section 5, we develop a scalable imple-
mentation for f⇤

reg

(which, we show, is NP-hard to compute).

1.1 Direct Real-World Implications

Research in computational social choice has frequently
been justified by potential applications in multiagent sys-
tems. But recently researchers have begun to realize
that, arguably, the most exciting products of this re-
search are computer programs that help humans make de-
cisions via AI-driven algorithms. One example is Splid-
dit (www.spliddit.org), a fair division website [Goldman
and Procaccia, 2014]. In the voting space, existing ex-
amples include Whale (whale3.noiraudes.net/whale3/)
and Pnyx (pnyx.dss.in.tum.de) — but these websites
generally adopt the axiomatic viewpoint.

Since May 2015, some of us have been working on the de-
sign and implementation of a new not-for-profit social choice
website, RoboVote (www.robovote.org), which is sched-
uled to launch in May 2016. The novelty of RoboVote is
that it relies on optimization-based approaches. For the case
of objective votes — when a ground truth ranking of the al-
ternatives exists (e.g., the order of different stocks by the rel-
ative change in their prices tomorrow) — RoboVote imple-
ments voting rules that pinpoint the most likely best alterna-
tive [Young, 1988], or the set most likely to contain it [Pro-
caccia et al., 2012]. For the case of subjective votes — the
classic setting which is the focus of this paper, with appli-
cations to everyday scenarios such as a group of friends se-
lecting a movie to watch or a restaurant to go to — we use
the results of Boutilier et al. [2015] to select a single alter-
native. But, previously, the extension to subset selection was
unavailable — this is precisely the motivation for the work
described herein. Based on the results of Sections 4 and 5,
we have implemented the deterministic regret minimization
rule on RoboVote.

1.2 Related Work

In addition to the aforementioned papers [Procaccia and
Rosenschein, 2006; Boutilier et al., 2015], several other pa-
pers employ the notion of distortion to quantify how close one
can get to maximizing utilitarian social welfare when only
ordinal preferences are available [Caragiannis and Procac-
cia, 2011; Anshelevich et al., 2015; Anshelevich and Sekar,
2016]. In particular, Anshelevich et al. [2015] study the same
setting as Boutilier et al. [2015], but in addition assume the
preferences of voters are consistent with distances in a met-
ric space. We refer the reader to the paper by Boutilier et
al. [2015, Section 1.2] for a thorough discussion of work (in
philosophy, economics, and social choice theory) related to
implicit utilitarian voting more broadly.

There is quite a bit of work in computational social choice
on voting rules that select subsets of alternatives. Typically
it is assumed that ordinal preferences are translated into a
position-based score for each alternative (in contrast to our

work). Just to give a few examples, under the Chamberlin-
Courant method, each voter assigns a score to a set equal to
the highest score of any alternative in the set, and the (compu-
tationally hard) objective is to choose a subset of size k that
maximizes the sum of scores [Chamberlin and Courant, 1983;
Procaccia et al., 2008]. Skowron et al. [2015] generalize the
way in which the score of a voter for a subset of alternatives
is computed. The budgeted social choice framework of Lu
and Boutilier [2011a] is more general in that the number of
alternatives to be selected is not fixed; rather, each alternative
has a cost that must be paid to add it to the selection.

2 The Model

Let [t] = {1, . . . , t}. Let A be the set of alternatives, and
denote m = |A|. Let N = [n] be the set of voters. Let
L = L(A) denote the set of rankings over the alternatives.
Each voter i 2 [n] submits a ranking �i 2 L over the alterna-
tives, and which can alternatively be seen as a permutation of
A. Therefore, �i(a) is the position in which voter i ranks al-
ternative a (1 is best, m is worst). Moreover, a ��i b denotes
that voter i prefers alternative a to alternative b. The collec-
tion of voters’ (submitted) rankings is called the preference
profile, and denoted by ~� 2 Ln.

We assume the rankings are induced by comparisons be-
tween the voters’ underlying utilities. For i 2 N and
a 2 A, let ui(a) 2 [0, 1] be the utility of voter i for al-
ternative a. As in previous papers [Boutilier et al., 2015;
Caragiannis and Procaccia, 2011], we assume that the utili-
ties are normalized such that

P
a2A ui(a) = 1 for all i 2 N .

The collection of voter utilities, denoted ~u, is called the utility
profile. We say that utility profile ~u is consistent with prefer-
ence profile ~� — denoted ~u . ~� — if for all a, b 2 A and
i 2 N , a ��i b implies ui(a) � ui(b).

Next we need to define the utility of a voter for a set of
alternatives. For S ✓ A, we define ui(S) = maxa2S ui(a),
that is, each voter derives utility for his favorite alternative
in the set; this is in the same spirit as previous papers on
set selection [Chamberlin and Courant, 1983; Monroe, 1995;
Procaccia et al., 2008; Lu and Boutilier, 2011a]. Then, the
(utilitarian) social welfare of S given the utility profile ~u is
sw(S, ~u) =

Pn
i=1 ui(S).

We are interested in voting rules that, given a preference
profile, select a subset of given cardinality k.2 Therefore, it
will be useful to denote Ak = {S ✓ A : |S| = k}. In order
to unify notation, we directly define a randomized voting rule
as a function f : Ln ! �(Ak), that is, the rule is allowed to
select alternatives randomly, and formally f(~�) is a probabil-
ity distribution over Ak. A deterministic voting rule simply
gives probability 1 to a specific subset.

A voting rule can only access the preference profile ~�, yet
the goal is to maximize social welfare with respect to the la-
tent utility function ~u .~�. We study two notions that quantify
how well a rule achieves this goal: distortion and regret.

The distortion [Procaccia and Rosenschein, 2006] of a

2Formally, this is a special case of social choice correspondences
with fixed output cardinality [Campbell and Kelly, 1996].
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(randomized) voting rule f on a preference profile ~� is

dist(f,~�) = sup

~u .~�

maxS2Ak sw(S, ~u)

E[sw(f(~�), ~u)] .

In words, it is the worst-case — over utility profiles consistent
with the given preference profile — ratio between the social
welfare of the best subset, and the expected social welfare of
the subset selected by the voting rule. We define the distortion
of a voting rule f by taking the worst case over preference
profiles: dist(f) = max~�2Ln

dist(f,~�).
The second measure is regret. While it has not been stud-

ied as part of the agenda of implicit utilitarian voting, it has
been explored in other social choice settings, especially par-
tial preferences [Lu and Boutilier, 2011b]; similar measures
have been extensively studied in decision theory and ma-
chine learning [Blum and Mansour, 2007; Bubeck and Cesa-
Bianchi, 2012]. The regret of a (randomized) voting rule f
on a preference profile ~� is given by

reg(f,~�) =
1

n
· sup
~u .~�

✓
max

S2Ak

sw(S, ~u)� E[sw(f(~�), ~u)]
◆
.

As before, define the regret of a rule f to be reg(f) =

max~�2Ln
reg(f,~�). We divide by n because the total

(worst-case) regret of any voting rule f is provably linear in n
(so this is per vote regret). Note that distortion is a multiplica-
tive measure of loss, whereas regret is its additive version.

3 Worst-Case Bounds

In this section we provide bounds on worst-case distortion
and regret, for both deterministic and randomized voting
rules. Boutilier et al. [2015] show that for selecting a sin-
gle winner (k = 1), we can achieve O(

p
m · log⇤ m) dis-

tortion using a randomized rule, where log

⇤ m is the iterated
logarithm of m (the number of alternatives). This bound is
asymptotically almost tight: they also show that the worst-
case distortion is always ⌦(

p
m).

For a large k, though, one can hope for a better bound.
Clearly, when k = m there is only one voting rule (which se-
lects every alternative), and its distortion is 1. More generally,
it is easy to show that the voting rule f that selects a subset
from Ak uniformly at random has dist(f)  m/k. How-
ever, since we can already achieve O(

p
m · log⇤m) distortion

for k = 1, a bound of m/k provides an improvement only for
k = ⌦(

p
m/ log⇤ m). Can we achieve better distortion for

smaller values of k as well? It is not even clear whether the
optimal worst-case distortion should monotonically decrease
in k, because as our flexibility grows with k, so does the flex-
ibility of the welfare-maximizing solution. In fact, a part of
our main result shows that the worst-case distortion remains
⌦(

p
m) for all values of k up to ⇥(

p
m).

Theorem 1. Let m = |A|, and let k be the number of alter-
natives to be selected.

1. Distortion, deterministic rules: There exists a determin-
istic voting rule f⇤ with dist(f⇤

)  1+m (m� k)/k.
Moreover, for every deterministic voting rule f ,

dist(f) �

8
><

>:

1 +

m(m�3k)
6k if k  m

9 ,
1 +m if m

9 < k  m
2 ,

1 +

m(m�k)
k otherwise.

These bounds are tight up to a constant factor of 7.3.
2. Distortion, randomized rules: There exists a random-

ized voting rule f⇤ such that

dist(f⇤
) 

8
>><

>>:

2

p
m ·Hm if k  2·m·Hm

m+Hm
,

4

p
m · k if 2·m·Hm

m+Hm
< k 

�
m
4

� 1
3 ,

m
k otherwise,

where Hm = ⇥(logm) is the mth harmonic number.
Moreover, for every randomized voting rule f ,

dist(f) �
( p

m
2 if k  m·(

p
m�1)

m�1 ⇡
p
m,

m
k+m/k otherwise.

These bounds are tight up to a factor of 9.4 ·m1/6.
3. Regret, deterministic rules: There exists a deterministic

voting rule f⇤ such that

reg(f⇤
) 

⇢ 1
2 if k  m

2 ,
1� k

m otherwise,

and this upper bound is completely tight.
4. Regret, randomized rules: There exists a randomized

voting rule f⇤ such that reg(f⇤
)  1/2 ·

�
1� k2/m2

�
.

Moreover, for every randomized voting rule f ,

reg(f) �
(

1
4 if k  m/2

1
2 · k

m

�
1� k

m

�
otherwise.

,

All the upper bounds above can be achieved via polynomial-
time algorithms.
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Figure 1: The upper and lower bounds on worst-case distor-
tion and regret for m = 100.

The bounds presented above are simplified forms of the
exact bounds that we derive. Figure 1 shows our exact bounds
for m = 100.3

The intricate proof of Theorem 1 appears in the full version
of the paper.4 Below, we just sketch one part of the proof that
we find especially interesting.

3The second upper bound in part 2 of Theorem 1 (which in-
creases with k) does not play a role unless m is very large.

4Available at: www.cs.cmu.edu/⇠arielpro/papers.html
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Proof sketch of the upper bound in part 2 of Theorem 1. Our
construction builds on the one used by Boutilier et al. [2015]
for k = 1, but uses additional tools and introduces novel
techniques. As mentioned at the beginning of this section,
choosing a set uniformly at random from Ak (under which
the marginal probability of every alternative being chosen is
k/m) has distortion at most m/k. However, this approach
does not work well if some alternatives are significantly
better than others.

In that case, one may wish to choose the alternatives with
probabilities proportional to their “quality”. For a 2 A,
let us define its quality by its harmonic score har(a) =P

i2[n] 1/�i(a). Then, we wish to choose alternative a with
marginal “probability” k · har(a)/

P
b2A har(b). Note that

this quantity may be greater than 1. Moreover, this approach
fails when all sets are almost equally good. Hence, we em-
ploy a combination of the two approaches.

Fix 0  ↵  1, and for an alternative a 2 A define

pa = ↵ · k

m
+ (1� ↵) · k · har(a)P

b2A har(b)
. (1)

Using the bihierarchy extension [Budish et al., 2013] of the
Birkhoff-von Neumann theorem [Birkhoff, 1946; von Neu-
mann, 1953], we can show that there exists a distribution over
Ak under which the marginal probabilities of selected alter-
natives are consistent with Equation (1) if and only if

8a 2 A, 0  pa  1 and
X

a2A

pa = k.

Suppose such a distribution D exists. Consider a pref-
erence profile ~� and a utility profile ~u . ~�. Let S⇤ 2
argmaxS2Ak

sw(S, ~u). Define

X =

r
Hm

m
· ↵

1� ↵
,

where Hm =

Pm
t=1 1/t is the mth harmonic number. Note

that
P

a2A har(a) = n ·Hm. Now, consider two cases.

Case 1: Suppose sw(S⇤, ~u)  n ·X . Then,

ES⇠D[sw(S, ~u)] =
X

S2Ak

PrD[S] ·
 

nX

i=1

max

a2S
ui(a)

!

�
nX

i=1

 
X

S2Ak

PrD[S] ·
P

a2S ui(a)

k

!

=

1

k

nX

i=1

X

a2A

ui(a) · PrS⇠D[a 2 S]

� 1

k

nX

i=1

X

a2A

ui(a) · ↵ · k

m
= ↵ · n

m
.

Hence, the distortion is

sw(S⇤, ~u)

ES⇠D[sw(S, ~u)]
 n ·X

↵ · n/m =

X ·m
↵

=

s
m ·Hm

↵ · (1� ↵)
.

Case 2: Suppose sw(S⇤, ~u) > n ·X . Then, for each alterna-
tive a 2 S⇤, let Na denote the subset of voters who rank a
above any other alternative of S⇤, i.e.,

Na = {i 2 [n] : 8b 2 S⇤ \ {a}, a ��i b, }.
Let swNa(S, ~u) denote the welfare of the voters in Na for the
set of alternatives S under the utility profile ~u. Let Ta denote
the total utility that agents in Na have for alternative a, i.e.,
Ta =

P
i2Na

ui(a). It can be shown (although it is nontriv-
ial) that har(a) � Ta for all a 2 A. Because {Na}a2S⇤ is a
partition of the set of voters, we have

ES⇠D[sw(S, ~u)] = ES⇠D

"
X

a2S⇤

swNa(S, ~u)

#

�
X

a2S⇤

Ta · PrS⇠D[a 2 S]

�
X

a2S⇤

Ta · (1� ↵) · k · har(a)P
b2A har(b)

� (1� ↵) · k
n ·Hm

·
X

a2S⇤

(Ta)
2 � 1� ↵

n ·Hm
·
 
X

a2S⇤

Ta

!2

=

1� ↵

n ·Hm
· (sw(S⇤, ~u))2 .

Here, the fourth transition uses har(a) � Ta, the fifth tran-
sition uses the power-mean inequality, and the final transition
uses sw(S⇤, ~u) =

P
a2S⇤ Ta. Now, the distortion is

sw(S⇤, ~u)

ES⇠D[sw(S, ~u)]
 n ·Hm

(1� ↵) · sw(S⇤, ~u)
<

s
m ·Hm

↵ · (1� ↵)
,

where the final transition uses our assumption sw(S⇤, ~u) >
n ·X along with the definition of X .

Combined analysis: In both cases, the distortion is at mostp
mHm/(↵(1� ↵)). The final step involves choosing the

optimal value of ↵ by minimizing this quantity subject to our
constraints: pa  1 for all a 2 A. Simplifying the bound
obtained along with our universal distortion bound of m/k
yields the required upper bound. ⌅

4 Empirical Comparisons

In Section 3 we provided analytical results for both deter-
ministic and randomized rules. In our view, randomized rules
are especially practicable when the output distribution is sam-
pled multiple times, or when the voters are well-informed,
or when the voters are indifferent about the outcome (e.g.,
they are software agents). Moreover, we believe that the re-
sults for randomized rules are of substantial theoretical inter-
est. But our work is partly driven by its direct applications in
RoboVote (see Section 1.1), which does not satisfy the above
conditions. This leads us to use deterministic voting rules,
which is what we focus on hereinafter.

Let f⇤
dist

and f⇤
reg

be the deterministic rules that minimize
the worst-case distortion and regret, respectively, on every
given preference profile. The deterministic results of Sec-
tion 3 establish upper and lower bounds on their worst-case
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f⇤
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f⇤
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Figure 2: Uniformly random utility profiles.
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Figure 3: Utility profiles from the Jester dataset.
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Figure 4: Preference profiles from the Sushi and the T-Shirt datasets, uniformly random consistent utility profiles.

distortion/regret. In this section, we evaluate their average-
case performance on simulated as well as real data, and com-
pare them against nine well-known voting rules: plurality, ap-
proval voting, Borda count, STV, Kemeny’s rule, the maximin
rule, Copeland’s rule, Bucklin’s rule, and Tideman’s rule.5

We perform three experiments: (i) choosing a utility pro-
file uniformly at random from the simplex of all utility pro-
files, (ii) drawing a real-world utility profile from the Jester
datasets [Goldberg et al., 2001], and (iii) drawing a real-
world preference profile from the PrefLib datasets [Mattei
and Walsh, 2013], and choosing a consistent utility profile
uniformly at random. For each experiment, we have 8 voters
and 10 alternatives, and test for k 2 [4].6 For each setting, we
perform 10 000 random simulations, and measure both dis-
tortion and regret for the actual utility profile, as opposed to
the worst-case utility profile. The figures show the average
performance with 95% confidence intervals.

In all of our simulations, we observed that three of the
classical voting rules stand out: Borda count performs well
for choosing a single alternative (but not for choosing larger

5For the score-based rules, the k-subset is selected by picking the
top k alternatives based on their scores.

6In RoboVote, we expect typical instances to have few voters and
alternatives. But we chose m > 2k because otherwise the problem
would be trivial: for k � m/2, picking the top k alternatives based
on plurality scores is optimal for both distortion and regret.

subsets) whereas plurality and STV perform well for choos-
ing larger subsets (but not for choosing a single alternative).
Hence, all of our graphs specifically distinguish these three
rules in addition to f⇤

dist

and f⇤
reg

.
Figure 2 shows the results for the first experiment where

we choose the utility profile uniformly at random. Figure 3
shows the results for the second experiment where real-world
utility profiles are drawn from one of the Jester datasets, in
which more than 50 000 voters rated 150 jokes on a real-
valued scale; the results from the other Jester dataset are al-
most identical. Finally, Figure 4 shows the results for the third
experiment where real-world preference profiles are drawn
from the Sushi dataset (5 000 voters ranking 100 different
kinds of sushi) and the T-Shirt dataset (30 voters ranking 11

T-shirt designs) from PrefLib. Experiments on other datasets
from PrefLib (AGH Course Selection, Netflix, Skate, and
Web Search) yielded similar results.

Right off the bat, one can observe that the average-case dis-
tortion and regret values are much lower than their worst-case
counterparts. For example, average regret is generally lower
than 0.1 — compare with the tight worst-case deterministic
bound of 1/2 for k  m/2.

Much to our surprise, in all of our experiments, f⇤
reg

out-
performs f⇤

dist

in terms of both average-case distortion (mul-
tiplicative loss) and regret (additive loss). While both mea-
sures of loss have been studied extensively in the literature,
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we are not aware of any previous work that compares the two
approaches. At least in our social choice domain, the regret-
based approach is clearly better on average.

Moreover, in all cases but one (k = 1 in the Jester ex-
periment), f⇤

reg

also outperforms all the classical voting rules
under consideration. We therefore conclude that, on random
as well as on real-world instances, f⇤

reg

provides superior per-
formance in terms of social welfare maximization.

5 Computation and Implementation

In this section, we analyze and compare the two determinis-
tic optimal rules — f⇤

dist

and f⇤
reg

— from a computational
viewpoint. Selecting optimal subsets turns out to be challeng-
ing, as both rules are NP-hard to compute; the proof of this
nontrivial result appears in the full version.
Theorem 2. Given a preference profile ~� and an integer k,
computing a k-subset of alternatives that has the minimum
distortion or the minimum regret on ~� is NP-hard.

Given that f⇤
reg

outperforms f⇤
dist

in the experiments of
Section 4, and that both rules are computationally hard, f⇤

reg

stands out as the clear choice for implementation in our web-
site RoboVote. We therefore devoted our efforts to developing
a scalable implementation for f⇤

reg

.
The first step is to simplify the description of f⇤

reg

. Given
a ranking � and an alternative a 2 A, recall that �(a) de-
notes the position of a in �. For a set S ✓ A, let �(S) =

mina2S �(a). For sets S, T ✓ A, we say T �� S if
�(T ) < �(S), i.e., if there exists an alternative in T that is
preferred in � to every alternative in S. Using these notations,
it is relatively straightforward to prove that

f⇤
reg,k(~�) = argmin

T2Ak

max

S2Ak

X

i2N :S��iT

1

�i(S)
. (2)

To better understand this equation, we consider the special
case of k = 1. In this case,

f⇤
reg

(~�) 2 argmin

a2A
max

b2A

X

i2[n]:b��ia

1

�i(b)
.

Note that this voting rule is very similar to the classical max-
imin rule: replacing 1/�i(b) with 1 would yield the maximin
rule. Thus, in some sense, this is a smooth version of the
maximin rule, where the “victory” of b over a in voter i’s
vote is weighted by the strength of b in this vote (measured
by 1/�i(b)). In our view, this intuitive structure makes f⇤

reg

even more compelling.
We now briefly describe six approaches we have developed

for computing f⇤
reg

:

1. Naı̈ve: This uses Equation (2), and requires ⌦(n ·
�
m
k

�2
)

operations, which is prohibitive even for small m.
2. Submodular: The regret for set S in choosing set T , i.e.,P

i2[n]:S��iT
1/�i(S), is submodular in S. Hence, for

each T 2 Ak we can optimize over S 2 Ak using any
algorithm for the submodular maximization subject to
cardinality constraint (SMCC) problem. We use the SFO
toolbox for Matlab [Krause, 2010].

3. Submodular+Greedy: This improves the previous ap-
proach by first computing a 1� 1/e greedy approxima-
tion to the SMCC instance for set T , and pruning T if
this is already greater than the best regret found so far.

4. MultiILP: Instead of using SMCC, for each T 2 Ak

we optimize over S 2 Ak by solving an integer linear
program (ILP) with roughly n ·m variables and n ·m2

constraints. Note that
�
m
k

�
such ILPs need to be solved.

5. MultiILP+Greedy: This improves the MultiILP ap-
proach by using a greedy pruning procedure as before.

6. SingleILP: This approach solves a single but huge ILP
with

�
m
k

�
additional constraints.

Figure 5 shows the average running times of these ap-
proaches (and 95% confidence intervals) over 10 000 in-
stances with n = 15, k = 3, and m varying from 10 to
50.7 The experiments were performed on a single machine
with quad-core 2.9 GHz CPU and 32 GB RAM. A time limit
of 2 minutes was set because a running time greater than this
would not be helpful for our website, where the results need
to be delivered quickly to the users. While the greedy pruning
procedure does help reduce the running time of both the Sub-
modular and MultiILP approaches, SingleILP still computes
f⇤
reg

much faster than any other approach, solving instances
with 50 alternatives in less than 10 seconds. We have there-
fore implemented SingleILP on RoboVote.
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SingleILP
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Figure 5: Running times of six approaches to computing f⇤
reg

.

6 Discussion

We find it exciting that new theoretical questions in compu-
tational social choice are driven by concrete real-world ap-
plications. And while research in the field is often motivated
by potential applications to multiagent systems, we focus on
helping people — not software agents — make joint deci-
sions.

We also remark that we consider the empirical dominance
of f⇤

reg

, in terms of both regret and (surprisingly) distortion,
to be especially significant. It would be interesting to under-
stand, on a theoretical level, why this happens. A promising
starting point is to derive analytical bounds on the average-
case distortion of f⇤

dist

and f⇤
reg

under uniformly random util-
ity profiles.

7The running time scales linearly in n, and increases with
�
m
k

�
.
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